首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The aim of this study was to investigate the mechanism of cellular regulation of mitochondrial respiration in permeabilized cardiac cells with clearly different structural organization: (i) in isolated rat cardiomyocytes with very regular mitochondrial arrangement, (ii) in HL-1 cells from mouse heart, and (iii) in non-beating (NB HL-1 cells) without sarcomeres with irregular and dynamic filamentous mitochondrial network. We found striking differences in the kinetics of respiration regulation by exogenous ADP between these cells: the apparent Km for exogenous ADP was by more than order of magnitude (14 times) lower in the permeabilized non-beating NB HL-1 cells without sarcomeres (25+/-4 microM) and seven times lower in normally cultured HL-1 cells (47+/-15 microM) than in permeabilized primary cardiomyocytes (360+/-51 microM). In the latter cells, treatment with trypsin resulted in dramatic changes in intracellular structure that were associated with 3-fold decrease in apparent Km for ADP in regulation of respiration. In contrast to permeabilized cardiomyocytes, in NB HL-1 cells creatine kinase activity was low and the endogenous ADP fluxes from MgATPases recorded spectrophotometrically by the coupled enzyme assay were not reduced after activation of mitochondrial oxidative phosphorylation by the addition of mitochondrial substrates, showing the absence of ADP channelling in the NB HL-1 cells. While in the permeabilized cardiomyocytes creatine strongly activated mitochondrial respiration even in the presence of powerful competing pyruvate kinase-phosphoenolpyruvate system, in the NB HL-1 cells the stimulatory effect of creatine was not significant. The results of this study show that in normal adult cardiomyocytes and HL-1 cells intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are different, most probably related to differences in structural organization of these cells.  相似文献   

2.
Resveratrol prolongs lifespan and prevent cancer formation; however, the mechanisms are not understood. Here we evaluated the cell-cycle inhibition and apoptosis of resveratrol in B65 neuroblastoma cells, and we also studied the effects of resveratrol on the mammalian silent information regulator 2 (SIRT1). Results show that resveratrol reduces cell viability and causes apoptosis at 24 h of treatment. Resveratrol partially blocked cell proliferation, and significantly increased the fraction of cells arrested in the S phase. The role of SIRT1 in cell-cycle effects mediated by resveratrol was studied through changes in the expression of SIRT1 using western blot. Exposure to resveratrol decreased SIRT1 content, concomitant with an increase in the acetylated form of sirtuin substrates p53 and NFκ-β. Treatment of B65 neuroblastoma cells with resveratrol also reduced the content of the phosphorylated form of AKT. Exposure to the SIRT1 inhibitors nicotinamide and sirtinol altered neither cell viability nor the fraction of apoptotic cells. Furthermore, when cells were exposed simultaneously to resveratrol and nicotinamide or sirtinol, no changes were observed in the fraction of apoptotic cells. Our results show that a decrease in SIRT1 content, caused by exposure to resveratrol, does not appear to be involved in cell-cycle arrest or activation of apoptosis.  相似文献   

3.
Resveratrol, a phytochemical present in grapes, has been demonstrated to inhibit tumourigenesis in animal models. However, the specific mechanism by which resveratrol exerts its anticarcinogenic effect has yet to be elucidated. In the present study, the inhibitory effects of resveratrol on cell proliferation and apoptosis were evaluated in the human leukaemia cell line HL-60 and the human hepatoma derived cell line HepG2. We found that after a 2 h incubation period, resveratrol inhibited DNA synthesis in a concentration-dependent manner. The IC50 value was 15 microm in both HL-60 and HepG2 cells. When the time of treatment was extended, an increase in IC50 value was observed; for example, at 24 h the IC50 value was 30 microm for HL-60 cells and 60 microm for HepG2 cells. Flow cytometry revealed that cells accumulated in different phases of the cell cycle depending on the resveratrol concentration. Furthermore, an increase in nuclear size and granularity was observed in the G1 and S phases of HL-60 treated and HepG2-treated cells. Apoptosis was also stimulated by resveratrol in a concentration-dependent manner in HL-60 and HepG2 cells. In conclusion, resveratrol inhibits cell proliferation in a concentration- and time-dependent manner by interfering with different stages of the cell cycle. Furthermore, resveratrol treatment causes stimulation of apoptosis as well as an increase in nuclear size and granularity.  相似文献   

4.
The aim of this study was to investigate the mechanism of cellular regulation of mitochondrial respiration in permeabilized cardiac cells with clearly different structural organization: (i) in isolated rat cardiomyocytes with very regular mitochondrial arrangement, (ii) in HL-1 cells from mouse heart, and (iii) in non-beating (NB HL-1 cells) without sarcomeres with irregular and dynamic filamentous mitochondrial network. We found striking differences in the kinetics of respiration regulation by exogenous ADP between these cells: the apparent Km for exogenous ADP was by more than order of magnitude (14 times) lower in the permeabilized non-beating NB HL-1 cells without sarcomeres (25 ± 4 μM) and seven times lower in normally cultured HL-1 cells (47 ± 15 μM) than in permeabilized primary cardiomyocytes (360 ± 51 μM). In the latter cells, treatment with trypsin resulted in dramatic changes in intracellular structure that were associated with 3-fold decrease in apparent Km for ADP in regulation of respiration. In contrast to permeabilized cardiomyocytes, in NB HL-1 cells creatine kinase activity was low and the endogenous ADP fluxes from MgATPases recorded spectrophotometrically by the coupled enzyme assay were not reduced after activation of mitochondrial oxidative phosphorylation by the addition of mitochondrial substrates, showing the absence of ADP channelling in the NB HL-1 cells. While in the permeabilized cardiomyocytes creatine strongly activated mitochondrial respiration even in the presence of powerful competing pyruvate kinase-phosphoenolpyruvate system, in the NB HL-1 cells the stimulatory effect of creatine was not significant. The results of this study show that in normal adult cardiomyocytes and HL-1 cells intracellular local restrictions of diffusion of adenine nucleotides and metabolic feedback regulation of respiration via phosphotransfer networks are different, most probably related to differences in structural organization of these cells.  相似文献   

5.

Background/Aims

Septic cardiomyopathy is a severe condition that remains a challenge for clinical management. This study investigated whether the natural polyphenolic compound resveratrol could be used as a prophylactic treatment to alleviate sepsis-related myocardial injury; the underlying molecular mechanisms were deciphered by both in vitro and in vivo experiments.

Methods

A mouse model of endotoxin-induced cardiomyopathy was developed by intraperitoneal injection of LPS, and resveratrol was administered prophylatically to the animals. Serum LDH and CK activities were measured to detect myocardial injury, and echocardiography was performed to monitor cardiac structure and function. Various cytokines/chemokines and the Nrf2 antioxidant defense system were examined in the heart tissue. The effects of resveratrol on LPS-induced Nrf2 activation, ROS generation, and apoptotic cell death were further investigated in cultured primary human cardiomyocytes. An Nrf2 specific siRNA was used to define its role in resveratrol-mediated cardiomyocyte protective effect.

Results

Resveratrol pretreatment significantly attenuated LPS-induced myocardial injury in mice, which was associated with suppressed proinflammatory cytokine production and enhanced Nrf2 activation in the heart. In cultured primary human cardiomyocytes, resveratrol activated Nrf2, inhibited LPS-induced ROS generation, and effectively protected the cells from LPS-induced apoptotic cell death. Knockdown of Nrf2 abrogated resveratrol-mediated protection of the cells from LPS-induced cell death.

Conclusion

Resveratrol effectively alleviates endotoxin-induced cardiac toxicity through mechanisms that involve the Nrf2 antioxidant defense pathway. Our data suggest that resveratrol might be developed as a useful prophylactic management for septic cardiomyopathy.  相似文献   

6.
Resveratrol (trans-3,4,5’ –trihydroxystilbene) is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3) was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS) generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.  相似文献   

7.
The arrangement and movement of mitochondria were quantitatively studied in adult rat cardiomyocytes and in cultured continuously dividing non beating (NB) HL-1 cells with differentiated cardiac phenotype. Mitochondria were stained with MitoTracker® Green and studied by fluorescent confocal microscopy. High speed scanning (one image every 400 ms) revealed very rapid fluctuation of positions of fluorescence centers of mitochondria in adult cardiomyocytes. These fluctuations followed the pattern of random walk movement within the limits of the internal space of mitochondria, probably due to transitions between condensed and orthodox configurational states of matrix and inner membrane. Mitochondrial fusion or fission was seen only in NB HL-1 cells but not in adult cardiomyocytes. In NB HL-1 cells, mitochondria were arranged as a dense tubular network, in permanent fusion, fission and high velocity displacements of ~90 nm/s. The differences observed in mitochondrial dynamics are related to specific structural organization and mitochondria-cytoskeleton interactions in these cells.  相似文献   

8.
Resveratrol, a naturally occurring dietary compound with chemopreventive properties has been reported to trigger a variety of cancer cell types to apoptosis. Whether resveratrol shows any activity on human nasopharyngeal carcinoma (NPC) cells remained to be determined. The aim of this study was to investigate the effect and mechanism of resveratrol on human NPC cells. Treatment of resveratrol resulted in significant decrease in cell viability of NPC cell lines in a dose‐ and time‐dependent manner. A dose‐dependent apoptotic cell death was also measured by flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled resveratrol treatment resulted in a significant loss of mitochondrial transmembrane potential, release of cytochrome c, enhanced expression of Fas ligand (FasL), and suppression of glucose‐regulated protein 78 kDa (GRP78). These were followed by activation of caspases‐9, ‐8, ‐4, and ‐3, subsequently leading to DNA fragmentation and cell apoptosis. Furthermore, up‐regulation of proapoptotic Bax and down‐regulation of antiapoptotic Bcl‐2 protein were also observed. Taken together, resveratrol induces apoptosis in human NPC cells through regulation of multiple apoptotic pathways, including death receptor, mitochondria, and endoplasmic reticulum (ER) stress. Resveratrol can be developed as an effective compound for human NPC treatment. J. Cell. Physiol. 226: 720–728, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
We investigated the role of resveratrol, a polyphenol rich in red wine, in cell cycle progression and apoptosis of vascular smooth muscle cells (VSMCs). Resveratrol inhibited the growth of human aortic VSMCs at concentrations as low as 1 microM. This was due to the profound dose-dependent inhibition of DNA synthesis by resveratrol. DNA synthesis was more effectively inhibited when cells were pretreated with resveratrol. Resveratrol caused a dose-dependent increase in intracellular p53 and p21(WAF1/CIP1) levels. At lower concentrations (6.25-12.5 microM), resveratrol effectively blocked cell cycle progression of serum-stimulated VSMCs without inducing apoptosis, while the higher concentration of resveratrol (25 microM) selectively induced apoptosis in the same VSMCs. Intriguingly, however, the same high concentration of resveratrol could not induce apoptosis in quiescent VSMCs. These differential biological effects of resveratrol on quiescent and proliferating VSMCs suggest that resveratrol may be capable of selectively eliminating abnormally proliferating VSMCs of the arterial walls in vivo.  相似文献   

11.
Resveratrol, a polyphenol found in fruits, has been demonstrated to activate Sir2. Though many studies have demonstrated that resveratrol can activate SIRT1, whether it has effect on other sirtuins (SIRT2–7) are unknown. The present study shows that exposure of H9c2 cells to 50 µM H2O2 for 6 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry (FCM), but pretreatment of resveratrol (20 µM) eliminated H2O2‐induced apoptosis. Resveratrol also prevented H2O2‐induced caspase‐3 activation. Exposure of cells to resveratrol caused rapid activation of SIRT1,3,4,7. Sirtuin inhibitor, nicotinamide (20 mM) attenuated resveratrol's inhibitory effect on cell apoptosis and caspase‐3 activity. These results suggest that resveratrol protects cardiomyocytes from H2O2‐induced apoptosis by activating SIRT1,3,4,7. J. Cell. Biochem. 107: 741–747, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.  相似文献   

13.
Resveratrol is a natural polyphenolic compound with anti-inflammatory, antioxidant and neuroprotective properties, and it serves as a chemopreventive and chemotherapeutic agent. However, only very limited data have been obtained regarding the effects of resveratrol on preadipocytes, and the mechanisms of these effects remain largely unknown. In this study, murine 3T3-L1 preadipocytes were incubated with resveratrol, and cell apoptosis was investigated. Resveratrol caused S-phase arrest to inhibit cell proliferation and significantly increased the lactate dehydrogenase leaking ratio. Hoechst 33258 staining and transmission electron microscopy revealed the ultrastructural changes in nuclear chromatins of apoptotic cells. Furthermore, resveratrol activated the mitochondrial signaling with decreases in the mitochondrial membrane potential, cytochrome c release and the activation of caspase 9 and caspase 3. Resveratrol treatment also increased the protein level of Sirt1. By using small interfering RNAs of Sirt1, adenosine-monophosphate-activated protein kinase (AMPK) α, survivin and the AMPK agonist (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) and specific inhibitors for protein kinase B (AKT) or caspases, it was demonstrated that activation of Sirt1 inhibited AKT activation and further decreased the expression of survivin. It could also increase AMPK activation. Both signaling pathways activated mitochondrion-mediated pathway. Our findings clarified the apoptotic effects of resveratrol in 3T3-L1 preadipocytes and revealed the involved pathway including AMPK, AKT and survivin, suggesting its potential therapeutic application in the treatment or prevention of obesity and related metabolic symptoms.  相似文献   

14.
Expression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells. The HL-1 cells also exhibited deficient complex I of the respiratory chain. In conclusion, contrary to cardiomyocytes where mitochondria and CaMgATPases are organized into tight complexes which ensure effective energy transfer and feedback signaling between these structures via specialized pathways mediated by CK and AK isoforms and direct adenine nucleotide channeling, these complexes do not exist in HL-1 cells due to less organized energy metabolism.  相似文献   

15.
Leukemic cells responding to apoptosis-inducing drugs can be varied in terms of the mechanisms of action. Fenretinide, a synthetic retinoid, is worth of study as a promising candidate for apoptosis-based therapy of leukemia. Yet, it remains unclear whether this drug exerts the similar mechanisms on different leukemic cells. Here, we report a comparative analysis of fenretinide-induced apoptosis in three acute myeloid leukemic (AML) cell lines including HL60, NB4 and U937. Through a series of antagonist assays, we revealed similarities and differences of mechanisms involved in these three cell lines. Antioxidant vitamin C completely abrogated fenretinide-induced apoptosis in all cell lines, demonstrating that ROS is an essential and common mediator. However, the apoptotic effects of fenretinide could be blocked by ceramide synthase inhibitor fumonisin B1 only in HL60 rather than the other two. Moreover, fumonisin B1 was unable to inhibit the generation of ROS in fenretinide-treated HL60 cells, indicating that ROS may function as upstream stimulus of ceramide-mediated apoptosis. These comparative results strongly suggest that the apoptotic response induced by fenretinide in HL60 involves both ROS and ceramide, whereas drug-induced apoptosis in NB4 and U937 requires ROS but is independent of ceramide. Differentiated modes of action exerting on AML may guide the use of this apoptosis-inducing drug, and hence advance our knowledge about the nature of cancer-specific responses to this drug.  相似文献   

16.
N-(2-(1H-indazol-3-yl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-4-chloro-N-methylbenzamide (SMT-A07) is a novel 3-(Indol-2-yl) indazole derivative. The anticancer activities in vitro and the cell apoptosis-induction abilities of SMT-A07 on human leukemia HL60 and NB4 cell lines were investigated in this study. The results of MTT assay showed SMT-A07 was a potential and highly efficient antitumor compound with IC50 values ranging from 0.09 to 1.19 μM in five leukemia cell lines. SMT-A07 treatment for 24 h caused the increment of apoptosis rate from 6.88 to 49.72% in HL60 cells and from 8.72 to 56.28% in NB4 cells by flow cytometry analysis. Agarose gel electrophoresis showed DNA fragmentation that appeared after cells were exposed to SMT-A07. After SMT-A07 incubation, DAPI staining revealed the presence of DNA fragmentation, and perinuclear apoptotic body. SMT-A07 also resulted in a loss of ΔΨm in both HL60 and NB4 cells by JC-1 staining. Moreover, apoptosis-related proteins were examined by western blotting to explore the mechanism of its cytotoxicity. SMT-A07 exposure caused down-regulation and cleavage of procaspase-8, procaspase-3, Bid, PARP and up-regulation of cleaved caspase-8, cleaved caspase-3, PARP (Cleaved Fragment). In addition, the presence of pan-caspase inhibitor BOC-D-FMK prevented cells from caspase-3 activation, PARP cleavage, and subsequent apoptosis. Our study demonstrates that SMT-A07 displays an apparent antitumor activity with extensive anti-leukemia spectrum, and SMT-A07 can induce the apoptosis of HL60 and NB4 cells activation of the caspase cascade, which deserves further development.  相似文献   

17.

Background

Resveratrol is emerging as a novel anticancer agent. However, the mechanism(s) by which resveratrol exerts its effects on endometrial cancer (EC) are unknown. We previously reported that β-arrestin 2 plays a critical role in cell apoptosis. The role of β-arrestin 2 in resveratrol modulation of endometrial cancer cell apoptosis remains to be established.

Scope of Review

EC cells HEC1B and Ishikawa were transfected with either β-arrestin 2 RNA interfering (RNAi) plasmid or β-arrestin 2 full-length plasmid and control vector. The cells were then exposed to differing concentrations of resveratrol. Apoptotic cells were detected by TUNEL assay. Expression of total and phosphorylated Akt (p-Akt), total and phosphorylated glycogen synthase kinase 3 beta (p-GSK3β), and caspase-3 were determined by Western blot analysis. Our data demonstrate that inhibition of β-arrestin 2 increases the number of apoptotic cells and caspase-3 activation. Additionally β-arrestin 2 exerted an additive effect on resveratrol-reduced levels of p-Akt and p-GSK3β. Overexpression of β-arrestin 2 decreased the percentage of apoptosis and caspase-3 activation and attenuated resveratrol-reduced levels of p-Akt and p-GSK3β. Taken together, our studies demonstrate for the first time that β-arrestin 2 mediated signaling plays a critical role in resveratrol-induced apoptosis in EC cells.

Major Conclusions

Resveratrol primes EC cells to undergo apoptosis by modulating β-arrestin 2 mediated Akt/GSK3β signaling pathways.

General significance

These inspiring findings would provide a new molecular basis for further understanding of cell apoptotic mechanisms mediated by β-arrestin 2 and may provide insights into a potential clinical relevance in EC.  相似文献   

18.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

19.
Resveratrol (3,4′,5-trihydroxystilbene) is a phytochemical believed to be partly responsible for the cardioprotective effects of red wine due to its numerous biological activities. Here, we studied biochemical pathways underlying peroxynitrite-mediated apoptosis in endothelial cells and potential mechanisms responsible for resveratrol cytoprotective action. Peroxynitrite triggered endothelial cell apoptosis through caspases-8, -9 and -3 activation implying both mitochondrial and death receptor apoptotic pathways. Resveratrol was able to prevent peroxynitrite-induced caspases-3 and -9 activation, but not caspase-8 activation. Additionally, peroxynitrite increased intracellular levels of Bax without affecting those of Bcl-2, increasing consequently the Bax/Bcl-2 ratio. This ratio decreased when cells where pre-incubated with 10 and 50 μM resveratrol, mainly due to resveratrol ability per se to increase Bcl-2 intracellular levels without affecting Bax intracellular levels. These results propose an additional mechanism whereby resveratrol may exert its cardioprotective effects and suggest a key role for Bcl-2 in the resveratrol anti-apoptotic action, especially in disrupting peroxynitrite-triggered mitochondrial pathway.  相似文献   

20.
Here we report on the marked protective effect of resveratrol on 4-hydroxynonenal (4-HNE) induced oxidative stress and apoptotic death in Swiss 3T3 fibroblasts. 4-HNE, one of the major aldehydic products of the peroxidation of membrane w-6 polyunsaturated fatty acids, has been suggested to contribute to oxidant stress mediated cell injury. Indeed, in vitro treatment of 3T3 fibroblasts with 4-HNE induced a condition of oxidative stress as monitored by the oxidation of dichlorofluorescein diacetate; this reaction was prevented when cells were pretreated with resveratrol. Further, 4-HNE-treated fibroblasts eventually underwent apoptotic death as determined by differential staining and internucleosomal DNA fragmentation. Resveratrol pretreatment also prevented 4-HNE induced DNA fragmentation and apoptosis. These observations are consistent with a potential role of lipid peroxidation-derived products in programmed cell death and demonstrate that resveratrol can counteract this effect by quenching cell oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号