首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat kidney mitochondria were found to be essentially similar to those described previously for other mammalian tissues; in particular each enzyme could be activated severalfold by Ca2+ with half-maximal effects (K0.5 values) of about 1 microM and effective ranges of approx. 0.1-10 microM Ca2+. In intact mitochondria prepared from whole rat kidneys incubated in a KCl-based medium containing respiratory substrates, the amount of active, nonphosphorylated pyruvate dehydrogenase could be increased severalfold by increases in extramitochondrial [Ca2+]; these effects could be blocked by ruthenium red. Similarly, Ca2+-dependent activations of NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase could be demonstrated in intact, fully coupled, rat kidney mitochondria by either following O2 uptake (in the presence of ADP) and NAD(P)H reduction (in the absence of ADP) on presentation of non-saturating concentrations of either threo-Ds-isocitrate or 2-oxoglutarate, respectively, under appropriate conditions, or for the latter enzyme only, also by following 14CO2 production from 2-oxo[1-14C]glutarate (in the absence or presence of ADP). Effects of Na+ (as a promoter of egress) and Mg2+ (as an inhibitor of uptake) on Ca2+-transport by rat kidney mitochondria could be readily demonstrated by assaying for the Ca2+-sensitive properties of the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat kidney mitochondria. In the presence of physiological concentrations of Na+ (10 mM) and Mg2+ (2 mM), activation of the enzymes was achieved by increases in extramitochondrial [Ca2+] within the expected physiological range (0.05-5 microM) and with apparent K0.5 values in the approximate range of 300-500 nM. The implications of these results on the role of the Ca2+-transport system of kidney mitochondria are discussed.  相似文献   

2.
Incubation of rat liver mitochondria with benzoquinone derivatives in the presence of succinate plus rotenone has been shown to cause NAD(P)H oxidation followed by Ca2+ release. Further investigation revealed: (1)p-Benzoquinone-induced Ca2+ release was not initiated by a collapse of the mitochondrial membrane potential. However, Ca2+ release and subsequent Ca2+ cycling caused limited increased membrane permeability. (2) p-Benzoquinone-induced NAD(P)H oxidation and Ca2+ release were prevented by isocitrate, 3-hydroxybutyrate, and glutamate but not by pyruvate or 2-oxoglutarate. (3) Inhibition of pyruvate and 2-oxoglutarate dehydrogenases by p-benzoquinone was attributed to arylation of the SH groups of the cofactors, CoA and lipoic acid. Isocitrate dehydrogenase was also inhibited by p-benzoquinone, but the cofactors NAD(P)H and Mn2+ protected the enzyme. Glutamate dehydrogenase was not inhibited by p-benzoquinone. (4) Arylation of mitochondrial protein thiols by p-benzoquinone was associated with an inhibition of state 3 respiration, which was attributed to the inactivation of the phosphate translocase. In contrast, state 4 respiration, and the F1.F0-ATPase and ATP/ADP translocase activities were not inhibited. It was concluded that inhibition of mitochondrial NAD(P)H dehydrogenases by arylation of critical thiol groups will decrease the NAD(P)+-reducing capacity, and possibly lower the NAD(P)H/NAD(P)+ redox status in favor of Ca2+ release.  相似文献   

3.
1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system.  相似文献   

4.
1. The proportion of active (dephosphorylated) pyruvate dehydrogenase in rat heart mitochondria was correlated with total concentration ratios of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. These metabolites were measured with ATP-dependent and NADH-dependent luciferases. 2. Increase in the concentration ratio of NADH/NAD+ at constant [ATP]/[ADP] and [acetyl-CoA]/[CoA] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between mitochondria incubated with 0.4mM- or 1mM-succinate and mitochondria incubated with 0.4mM-succinate+/-rotenone. 3. Increase in the concentration ratio acetyl-CoA/CoA at constant [ATP]/[ADP] and [NADH][NAD+] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between incubations in 50 micrometer-palmitotoyl-L-carnitine and in 250 micrometer-2-oxoglutarate +50 micrometer-L-malate. 4. These findings are consistent with activation of the pyruvate dehydrogenase kinase reaction by high ratios of [NADH]/[NAD+] and of [acetyl-CoA]/[CoA]. 5. Comparison between mitochondria from hearts of diabetic and non-diabetic rats shows that phosphorylation and inactivation of pyruvate dehydrogenase is enhanced in alloxan-diabetes by some factor other than concentration ratios of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA.  相似文献   

5.
The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat liver mitochondria appeared to be essentially similar to those described previously for other mammalian tissues. In particular, the enzymes were activated severalfold by Ca2+, with half-maximal effects at about 1 microM-Ca2+ (K0.5 value). In intact rat liver mitochondria incubated in a KCl-based medium containing 2-oxoglutarate and malate, the amount of active, non-phosphorylated, pyruvate dehydrogenase could be increased severalfold by increasing extramitochondrial [Ca2+], provided that some degree of inhibition of pyruvate dehydrogenase kinase (e.g. by pyruvate) was achieved. The rates of 14CO2 production from 2-oxo-[1-14C]glutarate at non-saturating, but not at saturating, concentrations of 2-oxoglutarate by the liver mitochondria (incubated without ADP) were similarly enhanced by increasing extramitochondrial [Ca2+]. The rates and extents of NAD(P)H formation in the liver mitochondria induced by non-saturating concentrations of 2-oxoglutarate, glutamate, threo-DS-isocitrate or citrate were also increased in a similar manner by Ca2+ under several different incubation conditions, including an apparent 'State 3.5' respiration condition. Ca2+ had no effect on NAD(P)H formation induced by beta-hydroxybutyrate or malate. In intact, fully coupled, rat liver mitochondria incubated with 10 mM-NaCl and 1 mM-MgCl2, the apparent K0.5 values for extramitochondrial Ca2+ were about 0.5 microM, and the effective concentrations were within the expected physiological range, 0.05-5 microM. In the absence of Na+, Mg2+ or both, the K0.5 values were about 400, 200 and 100 nM respectively. These effects of increasing extramitochondrial [Ca2+] were all inhibited by Ruthenium Red. When extramitochondrial [Ca2+] was increased above the effective ranges for the enzymes, a time-dependent deterioration of mitochondrial function and ATP content was observed. The implications of these results on the role of the Ca2+-transport system of the liver mitochondrial inner membrane are discussed.  相似文献   

6.
1. The binding of Ca2+ ions to purified pig heart NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase, freed of contaminating Ca2+ by parvalbumin/polyacrylamide chromatography, has been studied by flow dialysis and by the use of fura-2. 2. For the 2-oxoglutarate dehydrogenase complex, 3.5 mol of Ca2+-binding sites/mol of complex were apparent, with an apparent dissociation constant (Kd value) for Ca2+ of 2.0 microM. These values were little affected by Mg2+ ions, ADP or 2-oxoglutarate. 3. By contrast, binding of Ca2+ to NAD+-isocitrate dehydrogenase (Kd = 14 microM) required ADP, isocitrate and Mg2+ ions. The number of Ca2+-binding sites associated with NAD+-isocitrate dehydrogenase was then 0.9 mol/mol of tetrameric enzyme. 4. The 2-oxoglutarate dehydrogenase complex bound ADP (as ADP3-) to a group of tight-binding sites (Kd = 3.1 microM) with a stoichiometry, 3.3 mol/mol of complex, similar to that for the binding of Ca2+; a variable number of much weaker sites (Kd = 100 microM) for ADP3- was also apparent.  相似文献   

7.
The flux control distribution of the net rate of state 3 respiration was determined in heart and kidney mitochondria incubated with low concentrations of pyruvate (0.5 mM) or 2-oxoglutarate (1 mM), and in conditions that led to activation of NAD-linked dehydrogenases, i.e., high substrate or Ca2+ concentrations. Control of flux was exerted by the ATP/ADP carrier (flux control coefficient, ci = 0.37) and Site 1 of the respiratory chain (ci = 0.28) when dehydrogenase activity was low. Control of the process shifted to the ATP synthase (ci = 0.32) and the Pi carrier (Ci = 0.27) when dehydrogenases were activated by high pyruvate and high Ca2+. The changes in the control exerted by the ATP/ADP carrier and the ATP synthase were not due to changes in the transmembrane potential, nor to a modification of intramitochondrial ATP/ADP ratios. Applying the summation theorem of the control analysis, it was found that at low Ca2+ and pyruvate concentrations the dehydrogenases shared the control of state 3 respiration with other steps. The NAD-linked dehydrogenases did not exert any significant control at high Ca2+ or high pyruvate concentrations.  相似文献   

8.
Regulation of citric acid cycle by calcium   总被引:2,自引:0,他引:2  
The relationship of extramitochondrial Ca2+ to intramitochondrial Ca2+ and the influence of intramitochondrial free Ca2+ concentrations on various steps of the citric acid cycle were evaluated. Ca2+ was measured using the Ca2+ sensitive fluorescent dye fura-2 trapped inside the rat heart mitochondria. The rate of utilization of specific substrates and the rate of accumulation of citric acid cycle intermediates were measured at matrix free Ca2+ ranging from 0 to 1.2 microM. A change in matrix free Ca2+ from 0 to 0.3 microM caused a 135% increase in ADP stimulated oxidation of 0.6 mM alpha-ketoglutarate (K0.5 = 0.15 microM). In the absence of ADP and the presence of 0.6 mM alpha-ketoglutarate, Ca2+ (0.3 microM) increased NAD(H) reduction from 0 to 40%. On the other hand, when pyruvate (10 microM to 5 mM) was substrate, pyruvate dehydrogenase flux was insensitive to Ca2+ and isocitrate dehydrogenase was sensitive to Ca2+ only in the presence of added ADP. In separate experiments pyruvate dehydrogenase activation (dephosphorylation) was measured. Under the conditions of the present study, pyruvate dehydrogenase was found to be almost 100% activated at all levels of Ca2+, thus explaining the Ca2+ insensitivity of the flux measurements. However, if the mitochondria were incubated in the absence of pyruvate, with excess alpha-ketoglutarate and excess ATP, the pyruvate dehydrogenase complex was only 20% active in the absence of added Ca2+ and activity increased to 100% at 2 microM Ca2+. Activation by Ca2+ required more Ca2+ (K0.5 = 1 microM) than for alpha-ketoglutarate dehydrogenase. The data suggest that in heart mitochondria alpha-ketoglutarate dehydrogenase may be a more physiologically relevant target of Ca2+ action than pyruvate dehydrogenase.  相似文献   

9.
1. The concentrations of free ATP, phosphocreatine (PCr), Pi, H+ and ADP (calculated) were monitored in perfused rat hearts by 31P n.m.r. before and during positive inotropic stimulation. Data were accumulated in 20 s blocks. 2. Administration of 0.1 microM-(-)-isoprenaline resulted in no significant changes in ATP, transient decreases in PCr, and transient increases in ADP and Pi. However, the concentrations of all of these metabolites returned to pre-stimulated values within 1 min, whereas cardiac work and O2 uptake remained elevated. 3. In contrast, in hearts perfused continuously with Ruthenium Red (2.5 micrograms/ml), a potent inhibitor of mitochondrial Ca2+ uptake, administration of isoprenaline caused significant decreases in ATP, and also much larger and more prolonged changes in the concentrations of ADP, PCr and Pi. In this instance values did not fully return to pre-stimulated concentrations. Administration of Ruthenium Red alone to unstimulated hearts had minor effects. 4. It is proposed that, in the absence of Ruthenium Red, the transmission of changes in cytoplasmic Ca2+ across the mitochondrial inner membrane is able to maintain the phosphorylation potential of the heart during positive inotropic stimulation, through activation of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) leading to enhanced NADH production. 5. This mechanism is unavailable in the presence of Ruthenium Red, and oxidative phosphorylation must be stimulated primarily by a fall in phosphorylation potential, in accordance with the classical concept of respiratory control. However, the full oxidative response of the heart to stimulation may not be achievable under such circumstances.  相似文献   

10.
In extracts of rat heart mitochondria, Sr2+ mimicked the activatory effects of Ca2+ on the Ca2(+)-sensitive intramitochondrial enzymes, pyruvate dehydrogenase phosphate phosphatase, isocitrate dehydrogenase (NAD+), and 2-oxoglutarate dehydrogenase, but at about tenfold higher concentrations (effective range approximately 1-100 muM) in each case. Ba2+ had no effect on extracted phosphatase, but did mimic the effect of Ca2+ on the other two enzymes with effective concentration ranges similar to those of Sr2+; as with Ca2+ and Sr2+, effective Ba2+ ranges were slightly (2-3-fold) raised by increases in ATP/ADP. In intact uncoupled rat heart mitochondria, the effects of Sr2+ and Ba2+ on the pyruvate and 2-oxoglutarate dehydrogenases were essentially similar to their effects in extracts. In fully coupled rat heart or liver mitochondria, the effective concentration ranges of extramitochondrial Sr2+, leading to activation of the matrix enzymes, were always approximately tenfold higher than those for Ca2+ under all conditions. Ba2+ did not affect pyruvate dehydrogenase in coupled mitochondria, but was shown to activate 2-oxoglutarate dehydrogenase in heart or liver mitochondria, and also isocitrate dehydrogenase (NAD+) in the latter; effective concentration ranges for extramitochondrial Ba2+ were approximately 100-fold greater than those for Ca2+, and like those for Ca2+ and Sr2+, were affected markedly by Mg2+ and spermine (which inhibit and promote mitochondrial Ca2+ uptake, respectively) but, in contrast to Ca2+ and Sr2+, they were hardly affected at all by Na+ (which promotes mitochondrial Ca2+ egress). Ba2+ effects were also blocked by ruthenium red (an inhibitor of mitochondrial Ca2+ uptake), but not so effectively as its blockage of the effects of Sr2+ and Ca2+. Ba2+ and Sr2+ both mimicked the inhibitory effects of extramitochondrial Ca2+ on the Na+/Ca2+ exchanger, but only Sr2+ could mimic Ca2+ in exchanging for internal Ca2+ by this mechanism. Both Sr2+ and Ba2+ changed the fluorescent properties of fura-2 or indo-1 in a similar manner to Ca2+, but with higher kd values. In fura-2-loaded rat heart mitochondria, increases in matrix Sr2+ and Ba2+ and the effects of the transport effectors could be readily demonstrated.  相似文献   

11.
The mechanism by which fatty acid addition leads to the inactivation of pyruvate dehydrogenase in intact rat liver mitochondria was investigated. In all cases the fatty acid octanoate was added to mitochondria oxidizing succinate. Addition of fatty acid caused an inactivation of pyruvate dehydrogenase in mitochondria incubated under State 3 conditions (glucose plus hexokinase), in uncoupled, oligomycin-treated mitochondria, and in rotenone-menadione-treated mitochondria, but not in uncoupled mitochondria or in mitochondria incubated under State 4 conditions. A number of metabolic conditions were found in which pyruvate dehydrogenase was inactivated concomitant with an elevation in the ATP/ADP ratio. This is consistent with the inverse relationship between the ATP/ADP ratio and the pyruvate dehydrogenase activity proposed by various laboratories. However, in several other metabolic conditions pyruvate dehydrogenase was inactivated while the ATP/ADP ratio either was unchanged or even decreased. This observation implies that there are likely other regulatory factors involved in the fatty acid-mediated inactivation of pyruvate dehydrogenase. Incubation conditions in State 3 were found in which the ATP/ADP and the acetyl-CoA/CoASH ratios remained constant and the pyruvate dehydrogenase activity was correlated inversely with the NADH/NAD+ ratio. Other State 3 conditions were found in which the ATP/ADP and the NADH/NAD+ ratios remained constant while the pyruvate dehydrogenase activity was correlated inversely with the acetyl-CoA/CoASH ratio. Further evidence supporting these experiments with intact mitochondria was the observation that the pyruvate dehydrogenase kinase activity of a mitochondrial extract was stimulated strongly by acetyl-CoA and was inhibited by NAD+ and CoASH. In contrast to acetyl-CoA, octanoyl-CoA inhibited the kinase activity. These results indicate that the inactivation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria may be mediated through effects of the NADH/NAD+ ratio and the acetyl-CoA/CoASH ratio on the interconversion of the active and inactive forms of the enzyme complex catalyzed by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase.  相似文献   

12.
1. The mitochondrial content of active (dephospho) pyruvate dehydrogenase (PDHA) was found to be severalfold higher at an extramitochondrial Ca2+ concentration of 2 microM (pCa6) than at pCa7. The nature of the respiratory substrate did not affect this finding. 2. This Ca2+-dependence was shown in state-4 and 50%-state-3 conditions [see Chance & Williams (1956) Adv. Enzymol. 17, 65-134], but was absent in the presence of excess ADP (state 3). 3. Na+ and Mg2+ ions shifted the pCa value required for a maximal PDHA content to lower values. This was attributed to a stimulation of mitochondrial Ca2+ egress and an inhibition of uptake, respectively. Na+ ions diminished pyruvate dehydrogenase phosphate phosphatase activity in mitochondria which had been extensively depleted of Ca2+ ions by incubation with EGTA, raising the possibility of a direct inhibitory effect of Na+ ions, unrelated to Ca2+ movements. 4. Mg2+ ions lowered the mitochondrial PDHA content at pCa 6.24 and 6.48, but had only minimal effects in the presence of EGTA. 5. The effects of P1 and bicarbonate ions on PDHA content were also studied, as possible effectors of mitochondrial Ca2+ transport. Bicarbonate ions abolished the response to Ca2+ ions, by generating maximal values of PDHA content, but such a response was still observed when physiological concentrations of both P1 and bicarbonate were used. 6. The pCa of the medium in the range 6.33 to over 7 affected PDHA content, with only very minor changes in state-4 rates of O2 uptake and no change in [ATP]/[ADP] ratio or in mitochondrial [NADH]/[NAD+] ratio, provided that Mg2+ ions were present. Thus the effect of Ca2+ ions on PDHA content is unlikely to be mediated by changes in [ATP]/[ADP] and [NADH]/[NAD+] ratio and is more likely to be direct. Equally, changes in the [acetyl-CoA]/[CoA] ratio in response to Ca2+ ions when the substrate was pyruvate were the converse of those required to mediate changes in interconversion, and are probably secondary to changes in PDHA content.  相似文献   

13.
1. The reduction of mitochondrial NAD(P) by 2-oxoglutarate was monitored as a measure of 2-oxoglutarate dehydrogenase activity in its intramitochondrial locale. In the absence of ADP, steady-state reduction of NAD(P) by 0.5 mM-2-oxoglutarate in the presence of 0.5 mM-L-malate was markedly increased by extramitochondrial Ca2+, with 50% activation at pCa 6.58, when the Na+ concentration was 10 mM, the Pi concentration ws 5 mM and the added Mg2+ concentration was 1 mM. Omission of Pi resulted in 50% activation at pCa 6.77; omission of Mg2+ resulted in 50% activation at pCA greater than or equal to 7.3. 2. The activation of 2-oxoglutarate dehydrogenase could be reversed on addition of an excess of EGTA. The rate of inactivation was dependent on the concentration of Na+, with K0.5 2.5 mM, which is consistent with the rate of withdrawal of Ca2+ from the mitochondria being the limiting factor. 3. The steady-state reduction of cytochrome c by 2-oxoglutarate (0.5 mM) also showed a marked dependence on pCa in the absence of ADP; in the presence of an excess of ADP, no such effect of Ca2+ was detectable. 4. Mitochondria from the hearts of senescent rats showed an undiminished rate of dehydrogenase activation by Ca2+ but a rate of inactivation by excess EGTA that was diminished by 40%. Direct studies of Ca2+ egress with Arsenazo III confirmed a decrement in rate with old age. 5. Studies of 2-oxoglutarate dehydrogenase activity as a function of the mitochondrial context of Ca2+, as measured by atomic-absorption spectrophotometry, showed half-maximal activation at a mitochondrial content of 1.0 nmol of Ca2+/mg of protein, and saturation at 3 nmol/mg. 6. These findings support the model advanced by Denton, Richards & Chin [(1978) Biochem. J. 176, 899-906], of a control of the tricarboxylate cycle by intramitochondrial Ca2+, and demonstrate the range of mitochondrial Ca2+ content over which this may occur. In addition, they raise the possibility of a disturbance of this control mechanism in old age.  相似文献   

14.
The presence of palmitoyl-L-carnitine and acetoacetate (separately) decreased flux through pyruvate dehydrogenase in isolated mitochondria from rat hind-limb muscle. The effect of acetoacetate was dependent on the presence of 2-oxoglutarate and Ca2+. Palmitoylcarnitine, but not acetoacetate, also decreased the mitochondrial content of active dephospho-pyruvate dehydrogenase (PDHA). This effect was large only in the presence of EGTA. Addition of Ca2+-EGTA buffers stabilizing pCa values of 6.48 or lower gave near-maximal values of PDHA content, irrespective of the presence of fatty acids or ketones when mitochondria were incubated under the same conditions used for the flux studies, i.e. at low concentrations of pyruvate. There was, however, a minor decrement in PDHA content in response to palmitoylcarnitine oxidation when the substrate was L-glutamate plus L-malate. Measurement of NAD+, NADH, CoA and acetyl-CoA in mitochondrial extracts in general showed decreases in [NAD+]/[NADH] and [CoA]/[acetyl-CoA] ratios in response to the oxidation of palmitoylcarnitine and acetoacetate, providing a mechanism for both decreased PDHA content and feedback inhibition of the enzyme in the PDHA form. However, only changes in [CoA]/[acetyl-CoA] ratio appear to underlie the decreased PDHA content on addition of palmitoylcarnitine when mitochondria are incubated with L-glutamate plus L-malate (and no pyruvate) as substrate. The effect of palmitoylcarnitine oxidation on flux through pyruvate dehydrogenase and on PDHA content is less marked in skeletal-muscle mitochondria than in cardiac-muscle mitochondria. This may reflect the less active oxidation of palmitoylcarnitine by skeletal-muscle mitochondria, as judged by State-3 rates of O2 uptake. In addition, Ca2+ concentration is of even greater significance in pyruvate dehydrogenase interconversion in skeletal-muscle mitochondria than in cardiac-muscle mitochondria.  相似文献   

15.
1. High rates of state 3 pyruvate oxidation are dependent on high concentrations of inorganic phosphate and a predominance of ADP in the intramitochondrial pool of adenine nucleotides. The latter requirement is most marked at alkaline pH values, where ATP is profoundly inhibitory. 2. Addition of CaCl(2) during state 4, state 3 (Chance & Williams, 1955) or uncoupled pyruvate oxidation causes a marked inhibition in the rate of oxygen uptake when low concentrations of mitochondria are employed, but may lead to an enhancement of state 4 oxygen uptake when very high concentrations of mitochondria are used. 3. These properties are consistent with the kinetics of the NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) from this tissue, which is activated by isocitrate, citrate, ADP, phosphate and H(+) ions, and inhibited by ATP, NADH and Ca(2+). 4. Studies of the redox state of NAD and cytochrome c show that addition of ADP during pyruvate oxidation causes a slight reduction, whereas addition during glycerol phosphate oxidation causes a ;classical' oxidation. Nevertheless, it is concluded that pyruvate oxidation is probably limited by the respiratory chain in state 4 and by the NAD-linked isocitrate dehydrogenase in state 3. 5. The oxidation of 2-oxoglutarate by swollen mitochondria is also stimulated by high concentrations of ADP and phosphate, and is not uncoupled by arsenate.  相似文献   

16.
1. Previous studies showed that the activation of pyruvate dehydrogenase within intact rat heart mitochondria of pyruvate is much diminished in mitochondria from starved or diabetic animals [see Kerbey, Randle, Cooper, Whitehouse, Pask & Denton (1976) Biochem. J. 154, 327-348]. In the present study, diminished responses to added Ca2+ and ADP were also found in these mitochondria. 2. Starvation or diabetes did not affect the mitochondrial respiratory control ratio of the ATP content. Moreover, starvation and diabetes did not alter the response of the intramitochondrial Ca2+-sensitive enzyme, 2-oxoglutarate dehydrogenase, to changes in the extramitochondrial concentration of Ca2+ and 2-oxoglutarate, thus indicating that there were no appreciable changes in the distribution of Ca2+ and H+ across the mitochondrial inner membrane. 3. Pyruvate, Ca2+ and ADP were found to have synergistic effects on pyruvate dehydrogenase activity, particularly in mitochondria from starved and diabetic rats. 4. The results suggest that the effects of diabetes and starvation on pyruvate dehydrogenase are not brought about by changes in the distribution of these effectors across the mitochondrial inner membrane or by changes in the intrinsic sensitivity of the kinase or phosphatase of the pyruvate dehydrogenase system to pyruvate, Ca2+ or ADP; rather it is probably that there is an increase in the maximum activity of kinase relative to that of the phosphatase. 6. The results also lend further support to the hypothesis that adrenaline may bring about the activation of pyruvate dehydrogenase in the rat heart by an increase in the intramitochondrial concentration of Ca2+.  相似文献   

17.
A number of cellular systems cooperate in redox regulation, providing metabolic responses according to changes in the oxidation (or reduction) of the redox active components of a cell. Key systems of central metabolism, such as the 2-oxo acid dehydrogenase complexes, are important participants in redox regulation, because their function is controlled by the NADH/NAD+ ratio and the complex-bound dihydrolipoate/lipoate ratio. Redox state of the complex-bound lipoate is an indicator of the availability of the reaction substrates (2-oxo acid, CoA and NAD+) and thiol-disulfide status of the medium. Accumulation of the dihydrolipoate intermediate causes inactivation of the first enzyme of the complexes. With the mammalian pyruvate dehydrogenase, the phosphorylation system is involved in the lipoate-dependent regulation, whereas mammalian 2-oxoglutarate dehydrogenase exhibits a higher sensitivity to direct regulation by the complex-bound dihydrolipoate/lipoate and external SH/S-S, including mitochondrial thioredoxin. Thioredoxin efficiently protects the complexes from self-inactivation during catalysis at low NAD+. As a result, 2-oxoglutarate dehydrogenase complex may provide succinyl-CoA for phosphorylation of GDP and ADP under conditions of restricted NAD+ availability. This may be essential upon accumulation of NADH and exhaustion of the pyridine nucleotide pool. Concomitantly, thioredoxin stimulates the complex-bound dihydrolipoate-dependent production of reactive oxygen species. It is suggested that this side-effect of the 2-oxo acid oxidation at low NAD+in vivo would be overcome by cooperation of mitochondrial thioredoxin and the thioredoxin-dependent peroxidase, SP-22.  相似文献   

18.
1. DL-8-Methyldihydrolipoate was shown to be a potent inhibitor of mitochondrial oxidative phosphorylation and ATP-driven energy-linked reactions. 2. ADP-stimulated respiration utilizing pyruvate + malate and succinate in both ox heart and rat liver mitochondria is inhibited; oxidative phosphorylation using pyruvate + malate, succinate and ascorbate + NNN'N'-tetramethyl-p-phenylenediamine as substrates is also inhibited; uncoupler-stimulated respiration is unaffected regardless of the substrate used. 3. Mitochondrial oligomycin-sensitive adenosine triphosphatase is inhibited in both the membrane-bound form and the purified detergent-dispersed preparation. 4. ATP-driven transhydrogenase and the ATP-driven energy-linked reduction of NAD+ by succinate in ox heart submitochondrial particles are inhibited, whereas the respiratory-chain-driven transhydrogenase is unaffected. 5. DL-8-Methyl-lipoate has no immediate effect on the above reactions, demonstrating the requirement for the reduced form for inhibition. 6. The inhibitory properties of DL-8-methyldihydrolipoate are analogous to those of oligomycin and provide further evidence of a role for lipoic acid in oxidative phosphorylation.  相似文献   

19.
The oxidation of pyruvate is mediated by the pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) whose catalytic activity is influenced by phosphorylation and by product inhibition. 2-Oxoglutarate and 3-hydroxybutyrate are readily utilized by brain mitochondria and inhibit pyruvate oxidation. To further elucidate the regulatory behavior of brain PDHC, the effects of 2-oxoglutarate and 3-hydroxyburyrate on the flux of PDHC (as determined by [1-14C]pyruvate decarboxylation) and the activation (phosphorylation) state of PDHC were determined in isolated, non-synaptic cerebro-cortical mitochondria in the presence or absence of added adenine nucleotides (ADP or ATP). [1-14C]Pyruvate decarboxylation by these mitochondria is consistently depressed by either 3-hydroxybutyrate or 2-oxoglutarate in the presence of ADP when mitochondrial respiration is stimulated. In the presence of exogenous ADP, 3-hydroxybutyrate inhibits pyruvate oxidation mainly through the phosphorylation of PDHC, since the reduction of the PDHC flux parallels the depression of PDHC activation state under these conditions. On the other hand, in addition to the phosphorylation of PDHC, 2-oxoglutarate may also regulate pyruvate oxidation by product inhibition of PDHC in the presence of 0.5 mM pyruvate plus ADP or 5 mM pyruvate alone. This conclusion is based upon the observation that 2-oxoglutarate inhibits [1-14C]pyruvate decarboxylation to a much greater extent than that predicted from the PDHC activation state (i.e. catalytic capacity) alone. In conjunction with the results from our previous study (Lai, J. C. K. and Sheu, K.-F. R. (1985) J. Neurochem. 45, 1861–1868), the data of the present study are consistent with the notion that the relative importance of the various mechanisms that regulate brain and peripheral tissue PDHCs shows interesting differences.  相似文献   

20.
The parameters of respiration (V3, V4) and phosphorylation (the respiration control, ADP/O) have been studied using lactate as a substrate (obligatory with NAD addition) close by meaning to pyruvate on the liver and heart mitochondrion and homogenates of newborn rats. In 20-days and adult rats the mitochondria and homogenates oxidize the lactate (with NAD) with higher rate V4 but with lower value of respiration control as compared with the newborn animals. Simultaneously, a high activity of mitochondrial NADH-oxidase, oxidizing NADH, formed in the reaction of lactate dehydrogenase not connected with ATP synthesis. The role of mitochondrial NADH-oxidase are discussed as a factor increasing lactate oxidation, removing tissue lactate and activating the age dependent energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号