首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This study investigated the individual and combined effects of beta-carotene with a common flavonoid (naringin, quercetin or rutin) on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-related carcinogen in human. A human lung cancer cell line, A549, was pre-incubated with beta-carotene, a flavonoid, or both for 1h followed by incubation with NNK for 4 h. Then, we determined DNA strand breaks and the level of 7-methylguanine (7-mGua), a product of NNK metabolism by cytochrome P450 (CYP). We showed that beta-carotene at 20 microM significantly enhanced NNK-induced DNA strand breaks and 7-mGua levels by 90% (p < 0.05) and 70% (p < 0.05), respectively, and that the effect of beta-carotene was associated with an increased metabolism of NNK by CYP because the concomitant addition of 1-aminobenzotriazole, a CYP inhibitor, with beta-carotene to cells strongly inhibited NNK-induced DNA strand breaks. In contrast to beta-carotene, incubation of cells with naringin, quercetin or rutin added at 23 microM led to significant inhibition of NNK-induced DNA strand breaks, and the effect was in the order of quercetin > naringin > rutin. However, these flavonoids did not significantly affect the level of 7-mGua induced by NNK. Co-incubation of beta-carotene with any of these flavonoids significantly inhibited the enhancing effect of beta-carotene on NNK-induced DNA strand breaks; the effects of flavonoids were dose-dependent and were also in the order of quercetin > naringin > rutin. Co-incubation of beta-carotene with any of these flavonoids also significantly inhibited the loss of beta-carotene incorporated into the cells, and the effects of the flavonoids were also in the order of quercetin > naringin > rutin. The protective effects of these flavonoids may be attributed to their antioxidant activities because they significantly decreased intracellular ROS, and the effects were also in the order of quercetin > naringin > rutin. These in vitro results suggest that a combination of beta-carotene with naringin, rutin, or quercetin may increase the safety of beta-carotene.  相似文献   

2.
The photoprotective potential of the dietary antioxidants vitamin C, vitamin E, lycopene, β-carotene, and the rosemary polyphenol, carnosic acid, was tested in human dermal fibroblasts exposed to ultraviolet-A (UVA) light. The carotenoids were prepared in special nanoparticle formulations together with vitamin C and/or vitamin E. Nanoparticle formulations, in contrast to dimethylsulphoxide, stablized lycopene in the cell culture medium and allowed efficient cellular uptake. The presence of vitamin E in the formulation further increased the stability and cellular uptake of lycopene. UVA irradiation of the human skin fibroblasts led to a 10–15-fold rise in metalloproteinase 1 (MMP-1) mRNA. This rise was suppressed in the presence of low μM concentrations of vitamin E, vitamin C, or carnosic acid but not with β-carotene or lycopene. Indeed, in the presence of 0.5–1.0 μM β-carotene or lycopene, the UVA-induced MMP-1 mRNA was further increased by 1.5–2-fold. This increase was totally suppressed when vitamin E was included in the nanoparticle formulation. Heme-oxygenase 1 (HO-1) mRNA expression was strongly induced by UVA irradiation but none of the antioxidants inhibited this effect at the concentrations used in this study. Indeed, β-carotene or lycopene (0.5–1.0 μM) led to a further 1.5-fold rise in the UVA-induced HO-1 mRNA levels. In conclusion, vitamin C, vitamin E, and carnosic acid showed photoprotective potential. Lycopene and β-carotene did not protect on their own but in the presence of vitamin E, their stability in culture was improved and the rise in MMP-1 mRNA expression was suppressed, suggesting a requirement for antioxidant protection of the carotenoids against formation of oxidative derivatives that can influence the cellular and molecular responses.  相似文献   

3.
Epidemiological studies testing the effect of β-carotene in humans have found a relative risk for lung cancer in smokers supplemented with β-carotene. We investigated the reactions of retinal and β-apo-8′-carotenal, two β-carotene oxidation products, with 2′-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2′-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of 1,N2-etheno-2′-deoxyguanosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of β-carotene oxidation products.  相似文献   

4.
The potential protective effects of the flavanol catechin, the flavonol quercetin, the flavones, luteolin and rutin, and the isoflavones, genistein and daidzein, against the photo-oxidative stress induced by ultraviolet A radiation (UVA) and by phototoxic reactions resulting from the interaction of UVA with drugs and chemicals, has been assessed with cultured human skin fibroblasts. Lipid peroxidation and cell death have been chosen as model photobiological damage induced by UVA alone or photosensitized by cyamemazine (CMZ) and its photoproduct possessing phototoxic properties. Contrasting effects of flavonoids are observed. The flavanol, the flavonol and the flavones may protect against lipid peroxidation and cell death induced by 30 J cm(-2) of UVA alone or CMZ plus 10 J cm(-2) UVA. On the other hand, an amplification of the photodamage may be observed with isoflavones. A concentration-dependence study demonstrates that among the protective flavonoids, quercetin is the most efficient. The very effective protection brought by quercetin may result from its ability to scavenge reactive oxygen species produced by the photo-oxidative stress. However, the modification of membrane properties and the alteration of the lysosomal function by quercetin may not be neglected in these protective effects. The amplification of the photodamage by isoflavones is in sharp contrast with previous literature data demonstrating photoprotection by genistein. As a consequence, it may be concluded that an eventual antioxidant action of genistein may strongly depend on cells and photosensitizers. Furthermore such contrasting pro-versus anti-oxidant effects have to be taken into account when using flavonoid mixtures of plant extracts.  相似文献   

5.
The in vitro effects of several flavonoids on nonenzymatic lipid peroxidation in the rat brain mitochondria was studied. The lipid peroxidation was indexed by measuring the MDA production using the 2-thiobarbituric acid TBA test. The flavonoids, apigenin, flavone, flavanone, hesperidin, naringin, and tangeretin promoted the ascorbic acid-induced lipid peroxidation, the extent of which depended upon the concentration of the flavonoid and ascorbic acid. The other flavonoids studied, viz., quercetin, quercetrin, rutin, taxifolin, myricetin, myricetrin, phloretin, phloridzin, diosmetin, diosmin, apiin, hesperetin, naringenin, (+)-catechin, morin, fisetin, chrysin, and 3-hydroxyflavone, all showed varying extents of inhibition of the nonenzymatic lipid peroxidation, induced by either ascorbic acid or ferrous sulfate. The flavonoid aglycones were more potent in their antiperoxidative action than their corresponding glycosides. Structure-activity analysis revealed that the flavonoid molecule with polyhydroxylated substitutions on rings A and B, a 2,3-double bond, a free 3-hydroxyl substitution and a 4-keto moiety, would confer upon the compound potent antiperoxidative properties.  相似文献   

6.
Protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide (tert-BOOH)- and menadione-induced DNA single strand breaks was investigated in Caco-2 cells. Both tert-BOOH and menadione induced DNA single strand breaks in a concentration-dependent manner. Pre-incubation of Caco-2 cells with either quercetin or rutin for 24 h significantly decreased the formation of DNA single strand breaks evoked by tert-BOOH (P <.05). Iron chelators, 1,10-phenanthroline (o-Phen) and deferoxamine mesylate (DFO), also protected against tert-BOOH-induced DNA damage, whereas butylated hydroxytoluene (BHT) had no effect. Quercetin, and not rutin, decreased the extent of menadione-induced DNA single strand breaks. DFO and BHT, and not o-Phen, protected against menadione-induced DNA strand break formation (P <.05). From the results of this study, iron ions were involved in tert-BOOH-induced DNA single strand break formation in Caco-2 cells, whereas DNA damage evoked by menadione was far more complex. We demonstrated that the flavonoids, quercetin and rutin, protected against tert-BOOH-induced DNA strand breaks by way of their metal ion chelating mechanism. However, quercetin, and not rutin, protected against menadione-induced DNA single strand breaks by acting as both a metal chelator and radical scavenger.  相似文献   

7.
The antibacterial activities of flavonoids were found by the paper disk method to be enhanced by combining or mixing them. The combinations of quercetin and quercitrin, quercetin and morin, and quercetin and rutin were much more active than either flavonoid alone. Although rutin did not show activity in itself, the antibacterial activities of quercetin and morin were enhanced in the presence of rutin. The antibacterial activities of flavonoids, in combination with morin and rutin, were evaluated, based on the minimum inhibition concentration (MIC) in a liquid culture, by using Salmonella enteritidis and Bacillus cereus as the test bacteria. The activities of galangin, kaempherol, myricetin and fisetin were each enhanced in the presence of rutin when S. enteritidis was used as the test bacterium. The MIC value for kaempherol was markedly decreased by the addition of rutin. Morin inhibited DNA synthesis, and this effect was promoted by rutin at a concentration of 25 microg/ml.  相似文献   

8.
Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency – with particular reference to NER and skin cancer risk.  相似文献   

9.
10.
Inhibitions of the autoxidation of linoleic acid by flavonoids in micelles.   总被引:1,自引:0,他引:1  
The activities of five flavonoids as chain-breaking antioxidants have been studied for the autoxidation of linoleic acid in cetyl trimethylammonium bromide (CTAB) micelles at 37 degrees C. Flavonols such as quercetin, rutin and morin exhibited antioxidant activities, while two flavanones, naringin and hesperidin, did not suppress the oxidation appreciably. The ratio of rate constants for inhibition and propagation kinh/kp and stoichiometric factor n were determined.  相似文献   

11.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

12.
Abstract

Fava d'anta is a tree rich in the flavonoid rutin; it is found mainly in the Brazilian savannah, which is called the cerrado and has a defined drought season. The distribution of rutin in fava d'anta seedlings was studied at different developmental stages and in an adult tree. In addition, the effects of flooding, drought and salinity on the content of this flavonoid in seedlings were investigated. Rutin was found in all of the analyzed fava d'anta plant parts, and its content was always higher than quercetin, a related flavonoid. Young leaves showed the highest rutin content. In general, the stresses caused an increase in both of the flavonoids in the seedling leaves, with some variation depending on the leaf age. Seedlings under stress showed a similar growth to the control seedlings, suggesting that rutin may have a role in protecting the tissues against oxidative damage during drought periods in its natural habitat.  相似文献   

13.
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds on the susceptibility of low-density lipoprotein (LDL) to oxidative modification. In this study, six flavonoids, "apigenin, genistein, morin, naringin, pelargonidin and quercetin", were added to plasma and incubated for 3h at 37 degrees C. Then, the LDL fraction was separated by ultracentrifugation. The oxidizability of LDL was estimated by measuring conjugated diene (CD), lipid peroxides and thiobarbituric acid-reactive substances (TBARS) after cupric sulfate solution was added. We showed that among flavonoids used, quercetin and morin significantly (P<0.01 by ANOVA) and dose-dependently prolonged the lag time before initiation of oxidation reaction. Also, these two flavonoids suppressed the formation of lipid peroxides and TBARS more markedly than others. Their ability to prolong lag time and suppression of lipid peroxides and TBARS formation resulted to be in the following order: quercetin>morin>pelargonidin>genistein>naringin>apigenin. LDL exposed to flavonoids in vitro reduced oxidizability. These findings show that flavonoids may have a role in ameliorating atherosclerosis.  相似文献   

14.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 microM, morin and rutin had similar effects at concentrations of about 200 microM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin greater than morin greater than rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

15.
Ultraviolet A (UVA) radiation represents more than 90% of the UV spectrum reaching Earth's surface. Exposure to UV light, especially the UVA part, induces the formation of photoexcited states of cellular photosensitizers with subsequent generation of reactive oxygen species (ROS) leading to damages to membrane lipids, proteins and nucleic acids. Although UVA, unlike UVC and UVB, is poorly absorbed by DNA, it inhibits cell cycle progression, especially during S-phase. In the present study, we examined the role of the DNA damage checkpoint response in UVA-induced inhibition of DNA replication. We provide evidence that UVA delays S-phase in a dose dependent manner and that UVA-irradiated S-phase cells accumulate in G2/M. We show that upon UVA irradiation ATM-, ATR- and p38-dependent signalling pathways are activated, and that Chk1 phosphorylation is ATR/Hus1 dependent while Chk2 phosphorylation is ATM dependent. To assess for a role of these pathways in UVA-induced inhibition of DNA replication, we investigated (i) cell cycle progression of BrdU labelled S-phase cells by flow cytometry and (ii) incorporation of [methyl-(3)H]thymidine, as a marker of DNA replication, in ATM, ATR and p38 proficient and deficient cells. We demonstrate that none of these pathways is required to delay DNA replication in response to UVA, thus ruling out a role of the canonical S-phase checkpoint response in this process. On the contrary, scavenging of UVA-induced reactive oxygen species (ROS) by the antioxidant N-acetyl-l-cystein or depletion of vitamins during UVA exposure significantly restores DNA synthesis. We propose that inhibition of DNA replication is due to impaired replication fork progression, rather as a consequence of UVA-induced oxidative damage to protein than to DNA.  相似文献   

16.
Antioxidative activity of natural products from plants   总被引:28,自引:0,他引:28  
Ng TB  Liu F  Wang ZT 《Life sciences》2000,66(8):709-723
A variety of flavonoids, lignans, an alkaloid, a bisbenzyl, coumarins and terpenes isolated from Chinese herbs was tested for antioxidant activity as reflected in the ability to inhibit lipid peroxidation in rat brain and kidney homogenates and rat erythrocyte hemolysis. The pro-oxidant activities of the aforementioned compounds were assessed by their effects on bleomycin-induced DNA damage. The flavonoids baicalin and luteolin-7-glucuronide-6'-methyl ester, the lignan 4'-demethyldeoxypodophyllotoxin, the alkaloid tetrahydropalmatine, the bisbenzyl erianin and the coumarin xanthotoxol exhibited potent antioxidative activity in both lipid peroxidation and hemolysis assays. The flavonoid rutin and the terpene tanshinone I manifested potent antioxidative activity in the lipid peroxidation assay but no inhibitory activity in the hemolysis assay. The lignan deoxypodophyllotoxin, the flavonoid naringin and the coumarins columbianetin, bergapten and angelicin slightly inhibited lipid peroxidation in brain and kidney homogenates. It is worth stressing that the compounds with antioxidant effects in this assay, with the exception of tetrahydropalmatin and tanshinone I, have at least one free aromatic hydroxyl group in structure. Obviously, the aromatic hydroxyl group is very important for antioxidative effects of the compounds. None of the compounds tested exerted an obvious pro-oxidant effect.  相似文献   

17.
Protection from UV-B-induced DNA damage by flavonoids   总被引:11,自引:0,他引:11  
  相似文献   

18.
We investigated the effects of acute exhaustive exercise and β-carotene supplementation on urinary 8-hydroxy-deoxyguanosine (8-OHdG) excretion in healthy nonsmoking men. Fourteen untrained male (19-22 years old) volunteers participated in a double blind design. The subjects were randomly assigned to either the β-carotene or placebo supplement group. Eight subjects were given 30 mg of β-carotene per day for 1 month, while six subjects were given a placebo for the same period. All subjects performed incremental exercise to exhaustion on a bicycle ergometer both before and after the 1-month β-carotene supplementation period. The blood lactate and pyruvate concentrations significantly increased immediately after exercise in both groups. The baseline plasma p-carotene concentration was significantly 17-fold higher after β-carotene supplementation. The plasma β-carotene decreased immediately after both trials of exercise, suggesting that β-carotene may contribute to the protection of the increasing oxidative stress during exercise. Both plasma hypoxanthine and xanthine increased immediately after exercise before and after supplementation. This thus suggests that both trials of exercise might enhance the oxidative stress. The 24-h urinary excretion of 8-OHdG was unchanged for 3 days after exercise before and after supplementation in both groups. However, the baseline urinary excretion of 8-OHdG before exercise tended to be lower after β-carotene supplementation. These results thus suggest that a single bout of incremental exercise does not induce the oxidative DNA damage, while β-carotene supplementation may attenuate it.  相似文献   

19.
The ability of a range of dietary flavonoids to inhibit low-density lipoprotein (LDL) oxidation in vitro was tested using a number of different methods to assess oxidative damage to LDL. Overall quercetin was the most effective inhibitor of oxidative damage to LDL in vitro. On this basis, a diet enriched with onions and black tea was selected for a dietary intervention study that compared the effect on the Cu2+ ion-stimulated lag-time of LDL oxidation ex vivo in healthy human subjects of a high flavonoid diet compared with a low flavonoid diet. No significant difference was found in the Cu2+ ion-stimulated lag-time of LDL oxidation ex vivo between the high flavonoid and low flavonoid dietary treatments (48 ± 1.6 min compared to 49 ± 2.1 min).  相似文献   

20.
UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号