首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigated the effect of ileal bile acid transport on the regulation of classic and alternative bile acid synthesis in cholesterol-fed rats and rabbits. Bile acid pool sizes, fecal bile acid outputs (synthesis rates), and the activities of cholesterol 7alpha-hydroxylase (classic bile acid synthesis) and cholesterol 27-hydroxylase (alternative bile acid synthesis) were related to ileal bile acid transporter expression (ileal apical sodium-dependent bile acid transporter, ASBT). Plasma cholesterol levels rose 2.1-times in rats (98 +/- 19 mg/dl) and 31-times (986 +/- 188 mg/dl) in rabbits. The bile acid pool size remained constant (55 +/- 17 mg vs. 61 +/- 18 mg) in rats but doubled (254 +/- 46 to 533 +/- 53 mg) in rabbits. ASBT protein expression did not change in rats but rose 31% (P < 0.05) in rabbits. Fecal bile acid outputs that reflected bile acid synthesis increased 2- and 2.4-times (P < 0.05) in cholesterol-fed rats and rabbits, respectively. Cholesterol 7alpha-hydroxylase activity rose 33% (24 +/- 2.4 vs. 18 +/- 1.6 pmol/mg/min, P < 0.01) and mRNA levels increased 50% (P < 0.01) in rats but decreased 68% and 79%, respectively, in cholesterol-fed rabbits. Cholesterol 27-hydroxylase activity remained unchanged in rats but rose 62% (P < 0.05) in rabbits. Classic bile acid synthesis (cholesterol 7alpha-hydroxylase) was inhibited in rabbits because an enlarged bile acid pool developed from enhanced ileal bile acid transport. In contrast, in rats, cholesterol 7alpha-hydroxylase was stimulated but the bile acid pool did not enlarge because ASBT did not change. Therefore, although bile acid synthesis was increased via different pathways in rats and rabbits, enhanced ileal bile acid transport was critical for enlarging the bile acid pool size that exerted feedback regulation on cholesterol 7alpha-hydroxylase in rabbits.  相似文献   

2.
Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.  相似文献   

3.
Male adult Wistar rats received daily, at 9 a.m. and 5 p.m., 10 micrograms of Zn-protamine glucagon for 21 days by subcutaneous injections. The blood glucose level was not significantly modified. Cholesterol and triacylglycerol levels were decreased by 40 and 70% in plasma but not in the liver. The rates of cholesterol turnover processes were determined in vivo with an isotope balance method. Internal secretion of cholesterol (13.8 +/- 0.5 mg/day per rat in control rats and 22.4 +/- 0.9 mg/day per rat in glucagon-treated rats) and cholesterol transformation into bile acids were strikingly increased by chronic administration of glucagon. Biliary secretion rates of bile acids measured by a wash-out method were increased by 139%, while the intestinal bile acid pool was not changed. The enterohepatic cycle number was increased from five per day in control rats to nine per day in glucagon-treated rats. An increased turnover rate of the exchangeable cholesterol would explain the hypocholesterolemic effect of glucagon.  相似文献   

4.
Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.  相似文献   

5.
Prostaglandin E receptor subtype 4 (EP4) knockout mice develops spontaneous hypercholesterolemia but the detailed mechanisms by which EP4 affects cholesterol homeostasis remains unexplored. We sought to determine the cause of hypercholesterolemia in EP4 knockout mice, focusing on the role of EP4 in regulating the synthesis and elimination of cholesterol. Deficiency of EP4 significantly decreased total bile acid levels in the liver by 26.2% and the fecal bile acid content by 27.6% as compared to wild type littermates, indicating that the absence of EP4 decreased hepatic bile acid synthesis and their subsequent excretion in stools. EP4 deficiency negatively regulate bile acid synthesis through repression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK)-mediated cholesterol 7α-hydroxylase (CYP7A1) expression and that the hypercholesterolemia in EP4 knockout mice is due to a defect in cholesterol conversion into bile acids. Deficiency of EP4 also increased de novo cholesterol synthesis and altered cholesterol fluxes in and out of the liver. Treating high fat diet-challenged mice with the pharmacological EP4 agonist, CAY10580 (200?μg/kg body weight/day i.p) for three weeks effectively prevented diet-induced hypercholesterolemia, enhanced endogenous bile acid synthesis and their fecal excretion. In summary, EP4 plays a critical role in maintaining cholesterol homeostasis by regulating the synthesis and elimination of bile acids. Activation of EP4 serves as an effective novel strategy to promote cholesterol disposal in the forms of bile acids in order to lower plasma cholesterol levels.  相似文献   

6.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

7.
The ileal apical sodium bile acid cotransporter participates in the enterohepatic circulation of bile acids. In patients with primary bile acid malabsorption, mutations in the ileal bile acid transporter gene (Slc10a2) lead to congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. To elucidate the quantitative role of Slc10a2 in intestinal bile acid absorption, the Slc10a2 gene was disrupted by homologous recombination in mice. Animals heterozygous (Slc10a2+/-) and homozygous (Slc10a2-/-) for this mutation were physically indistinguishable from wild type mice. In the Slc10a2-/- mice, fecal bile acid excretion was elevated 10- to 20-fold and was not further increased by feeding a bile acid binding resin. Despite increased bile acid synthesis, the bile acid pool size was decreased by 80% and selectively enriched in cholic acid in the Slc10a2-/- mice. On a low fat diet, the Slc10a2-/- mice did not have steatorrhea. Fecal neutral sterol excretion was increased only 3-fold, and intestinal cholesterol absorption was reduced only 20%, indicating that the smaller cholic acid-enriched bile acid pool was sufficient to facilitate intestinal lipid absorption. Liver cholesteryl ester content was reduced by 50% in Slc10a2-/- mice, and unexpectedly plasma high density lipoprotein cholesterol levels were slightly elevated. These data indicate that Slc10a2 is essential for efficient intestinal absorption of bile acids and that alternative absorptive mechanisms are unable to compensate for loss of Slc10a2 function.  相似文献   

8.
Six African green monkeys were labeled intravenously with [1,2-(3)H]cholesterol while consuming a cholesterol-free liquid formula diet. The plasma cholesterol specific activity was compared with the specific activity of the biliary cholesterol and bile acids and with the fecal neutral steroids in order to determine whether the traditional isotopic balance method was valid for the calculation of endogenous cholesterol excretion. The specific activity of biliary cholesterol and bile acids averaged 10-15% lower than plasma cholesterol specific activity. Fecal cholesterol and coprostanone specific activities were similar to that of the biliary cholesterol, but the specific activity of fecal coprostanol was approximately 25% lower. This suggests that biliary cholesterol and bile acids were derived from a pool of hepatic cholesterol that did not completely equilibrate with the whole body exchangeable cholesterol pool. In addition, there was further reduction in the specific activity of coprostanol, the major fecal neutral steroid, presumably by cholesterol synthesized in the lower intestine and preferentially converted to coprostanol. As a result, the traditional isotopic balance procedure underestimated endogenous neutral steroid excretion by 46% and bile acid excretion by 31% in African green monkeys fed the cholesterol-free diet. Within 7 days after the addition of 1 mg cholesterol/kcal to the diet, the specific activities of plasma and biliary cholesterol and biliary bile acids were identical and there was no difference in the specific activities of the individual fecal neutral steroids. Thus, the traditional isotopic balance procedure (DPM fecal neutral steroids + bile acids/specific activity [DPM/mg] plasma cholesterol) can be used for calculation of endogenous cholesterol excretion in cholesterol-fed animals during the nonsteady state when plasma cholesterol concentrations are rapidly increasing, as well as after a new steady state has been achieved.-Henderson, G. R., and R. W. St. Clair. Sources of error in the isotopic cholesterol balance method in African green monkeys consuming a cholesterol-free diet.  相似文献   

9.
Blocking intestinal bile acid absorption by inhibiting the apical sodium codependent bile acid transporter (ASBT) is a target for increasing hepatic bile acid synthesis and reducing plasma LDL cholesterol. SC-435 was identified as a potent inhibitor of ASBT (IC50 = 1.5 nM) in cells transfected with the human ASBT gene. Dietary administration of 3 mg/kg to 30 mg/kg SC-435 to apolipoprotein E-/- (apoE-/-) mice increased fecal bile acid excretion by >2.5-fold. In vivo inhibition of ASBT also resulted in significant increases of hepatic mRNA levels for cholesterol 7alpha-hydroxylase and HMG-CoA reductase. Administration of 10 mg/kg SC-435 for 12 weeks to apoE-/- mice lowered serum total cholesterol by 35% and reduced aortic root lesion area by 65%. Treatment of apoE-/- mice also resulted in decreased expression of ileal bile acid binding protein and hepatic nuclear hormone receptor small heterodimer partner, direct target genes of the farnesoid X receptor (FXR), suggesting a possible role of FXR in SC-435 modulation of cholesterol homeostasis. In dogs, SC-435 treatment reduced serum total cholesterol levels by 相似文献   

10.
Lovastatin, an inhibitor of HMG-CoA reductase, lowers cholesterol saturation of bile. To determine the mechanism of this effect and further define the role of cholesterol synthesis in regulation of biliary lipid metabolism, we studied ten human volunteers in a control period and again after 5-6 weeks on lovastatin, 40 mg b.i.d. Mean sterol production from acetate in mononuclear leukocytes fell from 1.18 to 0.84 pmol/min per 10(6) cells on lovastatin (P less than 0.02). Concomitantly there was reduction in mean biliary secretion of cholesterol from 143 to 96 mumol/h (P less than 0.02). On lovastatin, mean pool size of bile acids by the Lindstedt method fell from 3193 to 2917 mumol (one-sided P = 0.05) and mean pool size by the one-sample method fell from 5158 to 4091 mumol (P less than 0.002). Lovastatin had no effect on mean fractional turnover rate of either cholic acid (0.77 vs. 0.74 day-1) or chenodeoxycholic acid (0.51 vs. 0.54 day-1). Mean total bile acid synthesis was lower on lovastatin (1443 vs. 1240 mumol/day), but the difference did not quite achieve statistical significance. In humans, inhibition of cholesterol synthesis by lovastatin lowers biliary cholesterol saturation by reducing cholesterol secretion into bile. Bile acid pool size, and perhaps bile acid synthesis, are also reduced by this inhibition.  相似文献   

11.
Bile acid malabsorption, which in patients leads to excessive fecal bile acid excretion and diarrhea, is characterized by a vicious cycle in which the feedback regulation of bile acid synthesis is interrupted, resulting in additional bile acid production. Feedback regulation of bile acid synthesis is under the control of an endocrine pathway wherein activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), induces enteric expression of the hormone, fibroblast growth factor 15 (FGF15). In liver, FGF15 acts together with FXR-mediated expression of small heterodimer partner to repress bile acid synthesis. Here, we show that the FXR-FGF15 pathway is disrupted in mice lacking apical ileal bile acid transporter, a model of bile acid malabsorption. Treatment of Asbt-/- mice with either a synthetic FXR agonist or FGF15 downregulates hepatic cholesterol 7alpha-hydroxylase mRNA levels, decreases bile acid pool size, and reduces fecal bile acid excretion. These findings suggest that FXR agonists or FGF15 could be used therapeutically to interrupt the cycle of excessive bile acid production in patients with bile acid malabsorption.  相似文献   

12.
Plasma lipids (cholesterol, triglycerides, and phospholipids; mg/dl) and the fecal excretion (mg/day) of neutral steroids and bile acids were studied in layers (L), hereditary nonlayer hens (NL), and roosters (R) fed a basal cholesterol-free grain diet ad libitum. Each group had significantly (P less than 0.05) different levels of plasma cholesterol, triglycerides, and phospholipids when compared to the other groups. The highest lipid values were found in the NL group (cholesterol, 798 +/- 89; triglycerides, 8914 +/- 679; phospholipids, 2458 +/- 112). There was no difference in the fecal excretion of neutral steroids between L and NL; however, fecal bile acid excretion by these two groups was significantly different (P less than 0.05) (L, 13.1 +/- 1.7 vs NL, 26.9 +/- 3.4). Fecal neutral steroid excretion by R was significantly greater (P less than 0.05) than that by either L or NL (L, 6.4 +/- 1.3; NL, 6.0 +/- 1.4; R, 14.4 +/- 1.2). While fecal excretion of bile acids by R (36.1 +/- 4.0) was also greater than that by either L or NL, only the difference between R and L was statistically significant (P less than 0.05). Since, in the steady state, fecal bile acid excretion is equal to its synthesis, these results suggest that bile acid metabolism in these animals can be affected by both sex and egg-laying status.  相似文献   

13.
Bile acid production has been quantitated in seven subjects by methods that compare the results of two independent approaches, namely, quantitation of cholesterol side-chain oxidation and fecal bile acid excretion. Six hypertriglyceridemic (HT) subjects and one normolipidemic control were studied by both techniques. A further control subject was studied by the cholesterol side-chain oxidation method alone. Cholesterol side-chain oxidation was quantitated by measuring the appearance of 3H2O after intravenous administration of [24,25-3H]cholesterol, using multicompartmental analysis of plasma cholesterol and [3H]water specific activity. Body water kinetics were independently defined by use of oral D2O. Two HT subjects were restudied while they were taking cholestyramine, 16 g/day. In all ten studies, multicompartmental analysis closely simulated the observed appearance of 3H2O. Values obtained for bile acid production suggest that cholesterol oxidation, or bile acid input, was significantly greater than fecal bile acid output in the HT subjects (P less than 0.05). Cholesterol side-chain oxidation rates in the two normal subjects were lower than those encountered in HT subjects, being similar to published values for normal subjects both for bile acid synthesis as determined by isotope dilution kinetics and fecal bile acid excretion. Studies conducted with two, synthetically different, preparations of [24,25-3H]cholesterol indicated that, in one of the two preparations, approximately 20% of the tritium label was at positions proximal to C24. In the other preparation examined, all of the tritium was located at, or distal to, C24. Further studies revealed that 0.055-0.24% of the dose was present as labile tritium by virtue of its appearance as 3H2O following in vitro incubation with human plasma. Provided these isotope effects are taken into account, multicompartmental analysis of plasma [24,25-3H]cholesterol and body water appears to be a useful technique for quantitating cholesterol oxidation in human subjects.  相似文献   

14.
15.
边缘性缺乏抗坏血酸之豚鼠,于三周内其肝脏及小肠粘膜3-羟-3-甲基戊二酰辅酶A还原酶(HMGR)活力均下降到原有水平的50%,但肝脏胆固醇7α-羟化酶活力尚无显著性改变。坏血病豚鼠(三周内)上述几种酶活力都下降至原有水平的50%左右。豚鼠摄取抗坏血酸不足,其血清总胆固醇浓度显著增加,而血清高密度脂蛋自胆固醇浓度显著减少,其改变程度与抗坏血酸缺乏状况一致。  相似文献   

16.
We examined whether short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs. Four-week-old guinea pigs were given a scorbutic diet (20 g/animal/day) with and without adequate ascorbic acid (400 mg/animal/day) in drinking water for 3 weeks. The serum concentrations of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 14.1 and 4.1%, respectively, of those in the adequate group. The retinal contents of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 6.4 and 27.3%, respectively, of those in the adequate group. The retinal content of thiobarbituric acid-reactive substances, an index of lipid peroxidation, was 1.9-fold higher in the deficient group than in the adequate group. Retinal reduced glutathione and vitamin E contents in the deficient group were 70.1 and 69.4%, respectively, of those in the adequate group. This ascorbic acid deficiency did not affect serum thiobarbituric acid-reactive substances and reduced glutathione concentrations but increased serum vitamin E concentration. These results indicate that short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs without disrupting systemic antioxidant status.  相似文献   

17.
The Smith-Lemli-Opitz syndrome (SLOS) is a multiple malformation/mental retardation syndrome caused by a deficiency of the enzyme 7-dehydrocholesterol Delta(7)-reductase. This enzyme converts 7-dehydrocholesterol (7-DHC) to cholesterol in the last step in cholesterol biosynthesis. The pathology of this condition may result from two different factors: the deficiency of cholesterol itself and/or the accumulation of precursor sterols such as 7-DHC. Although cholesterol synthesis is defective in cultured SLOS cells, to date there has been no evidence of decreased whole body cholesterol synthesis in SLOS and only incomplete information on the synthesis of 7-DHC and bile acids. In this first report of the sterol balance in SLOS, we measured the synthesis of cholesterol, other sterols, and bile acids in eight SLOS subjects and six normal children. The diets were very low in cholesterol content and precisely controlled. Cholesterol synthesis in SLOS subjects was significantly reduced when compared with control subjects (8.6 vs. 19.6 mg/kg per day, respectively, P < 0.002). Cholesterol precursors 7-DHC, 8-DHC, and 19-nor-cholestatrienol were synthesized in SLOS subjects (7-DHC synthesis was 1.66 +/- 1.15 mg/kg per day), but not in control subjects. Total sterol synthesis was also reduced in SLOS subjects (12 vs. 20 mg/kg per day, P < 0.022). Bile acid synthesis in SLOS subjects (3.5 mg/kg per day) did not differ significantly from control subjects (4.6 mg/kg per day) and was within the range reported previously in normals. Normal primary and secondary bile acids were identified.This study provides direct evidence that whole body cholesterol synthesis is reduced in patients with SLOS and that the synthesis of 7-DHC and other cholesterol precursors is profoundly increased. It is also the first reported measure of daily bile acid synthesis in SLOS and provides evidence that bile acid supplementation is not likely to be necessary for treatment. These sterol balance studies provide basic information about the biochemical defect in SLOS and strengthen the rationale for the use of dietary cholesterol in its treatment.  相似文献   

18.
Fatty acid bile acid conjugates (FABACs) prevent and dissolve cholesterol gallstones and prevent diet induced fatty liver, in mice. The present studies aimed to test their hypocholesterolemic effects in mice. Gallstone susceptible (C57L/J) mice, on high fat (HFD) or regular diet (RD), were treated with the conjugate of cholic acid with arachidic acid (FABAC; Aramchol). FABAC reduced the elevated plasma cholesterol levels induced by the HFD. In C57L/J mice, FABAC reduced plasma cholesterol by 50% (p < 0.001). In mice fed HFD, hepatic cholesterol synthesis was reduced, whereas CYP7A1 activity and expression were increased by FABAC. The ratio of fecal bile acids/neutral sterols was increased, as was the total fecal sterol excretion. In conclusion, FABACs markedly reduce elevated plasma cholesterol in mice by reducing the hepatic synthesis of cholesterol, in conjunction with an increase of its catabolism and excretion from the body.  相似文献   

19.
Bile acid metabolism in partially hepatectomized rats   总被引:2,自引:0,他引:2  
S Fukano  Y Saitoh  K Uchida  T Akiyoshi  K Takeda 《Steroids》1985,45(3-4):209-227
The bile flow and the bile acid secretion, calculated on liver weight basis, increased 12 H and 24 H after 60-70% hepatectomy and returned to the initial levels thereafter. The biliary phospholipid secretion much more increased than bile acids, but the cholesterol secretion decreased. Bile acid composition changed with an increase of the cholic acid group and a decrease of the chenodeoxycholic acid group in both bile and feces. These changes almost disappeared on Day 14. The pool size of bile acid decreased maximally on Day 4 to about 40% of the initial, but the distribution of bile acids in the enterohepatic circulation was not changed. The fecal cholesterol and coprostanol markedly decreased on Day 2 but gradually returned to the initial levels according to the recovery of diet intake. The fecal bile acids decreased on Day 2, increased on Day 4, and returned to the normal range after Day 7. In conclusion, the regenerating liver secretes more bile, bile acids and phospholipids, and less cholesterol than the normal liver. Cholic acid predominates in the bile acids. These changes restored to the initial levels by about one week after the operation.  相似文献   

20.
Cerebrotendinous xanthomatosis (CTX) is a rare inherited lipid storage disease caused by a defect in bile acid synthesis in which cholesterol and its product cholestanol are deposited in neurological and vascular tissue. Therapy with chenodeoxycholic acid but not with the 7 beta-epimeric ursodeoxycholic acid is usually successful. In an untreated patient, total and low density lipoprotein (LDL) cholesterol were found to be low (134 +/- 11 and 78 +/- 8 mg/dl, respectively). The production rate (PR) and fractional catabolic rate (FCR) of very low density (VLDL) apolipoprotein B (apoB) were, however, both markedly increased (34.7 mg/kg per day and 13.7 pools/day, respectively vs. 15.1 +/- 5.0 mg/kg per day and 6.2 +/- 3.8 pools/day in controls) while the PR and FCR of LDL apoB were moderately elevated (16.3 mg/kg per day and 0.65 pools/day, respectively vs. 12.9 +/- 1.2 mg/kg per day and 0.52 +/- 0.10 pools/day in controls). After 1 month of 750 mg/day of chenodeoxycholic acid, the FCR and PR of both VLDL and LDL apoB became normal while total plasma cholesterol increased significantly to 145 +/- 18 mg/dl. In a second patient who had been receiving 750 mg/day of chenodeoxycholic acid for 6 months lipoprotein kinetics were normal. These parameters did not change when the subject was switched to 750 mg/day ursodeoxycholic acid. We postulate that cholesterol biosynthesis in CTX is derepressed by a diminished hepatic pool of chenodeoxycholic acid and that the elevated secretion of apoB is a response to the increased rate of cholesterol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号