首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stambler  Noga  Lovengreen  Charlotte  Tilzer  Max M. 《Hydrobiologia》1997,344(1-3):41-56
The underwater light field in the Bellingshausen andAdmundsen Seas was characterised using data collectedduring the R/V Polarstern cruise ANT XI/3, from12.1.94 to 27.3.94. The euphotic zone varied from 24to 100 m depth. Spectral diffuse vertical attenuationcoefficients (K d ())were determined for 12narrow wavebands as well as for photosyntheticallyavailable radiation (PAR, 400–700 nm): K d (490)ranged from 0.03 to 0.26 m1; K d (550) from0.04 to 0.17 m1; K d (683) from 0.04 to0.17 m1; and K d (PAR) varied from 0.02 to0.25 m1. K d () for wavelengths centred at412 nm, 443 nm, 465 nm, 490 nm, 510 nm, 520 nm and550 nm were significantly correlated with chlorophyllconcentration (ranging from 0.1 to 6 mg m3). Thevertical attenuation coefficients for 340 nm and380 nm ranged from 0.10 to 0.69 m1 and from 0.05to 0.34 m1, respectively, and were also highlycorrelated with chlorophyll concentrations. These K d values indicate that the 1% penetration depthmay reach maxima of 46 m and 92 m for 340 nm and380 nm, respectively. The spectral radiancereflectances (Rr()) for 443 nm, 510 nm and 550 nmwere less than 0.01 sr1. Rr() for 665 nm and683 nm increased with depth up to 0.2 sr1 because ofchlorophyll fluorescence. Using a model that predicts downwardirradiances by taking into account the attenuation bywater and absorption by chlorophyll, we show thatchlorophyll fluorescence has a significant influenceon the red downward irradiance (E d (633, 665, 683))in deeper layers. The ability of the phytoplanktonpopulation to influence the light environment byautofluorescence and absorption processes depends onthe light conditions and on the photoacclimation ofthe cells, represented by the in vivo crosssection absorption coefficient of chlorophyll (a*). Theobtained mean chlorophyll-specific light attenuationcoefficients of phytoplankton in situ (k d ) are higherthan the in vivo absorption coefficient of chlorophyll,more than to be excepted from the scattering. a*(), m2 mg chl1, decreased due topackaging effect with increasing chlorophyllconcentrations.  相似文献   

2.
Summary The conductance of the Ca2+-activated K+ channel (g K(Ca)) of the human red cell membrane was studied as a function of membrane potential (V m ) and extracellular K+ concentration ([K+]ex). ATP-depleted cells, with fixed values of cellular K+ (145mm) and pH (7.1), and preloaded with 27 m ionized Ca were transferred, with open K+ channels, to buffer-free salt solutions with given K+ concentrations. Outward-current conductances were calculated from initial net effluxes of K+, correspondingV m , monitored by CCCP-mediated electrochemical equilibration of protons between a buffer-free extracellular and the heavily buffered cellular phases, and Nernst equilibrium potentials of K ions (E K) determined at the peak of hyperpolarization. Zero-current conductances were calculated from unidirectional effluxes of42K at (V m –E K)0, using a single-file flux ratio exponent of 2.7. Within a [K+]ex range of 5.5 to 60mm and at (V m –E K) 20 mV a basic conductance, which was independent of [K+]ex, was found. It had a small voltage dependence, varying linearly from 45 to 70 S/cm2 between 0 and –100 mV. As (V m –E K) decreased from 20 towards zero mVg K(Ca) increased hyperbolically from the basic value towards a zero-current value of 165 S/cm2. The zero-current conductance was not significantly dependent on [K+]ex (30 to 156mm) corresponding toV m (–50 mV to 0). A further increase ing K(Ca) symmetrically aroundE K is suggested as (V m –E K) becomes positive. Increasing the extracellular K+ concentration from zero and up to 3mm resulted in an increase ing K(Ca) from 50 to 70 S/cm2. Since the driving force (V m –E K) was larger than 20 mV within this range of [K+]ex this was probably a specific K+ activation ofg K(Ca). In conclusion: The Ca2+-activated K+ channel of the human red cell membrane is an inward rectifier showing the characteristic voltage dependence of this type of channel.  相似文献   

3.
Summary Sodium, potassium and veratridine were tested for their effects on the uptake of gamma-aminobutyric acid (GABA) by pinched-off presynaptic nerve terminals (synaptosomes). As noted by previous investigators, the uptake from media containing 1 m GABA (high-affinity uptake) is markedly Na-dependent; the uptake averaged 65 pmoles/mg synaptosome protein × min, with [Na]0=145mm and [K]0=5mm, and declined by about 90% when the external Na concentration ([Na]0) was reduced to 13mm (Na replaced by Li). The relationship between [Na]0 and GABA uptake was sigmoid, suggesting that two or more Na+ ions may be required to activate the uptake of one GABA molecule. Thermodynamic considerations indicate that with a Na+/GABA stoichiometry of 21, the Na electrochemical gradient, alone, could provide sufficient energy to maintain a maximum steady-state GABA gradient ([GABA] i /[GABA]0) of about 104 across the plasma membrane of GABA-nergic terminals.In Ca-free media with constant [Na]0, GABA uptake was inhibited, without delay, by increasing [K]0 or by introducing 75 m veratridine; the effect of veratridine was blocked by 200nm tetrodotoxin. The rapid onset (within 10 sec) of the veratridine and elevated-K effects implies that alterations in intra-terminal ion concentrations are not responsible for the inhibition. The uptake of GABA was inversely proportional to log [K]0. These observations are consistent with the idea that the inhibitory effects of both veratridine and elevated [K]0 may be a consequence of their depolarizing action. The data are discussed in terms of a barrier model (Hall, J. E., Mead, C.A., Szabo, G. 1973.J. Membrane Biol. 11:75) which relates carrier-mediated ionic flux to membrane potential.  相似文献   

4.
A dual-wavelength fluorimeter was constructed, which used two light emitting diodes (LEDs) to excite the fluorescence dye RH 421 alternately with two different wavelengths. The ratio of the emissions at the two excitation wavelengths provided a drift-insensitive signal, which allowed detection of very small changes of the fluorescence intensity. Those small changes were induced by ion binding and release in conformation E1 of the Na,K-ATPase. Titration experiments were performed to determine equilibrium dissociation constants (± standard deviation) for each step in the complete binding and release sequence: 0.12 ± 0.01 mM (E2(K2) KE1), 0.08 ± 0.01 mM (KE1 E1), 3.0 ± 0.2 mM (NaE1 E1), 5.2 ± 0.4 mM (Na2E1 NaE1) and 6.5 ± 0.4 mM (Na3E1 Na2E1) at pH 7.2 and T=16°C. These numbers show that the affinities of the binding sites exposed to the cytoplasm, are higher for K+ than for Na+ ions, similar to what was found on the extracellular side. The physiological requirement for extrusion of Na+ from the cytoplasm, and for import of K+ from the extracellular medium seems to be facilitated not by favorable binding affinities in state E1 but by the two ATP-driven reaction steps of the cycle, E2(K2) + ATP K2E1 · ATP and Na3E1 · ATP (Na3) El-P, which border the ion exchange reactions at the binding sites in conformation E1. Correspondence to: H.-J. Apell  相似文献   

5.
Summary Several agents known to interact with the (Na++K+)-pump were tested for their effects on the components of steady-state K+ flux in ascites cells.86Rb+ was used as a tracer for K+, and influx was differentiated into a ouabain-inhibitable pump component, a Cl-dependent and furosemide-sensitive exchange component, and a residual leak flux. All agents tested (ouabain, quercetin, oligomycin, phosphate) affected both the pump flux and the Cl-linked flux. These findings suggest a linkage between the activity of the Na/K ATPase and the Cl-dependent K+ exchange flux. In the discussion we point out that the mechanism of this linkage could be direct; e.g., Cl-dependent exchange may represent a mode of operation of the Na/K ATPase. However, data from this and other systems tend to suggest an indirect linkage between the Na+ pump and a KCl symporter, perhaps via a change in the level of intracellular ATP.  相似文献   

6.
Ni  Zhang-Lin  Wang  Da-Fu  Wei  Jia-Mian 《Photosynthetica》2002,40(4):517-522
The conserved residue Thr42 of -subunit of the chloroplast ATP synthase of maize (Zea mays L.) was substituted with Cys, Arg, and Ile, respectively, through site-directed mutagenesis. The over-expressed and refolded -proteins were purified by chromatography on DEAE-cellulose and FPLC on mono-Q column, which were as biologically active (inhibiting Ca2+-ATPase activity and blocking proton gate) as the native subunit isolated from chloroplasts. The T42C and T42R showed higher inhibitory activities on the soluble CF1(–) Ca2+-ATPase than the WT. The T42I inhibited the Ca2+-ATPase activity of soluble CF1 and restored photophosphorylation activity of membrane-bound CF1 deficient in the most efficiently. Far-ultraviolet CD spectra showed that the portions of -helix and -sheet structures of the three mutants were somewhat different from WT. Thus the conserved residue Thr42 may be important for maintaining the structure and function of the -subunit and the basic functions of the -subunit as far as an inhibitor of Ca2+-ATPase and the proton gate are related.  相似文献   

7.
Studies of molecular mechanisms of chaperone-like activity of -crystallin became an active field of research over last years. However, fine interactions between -crystallin and the damaged protein and their complex organization remain largely uncovered. Complexation between - and L-crystallins was studied during thermal denaturation of L-crystallin at 60°C using small-angle X-ray scattering (SAXS), light scattering, gel-permeation chromatography, and electrophoresis. A mixed solution of - and L-crystallins at concentrations about 10 mg/ml incubated at 60°C was found to contain their soluble complexes with a mean radius of gyration 14 nm, mean molecular mass 4 MDa and maximal size over 40 nm. In pure L-crystallin solution, no complexes were observed at 60°C. In SAXS studies, transitions in the -crystallin quaternary structure at 60°C were shown to occur and result in doubling of the molecular weight. This suggests that during the temperature-induced denaturation of L-crystallin it binds with modified -crystallin or, alternatively, L-crystallin complexation and -crystallin modifications are concurrent. Estimates of the -L-crystallin complex size and relative contents of - and -L-crystallins in the complex suggest that several -crystallin molecules are involved in complex formation.  相似文献   

8.
Tryptic digestion of the (Na + K)-ATPase in the presence of choline chloride or NaCl (Na-type) and in the presence of KCl (K-type) produced distinct patterns of peptide fragments and losses of catalytic activity. TheK 0.5 for K+ to shift digestion from the Na-type, and its sensitivity to dimethyl sulfoxide and Triton X-100, were consistent with K+ acting at sites on the cytoplasmic face of the enzyme through which the K-phosphatase reaction also is activated. Reagents favoring the E1 conformational states, oligomycin, Triton, and ATP, shifted the pattern toward the Na-type, whereas those favoring E2 states, dimethyl sulfoxide, MgCl2, and MnCl2, shifted the pattern toward the K-type. Na-type digestion caused a greater loss of K-phosphatase than (Na + K)-ATPase activity, and the residual K-phosphatase activity was more sensitive to inhibition by Triton and ATP but stimulated more by dimethyl sulfoxide and inhibited less by Pi and MnCl2; all these effects are consistent with such digestion shifting equilibria toward E1 enzyme states. Accordingly, theK 0.5 for K+ to activate the (Na + K)-ATPase was increased. However, theK 0.5 for the K-phosphatase was unchanged; this observation requires revision of previous formulations, and bears on additional aspects of enzyme activity as well.  相似文献   

9.
Currents generated by the Na+/K+ ATPase were measured under voltage clamp in oocytes of Xenopus laevis. The dependence of pump current on external [Na+] was investigated for the endogenous Xenopus pump as well as for wild-type and mutated pumps of electroplax of Torpedo californica expressed in the oocytes. The mutants had -subunits truncated before position Lys28 (K28) or Thr29 (T29) of the N-terminus. The currents generated by all variants of pump molecules in the presence of 5 mM K+ show voltage-dependent inhibition by external [Na+]. The apparent K1 values increase with membrane depolarisation, and the potential dependence can be described by the movement of effective charges in the electrical potential gradient across the membrane. Taking into account Na+-K+ competition for external binding to the E2P form, apparent K1 values and effective charges for the interaction of the Na+ ions with the E2P form can be estimated. For the Xenopus pump the effective charge amounts to 1.1 of an elementary charge and the K1 value at 0 mV to 44 mM. For the wild-type Torpedo pump, the analysis yields values of 0.73 of an elementary charge and 133 mM, respectively. Truncation at the N-terminus removing a lysinerich cluster of the a-subunit of the Torpedo pump leads to an increase of the effective charge and decrease of the K1 value. For K28, values of 0.83 of an elementary charge and 117 mM are obtained, respectively. If LyS28 is included in the truncation (·T29), the effective charge increases to 1.5 of an elementary charge and the apparent K1 value is reduced to 107 mM. The K, values for pump inhibition by external Na+, calculated by taking into account Na+-K+ competition, are smaller than the K/12 values determined in the presence of 5 mM [K+]. The difference is more pronounced for those pump variants that have higher Km, values. The variations of the parameters describing inhibition by external [Na+] are qualitatively similar to those described for the stimulation of the pumps by external [K+] in the absence of extracellular [Na+]. The observations may be explained by an acess channel within the membrane dielectric that has to be passed by the external Na+ and K+ ions to reach or leave their binding sites. The potential-dependent access and/or the interaction with the binding sites shows species differences and is affected by cytoplasmic lysine residues in the N-terminus.  相似文献   

10.
On the energy hypersurfaces of the anions HP4 - and CH2P3 - at the RMP2(fc) /6-31+G(d) level, the isomers with triphosphaallyl moiety are the lowest energy structures. For these free 1-X-2,4-(PB)2-3-PA - anions characteristic 31P NMR chemical shifts, are predicted to be (for X = PH, 1, 31P(PA) = 517, 31P(PB) = 424, and 31P(PX) = 50; for X = CH2, 4, 31P(PA) = 611, 31P(PB) = 450). The observed exp 31P values for HP4 - (Na/K, DME) completely disagree with the 31P calculated at GIAO/MP2/6-311+G(d) //RMP2(fc) /6-31+G(d) for structure 1. The rotational average of the phosphinidyltriphosphirene structures (P3-PH-, 3) agree better with the exp 31P than those with a bicyclo[1.1.0]hydrogentetraphosphanide backbone, 2. MO analysis can rationalize the extreme endo/exo effect (31P = 455 ppm) on the chemical shift in the exocyclic PH group of 3. The lowest energy geometry of the anion 3 has Erel of 31 kJ mol-1 relative to 1. The most favored 3 + Na+ structure is only 15 kJ mol-1 above the lowest energy HP4Na minimum, 2 + Na+ with Na+ in endo and H in exo orientation of the bicyclo-P4 framework (Erel of 1 + Na+ is 13 kJ mol-1). In most HP4Na structures the Na+ changes the 31P NMR chemical shifts towards higher field with respect to the bare anions.Electronic Supplementary Material available.  相似文献   

11.
Energization of potassium uptake in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Plant roots accumulate K+ from micromolar external concentrations. However, the absence of a firm determination of the trans-plasma-membrane electrochemical gradient for K+ in these conditions has precluded an assessment of whether K+-accumulation requires energization in addition to the driving force provided by the inside-negative membrane electrical potential (Em). To address this question unequivocally, we measured Em, and the cytosolic and external K+-activities in root cells of Arabidopsis thaliana (L.) Heynh. cv. Columbia in conditions in which net K+-accumulation occurs at low external K+ (10 M). In these conditions, net K+-uptake was about 0.1 mol · (g FW)-1 · h-1, Em varied between-153 and -129 mV and the cytosolic K+-activity, determined with K+-selective electrodes, was 83 ± 4 mM. These values yield an outwardly-directed driving force on K+ of at least 6.5 kJ · mol-1. Only if external potassium is raised to the region of 1 mM does Em become sufficient to drive net K+-accumulation. It is therefore concluded that at micromolar external K+-activities which prevail in most soils, K+-uptake cannot be solely energized by Em — as exemplified by a channel-mediated mechanism. The nature of the energization mechanism is discussed in relation to processes operating in fungal and algal cells.Abbreviations and Symbols AAS atomic absorption spectrometry - Em membrane potential - electrochemical potassium gradient - F Faraday constant (96500 C · mol-1) We thank Peter Barraclough, Roger Leigh, David Walker and Tony Miller (Rothamsted Experimental Station, Harpenden, UK) for helpful discussions. Financial support was provided by the Agricultural and Food Research Council (Grant PG87/529).  相似文献   

12.
Whole cells of the extreme thermophile Thermus thermophilus HB8 contained a membrane-bound respiratory chain (comprised of nicotinamide nucleotide transhydrogenase, NADH dehydrogenase, menaquinone, and cytochromes b, c, aa3, o), which exhibited a maximumH+/O quotient of approximately 8 g-ion H+·g-atom O-1 for the oxidation of endogenous substrates. Whole cell respiration at 70° at the expense of endogenous substrates or ascorbate-TMPD generated a transmembrane protonmotive force (p) of up to 197 mV and an intracellular phosphorylation poteintial (Gp), measured under similar conditions, of approximately 43.9 kJ·mol-1.The measured Gp/p ratio thus indicated anH+/ATP quotient of approximately 2.3 g-ion H+·mole ATP-1. Glucose-limited continuous cultures of T. thermophilus at 60°, 70° and 78.5° exhibited extremely low moler growth yields (Y O2 max 27.6 g cells·mol O 2 -1 ; Y glucose max 64.4 g cells ·mol glucose-1) compared with mesophilic bacteria of similar respiratory chain composition and proton translocation efficiency. These low yields are probably at least partly explained by the extremely high permeability of the cytoplasmic membrane to H+, which thus causes the cells to respire rapidly in order to maintain the protonmotive force at a level commensurate with cell growth.Abbreviations TPMP+ triphenylmethylphosphonium cation - FCCP carbonylcyanide p-trifluoromethoxy phenythydrazone - TMPD N,N,N,N-tetramethyl-p-phenylene diamine  相似文献   

13.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

14.
Summary The artificial insertion of increasing amounts of unsaturated fatty acids into human erythrocyte membranes modulated ATPase activities in a biphasic manner, depending on the number and position of double bonds, their configuration, and the chain length. Uncharged long-chain fatty acid derivatives with double bonds and short-chain fatty acids were ineffective. Stearic acid stimulated Na+K+-ATPase only. Anionic and non-ionic detergents and -lysophosphatidylcholine failed to stimulate ATPase activities at low, and inhibited them at high concentrations.Mg2+-ATPase activity was maximally enhanced by a factor of 2 in the presence of monoenoic fatty acids; half-maximal stimulation was achieved at a molar ratio ofcis(trans)-configurated C18 acids/membrane phopholipid of 0.16 (0.26).Na+K+-ATPase activity was maximally augmented by 20% in the presence of monoenoic C18 fatty acids at 37°C. Half-maximal effects were attained at a molar ratio oleic (elaidic) acid/phospholipid of 0.032 (0.075). Concentrations of free fatty acids which inhibited ATPase activities at 37°C were most stimulatory at reduced temperatures. AT 10°C, oleic acid increased Na+K+-ATPase activity fivefold (molar ratio 0.22).Unsaturated fatty acids simulated the effect of calmodulin on Ca2+-ATPase of native erythrocyte membranes (i.e., increase ofV max from 1.6 to 5 mol PO 4 3– ·phospholipid–1·hr–1, decrease of K Ca from 6 m to 1.4–1.8 m). Stearic acid decreasedK Ca (2 m) only, probably due to an increase of negative surface charges.A stimulation of Mg2+-ATPase, Na+K+-ATPase, and Ca2+-ATPase could be achieved by incubation of the membranes with phospholipase A2.An electrostatic segregation of free fatty acids by ATPases with ensuing alterations of surface charge densities and disordering of the hydrophobic environment of the enzymes provides an explanation of the results.  相似文献   

15.
Summary Amounts and temporal changes of the release of the tracer ions K+ (86Rb+),22Na+, and36Cl as well as of H+ in the course of action potentials inAcetabularia have been recorded. New results and model calculations confirm in quantitative terms the involvement of three major ion transport systemsX in the plasmalemma: Cl pumps, K+ channels, and Cl channels (which are marked in the following by the prefixes,P, K andC) with their equilibrium voltages X V e and voltage/time-dependent conductances, which can be described by the following, first approximation. Let the maximum (ohmic) conductance of each of the three populations of transporter species be about the same (P L, KL,C L=1) but voltage gating be different: the pump ( p V e about –200 mV) being inactivated (open,oclosed,c) at positive going transmembrane voltages,V m; the K+ channels (K V e about –100 mV) are inactivated at negative goingV m; and the Cl channels (C V e: around 0 mV), which are normally closed (c) at a restingV m (nearPVe) go through an intermediate open (o) state at more positiveV m before they enter a third shut state (s) in series. Model calculations, in which voltage sensitivities are expressed by the factorf=exp(V mF/(2RT)), simulate, the action potential fairly well with the following parameters (PKco10/f ks–1,PKoc1000·f ks–1,KKco200·f ks–1,Kkoc2/f ks–1,cKco500·f ks–1,CKoc5/f ks–1,CKso0.1/f ks–1,Ckos20·f ks–1). It is also shown that the charge balance for the huge transient Cl efflux, which frequently occurs during an action potential, can be accounted for by the observation of a corresponding release of Na+.  相似文献   

16.
The ion channel of the nicotinic acetylcholine receptor (nAChR) is believed to be lined by transmembrane M2 helices. A 4-8-12 sequence motif, comprising serine (S) or threonine (T) residues at positions 4, 8 and 12 of M2, is conserved between different members, anion and cation selective, of the nAChR superfamily. Parallel bundles of 4-8-12 motif-containing helices are considered as simplified models of ion channels. The relationship between S and T sidechain conformations and channelion interactions is explored via evaluation of interaction energies of K+ and of Cl ions with channel models. Energy calculations are used to determine optimal 2 (C-C\-O-H) values in the presence of K+ or Cl ions. 4-8-12 motif-containing bundles may form favourable interactions with either cations or anions, dependent upon the 2 values adopted. Parallel-helix and tilted-helix bundles are considered, as are heteromeric models designed to mimic the Torpedo nAChR. The main conclusion of the study is that conformational flexibility at 2 enables both S and T residues to form favourable interactions with anions or cations. Consequently, there is apparently no difference between S and T residues in their interactions with permeant ions, which suggests that the presence of T vs. S residues within the 4-8-12 motif is not a major mechanism whereby anion/cation selectivity may be generated. The implications of these studies with respect to more elaborate models of nAChR and related receptors are considered.Abbreviations nAChR, GluR, NMDA-R, 5HT3-R, GABAAR, GlyR nicotinic acetylcholine, glutamate, NMDA, 5HT3, GABAA and glycine receptors, respectively - PhTx philanthotoxin - M2 second membrane-spanning helix of receptor-channel subunits  相似文献   

17.
The 26 amino acid bee venom toxin, melittin, is an amphipathic helical polypeptide which inhibits the gastric (H+ + K+)ATPase. The site of interaction with the (H+ + K+)ATPase was shown to be the alpha subunit of the (H+ + K+)ATPase in studies using [125I]azidosalicylyl melittin, a radioactive photoaffinity analog of melittin. A synthetic amphipathic polypeptide (Trp3) containing tryptophan, which exhibits a structure similar to that of melittin, also inhibited the gastric (H+ + K+)ATPase, and prevented labeling by [125I]azidosalicylyl melittin. These findings suggested that melittin and the synthetic amphipathic helical polypeptide were bound to the same or overlapping site(s). In the present studies, novel tritiated photoaffinity analogs of Trp3 containing benzoylphenylalanine (in place of tryptophan) were used to photoaffinity label the (H+ + K+)ATPase. These studies help to establish that the (H+ + K+)ATPase contains a binding site for polypeptides which exhibit an amphipathic helical motif. The precise amino acid sequence of the polypeptide appears to be of secondary importance for interaction with the (H+ + K+)ATPase as long as the alpha helical motif is present. The benzoylphenylalanine containing polypeptides are ideal for mapping the binding site on the (H+ + K+)ATPase. Using an antibody which recognizes this amphipathic helical (melittin-like) motif, we have demonstrated that the gastric parietal cell contains a 67 kDa melittin-like protein. This protein was associated with the gastric parietal cell apical membrane in the stimulated (secreting) state, but not in the resting (non-secreting) state. The binding site for the gastric melittin-like protein appears to overlap with the melittin binding site on the alpha subunit of the (H+ + K+)ATPase. The potential physiological significance of the melittin binding site and the overlapping binding site for this newly identified endogenous melittin-like protein on the (H+ + K+)ATPase to regulated HCl secretion by the parietal cell is presently under investigation. Evidence is presented which demonstrates that melittin binds to other E1-E2 ion pumps, raising the possibility that there might exist similar intracellular proteins which interact with other ion pumps.  相似文献   

18.
Cells of the purple non-sulphur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. Antibodies againts the catalytic KdpB protein or the whole KdpABC complex of Escherichia coli crossreact with a 70.0 kDa R. sphaeroides protein that was expressed only in cells grown in media with low K+ concentrations. In membranes derived from R. sphaeroides cells grown with low K+ concentrations (induced cells), a high ATPase activity could be detected when assayed in Tris-HCl pH 8.0 containing 1 mM MgSO4. This ATPase activity increased upon addition of 1 mM KCl from 166 to 289 mol ATP hydrolysed x min-1 x g protein-1 (1.7-fold stimulation). The K+-stimulated ATPase activity was inhibited approximately 93% by 0.5 mM vanadate but hardly by N,N-dicyclohexylcarbo-diimide (DCCD). These results indicate that the inducible K+-ATPase in R. sphaeroides resembles the Kdp K+-translocating ATPase of Escherichia coli. This Kdp-like transport system is also expressed in R. capsulatus and Rhodospirillum rubrum during growth in media with low K+ concentrations suggesting a wide distribution of this transport system among phototrophic bacteria.Abbreviations electrical potential difference across the cytoplasmic membrane - pH pH difference across the cytoplasmic membrane - BSA bovine serum albumine - PAGE polyacrylamide gel electrophoresis - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - PMSF phenyl-methyl-sulfonyl fluoride - DCCD N,N-dicyclohexylcarbodiimide - AIB 2--aminoisobutyric acid - TMG methyl--d-thiogalactopyranoside  相似文献   

19.
Summary To characterize the molecular properties conveyed by the isoforms of the subunit of Na,K-ATPase, the two major transepithelial transporting organs in the brine shrimp (Artemia salina), the salt glands and intestines, were isolated in pure form. The isoforms were quantified by ATP-sensitive fluorescein isothiocyanate (FITC) labeling. The salt gland enzyme exhibits only the 1 isoform, whereas the intestinal enzyme exhibits both the 1 and the 2 isoforms. After 32 hours of development, Na,K-ATPase activity [in mol Pi/mg protein/hr (1u)] in whole homogenates was 32±6 in the salt glands and 12±3 in the intestinal preparations (mean±sem). The apparent half-maximal activation constants (K 1/2) of the salt gland enzyme as compared to the intestinal enzyme were 3.7±0.6mm vs. 23.5±4mm (P<0.01) for Na+, 16.6±2.2mm vs. 8.29±1.5mm for K+ (P<0.01), and 0.87±0.8mm vs. 0.79±1.1mm for ATP (NS). The apparentK i's for ouabain inhibition were 1.1×10–4 m vs. 2×10–5 m, respectively. Treatment of whole homogenates with deoxycholic acid (DOC) produced a maximal Na,K-ATPase activation of 46% in the salt gland as compared to 23% in the intestinal enzyme. Similar differences were found with sodium dodecyl sulfate (SDS). The two distinct forms of Na,K-ATPase isolated from the brine shrimp differed markedly in three kinetic parameters as well as in detergent sensitivity. The differences inK 1/2 for Na+ and K+ are more marked than those reported for the mammalian Na,K-ATPase isoforms. These differences may be attributed to the relative abundances of the subunit isoforms; other potential determinants (e.g. differences in membrane lipids), however, have not been investigated.During the tenure of an Educational Commission For Foreign Medical Graduates Visiting Associate Professorship.  相似文献   

20.
Summary Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7±4.8 A · cm-2 (n=12) and 0.53±0.09 k · cm-2 (n=12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-d-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8±4.7 A · cm-2 (n=12). Amiloride (100 mol · l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an apparent order of selectivity Cs+>Na+=K+>Rb+>Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mol · l-1. The I sc Ca could also be supressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens. However, the Ca2+ sensitivity of INa is similar to comparable effects described for other epithelia. This possibly reflects the existence of two types of amiloride-insensitive apical cation channels as pathways for Na+ absorption, which may be involved to differing degrees in ontogenetic developments of nonselective channels to Na+-specific ion channels.Abbreviations DPL direct-linear-plot method - slope of the back-ground noise component - EGTA ethylene glycol-bi(2-amino-ethylether)-N,N,N,N-tetraacetic acid - f frequency - f c corner frequency of the Lorentzian noise component - G t transepithelial conductance - HEPES N-hydroxyethylpiperazine-N-ethanesulfonic acid - I sc short-circuit current - I Na transepithelial sodium current - I sc Ca Ca2+-sensitive short-circuit current - K m Ca Michaelis-Menten constant for Ca2+ - K B power density of the background noise component at f=1Hz - m mucosal - NMDG N-methyl-D-glucamine - R t transepithelial resistance - s serosal - SEM standard error of mean - S(f) power density of the Lorentzian noise component - S o plateau value of the Lorentzian noise component  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号