首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use data from the serial passage of co-occluded recombinant Autographa californica nuclear polyhedrosis virus (AcMNPV) to estimate the viral multiplicity of infection of cells within infected insects. Co-occlusion, the incorporation of wild-type and mutant virus genomes in the same occlusion body, has been proposed as a strategy to deliver genetically modified viruses as insecticides in a way that contains their spread in the environment. It may also serve as a means whereby naturally occurring mutant forms of NPVs can be maintained in a stable polymorphism. Here, a recombinant strain of AcMNPV was constructed with a deletion of its polyhedrin gene, rendering it incapable of producing occlusion bodies (i.e., occlusion negative). This was co-occluded with wild-type AcMNPV and used to infect fifth-instar Trichoplusia ni larvae. The fate of both genotypes was monitored over several rounds of insect infection. Levels of the occlusion-negative virus genome declined slowly over successive rounds of infection. We applied these data to a model of NPV population genetics to derive an estimate of 4.3 +/- 0.3 viral genomes per occlusion body-producing cell.  相似文献   

2.
We describe a method to introduce site-specific mutations into the genome of Autographa californica nuclear polyhedrosis virus. Specifically, the A. californica nuclear polyhedrosis virus gene for polyhedrin, the major protein that forms viral occlusions in infected cells, was mutagenized by introducing deletions into the cloned DNA fragment containing the gene. The mutagenized polyhedrin gene was transferred to the intact viral DNA by mixing fragment and viral DNAs, cotransfecting Spodoptera frugiperda cells, and screening for viral recombinants that had undergone allelic exchange. Recombinant viruses with mutant polyhedrin genes were obtained by selecting the progeny virus that did not produce viral occlusions in infected cells (occlusion-negative mutants). Analyses of occlusion-negative mutants demonstrated that the polyhedrin gene was not essential for the production of infectious virus and that deletion of certain sequences within the gene did not alter the control, or decrease the level of expression, of polyhedrin. An early viral protein of 25,000 molecular weight was apparently not essential for virus replication in vitro, as the synthesis of this protein was not detected in cells infected with a mutant virus.  相似文献   

3.
Few-polyhedra (FP) mutants of nucleopolyhedroviruses (NPVs) are a well-known phenomenon during serial passage of virus in cell culture. Under these circumstances such mutants produce low yields of occlusion bodies (OBs) and poorly occlude virions, but they are selected for through advantageous rates of budded virus replication. Spontaneous insertion of transposable elements originating from host cell DNA into the viral fp25 gene has been shown to be a common cause of the phenotype. A model of NPV population genetics predicts that mutants with these characteristics might persist within stable polymorphisms in viral populations during serial passage of virus in vivo. However, this hypothesis was previously untested, and FP mutants have not been recovered from field isolates of NPVs. We isolated and characterized an FP mutant that arose during routine passage of Autographa californica multinucleocapsid NPV (AcMNPV) in cell culture and identified a transposable element within the fp25 gene. We tracked the fates of coinfecting wild-type and FP mutant AcMNPV strains through serial passage in fifth-instar Trichoplusia ni larvae. The levels of both strains remained stable during successive rounds of infection. We applied the data obtained to a model of NPV population genetics in order to derive the frequency distribution of the multiplicity of cell infection in infected insects and estimated that 4.3 baculovirus genomes per OB-producing cell would account for this equilibrium.  相似文献   

4.
Substitution of granulin from the Trichoplusia ni granulosis virus (TnGV) for polyhedrin of the Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) yielded a few very large (2 to 5 μm) cuboidal inclusions in the cytoplasm and nucleus of infected cells. These polyhedra lacked the beveled edges characteristic of wild-type AcMNPV polyhedra, contained fractures, and occluded few virions. Placing a nuclear localization signal (KRKK) in granulin directed more granulin to the nucleus and resulted in more structurally uniform cuboidal inclusions in which no virions were observed. A granulin-polyhedrin chimera produced tetrahedral occlusions with more virions than granulin inclusions but many fewer than wild-type polyhedra. Despite the unusual structure of the granulin and granulin-polyhedrin inclusions, they interacted with AcMNPV p10 fibrillar structures and electron-dense spacers that are precursors of the polyhedral calyx. The change in inclusion shape obtained with the granulin-polyhedrin chimera demonstrates that the primary amino acid sequence affects occlusion body shape, but the large cuboidal inclusions formed by granulin indicate that the amino acid sequence is not the only determinant. The failure of granulin or the granulin-polyhedrin chimera to properly occlude AcMNPV virions suggests that specific interactions occur between polyhedrin and other viral proteins which facilitate normal virion occlusion and occlusion body assembly and shape in baculoviruses.  相似文献   

5.
6.
Few-polyhedra (FP) mutants of nucleopolyhedroviruses (NPVs) are a well-known phenomenon during serial passage of virus in cell culture. Under these circumstances such mutants produce low yields of occlusion bodies (OBs) and poorly occlude virions, but they are selected for through advantageous rates of budded virus replication. Spontaneous insertion of transposable elements originating from host cell DNA into the viral fp25 gene has been shown to be a common cause of the phenotype. A model of NPV population genetics predicts that mutants with these characteristics might persist within stable polymorphisms in viral populations during serial passage of virus in vivo. However, this hypothesis was previously untested, and FP mutants have not been recovered from field isolates of NPVs. We isolated and characterized an FP mutant that arose during routine passage of Autographa californica multinucleocapsid NPV (AcMNPV) in cell culture and identified a transposable element within the fp25 gene. We tracked the fates of coinfecting wild-type and FP mutant AcMNPV strains through serial passage in fifth-instar Trichoplusia ni larvae. The levels of both strains remained stable during successive rounds of infection. We applied the data obtained to a model of NPV population genetics in order to derive the frequency distribution of the multiplicity of cell infection in infected insects and estimated that 4.3 baculovirus genomes per OB-producing cell would account for this equilibrium.  相似文献   

7.
Wu W  Lin T  Pan L  Yu M  Li Z  Pang Y  Yang K 《Journal of virology》2006,80(23):11475-11485
38K (ac98) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved baculovirus gene whose function is unknown. To determine the role of 38K in the baculovirus life cycle, a 38K knockout bacmid containing the AcMNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a 38K repair bacmid was constructed by transposing the 38K open reading frame with its native promoter region into the polyhedrin locus of the 38K knockout bacmid. After transfection of these viruses into Spodoptera frugiperda cells, the 38K knockout bacmid led to a defect in production of infectious budded virus, while the 38K repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Slot blot analysis indicated that 38K deletion did not affect the levels of viral DNA replication. Subsequent immunoelectron-microscopic analysis revealed that masses of electron-lucent tubular structures containing the capsid protein VP39 were present in cells transfected with 38K knockout bacmids, suggesting that nucleocapsid assembly was interrupted. In contrast, the production of normal nucleocapsids was restored when the 38K knockout bacmid was rescued with a copy of 38K. Recombinant virus that expresses 38K fused to green fluorescent protein as a visual marker was constructed to monitor protein transport and localization within the nucleus during infection. Fluorescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized to the center of the nucleus. These results demonstrate that 38K plays a role in nucleocapsid assembly and is essential for viral replication in the AcMNPV life cycle.  相似文献   

8.
9.
Habib S  Hasnain SE 《Journal of virology》2000,74(11):5182-5189
The identification of potential baculovirus origins of replication (ori) has involved the generation and characterization of defective interfering particles that contain major genomic deletions yet retain their capability to replicate by testing the replication ability of transiently transfected plasmids carrying viral sequences in infected cells. So far, there has not been any evidence to demonstrate the actual utilization of these putative origins in Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) replication. By using the method of origin mapping by competitive PCR, we have obtained quantitative data for the ori activity of the HindIII-K region and the ie-1 promoter sequence in AcMNPV. We also provide evidence for differential activity of the two ori in the context of the viral genome through the replication phase of viral infection. Comparison of the number of molecules representing the HindIII-K and ie-1 origins vis-à-vis the non-ori polH region in a size-selected nascent DNA preparation revealed that the HindIII-K ori is utilized approximately 14 times more efficiently than the ie-1 region during the late phase of infection. HindIII-K also remains the more active ori through the early and middle replication phases. Our results provide in vivo evidence in support of the view that AcMNPV replication involves multiple ori that are activated with vastly different efficiencies during the viral infection cycle.  相似文献   

10.
11.
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac83 is a baculovirus core gene whose function in the AcMNPV life cycle is unknown. In the present study, an ac83-knockout AcMNPV (vAc83KO) was constructed to investigate the function of ac83 through homologous recombination in Escherichia coli. No budded virions were produced in vAc83KO-transfected Sf9 cells, although viral DNA replication was unaffected. Electron microscopy revealed that nucleocapsid assembly was aborted due to the ac83 deletion. Domain-mapping studies revealed that the expression of Ac83 amino acid residues 451 to 600 partially rescued the ability of AcMNPV to produce infectious budded virions. Bioassays indicated that deletion of the chitin-binding domain of Ac83 resulted in the failure of oral infection of Trichoplusia ni larvae by AcMNPV, but AcMNPV remained infectious following intrahemocoelic injection, suggesting that the domain is involved in the binding of occlusion-derived virions to the peritrophic membrane and/or to other chitin-containing insect tissues. It has been demonstrated that Ac83 is the only component with a chitin-binding domain in the per os infectivity factor complex on the occlusion-derived virion envelope. Interestingly, a functional inner nuclear membrane sorting motif, which may facilitate the localization of Ac83 to the envelopes of occlusion-derived virions, was identified by immunofluorescence analysis. Taken together, these results demonstrate that Ac83 plays an important role in nucleocapsid assembly and the establishment of oral infection.  相似文献   

12.
Summary Six insect cell lines from Pseudaletia unipuncta embryos were established and characterized, and their susceptibility to Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infection was investigated. These embryonic P. unipuncta cell lines had characteristics distinct from each other in morphology and growth, and showed differential responses to AcMNPV infection. Among the six cell lines, two were highly susceptible to virus infection. One of these two cell lines, BTI-Pu-A7S, produced over 100 AcMNPV occlusion bodies per cell, on average. Three cell lines showed an apoptotic response following AcMNPV infection. One cell line did not support complete virus replication through the late phase of virus growth and did not exhibit apoptosis. The P. unipuncta cell lines could be distinguished from SF21 and BTI-Tn-5B1-4 cells by their isozyme markers.  相似文献   

13.
Several gypsy moth cell lines have been previously described as nonpermissive for the multiple-embedded nuclear polyhedrosis virus of Autographa californica (AcMNPV). In this report, we demonstrate the semipermissive infection of a gypsy moth cell line, IPLB-LD-652Y, with AcMNPV. IPLB-LD-652Y cells infected with AcMNPV produced classic cytopathic effects but failed to yield infectious progeny virus. Results of experiments employing DNA-DNA dot hybridization suggested that AcMNPV DNA synthesis was initiated from 8 to 12 h postinfection (p.i.), continued at a maximum rate from 12 to 20 h p.i., and declined from 20 to 36 h p.i. The rate of AcMNPV DNA synthesis approximated that observed in the permissive TN-368 cell line. AcMNPV-infected IPLB-LD-652Y cells, pulse-labeled with [(35)S]methionine at various time intervals p.i. and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed four virus-induced proteins, one novel to the semipermissive system and three early alpha proteins, synthesized from 1 to 20 h p.i. Thereafter, both host and viral protein synthesis was completely suppressed. These results suggest that AcMNPV adsorbed, penetrated, and initiated limited macromolecular synthesis in the semipermissive gypsy moth cell line. However, the infection cycle was restricted during the early phase of AcMNPV replication.  相似文献   

14.
15.
The expression of the thymidine-thymidylate kinase (HSV1-TK), (ATP: thymidine 5'-phosphotransferase; EC 2.7.1.21) of herpes simplex virus type 1 endows the host cell with a conditional lethal phenotype which depends on the presence of nucleoside analogues metabolized by this enzyme into toxic inhibitors of DNA replication. To generate a recombinant baculovirus that could be selected against by nucleoside analogs, the HSV1-tk coding sequence was placed under the control of the Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV) immediate early promoterm IE-1(0), and this construction was introduced via homologous recombination into the polyhedrin locus of AcMNPV. Two recombinant baculoviruses harboring this gene construct at the polyhedrin locus were isolated and tested for their ability to replicate in the presence of various concentrations of the nucleoside analog 9-(1,3-Dihydroxy-2-propoxymethyl)guanine (Ganciclovir). Neither Sf9 lepidopteran cell viability nor replication of wild type or beta-Galactosidase-expressing recombinant AcMNPVs were affected by concentrations of Ganciclovir up to 100 microM. In contrast, replication of the recombinant AcMNPV virus harboring the HSV1-tk gene was inhibited by Ganciclovir in a dose-dependent manner. The inhibition was detectable at 2 microM and complete at 100 microM. This property was exploited in model isolations aimed at purifying new recombinant viruses having lost this counter-selectable gene marker as a result of homologous recombination at the polyhedrin locus after cotransfection of the viral DNA with a replacement vector. After being propagated in the presence of Ganciclovir, the progeny of such co-transfections contained over 85% recombinant viruses, demonstrating that counter-selection of parental HSV1-tk-containing viruses by Ganciclovir constitutes a novel approach for recombinant baculovirus isolation.  相似文献   

16.
The gene encoding the 35-kDa protein (35k gene) located within the EcoRI-S genome fragment of Autographa californica nuclear polyhedrosis virus (AcMNPV) is transcribed early in infection. To examine its function(s) with respect to virus multiplication, we introduced specific mutations of this early gene into the AcMNPV genome. In Spodoptera frugiperda (SF21) culture, deletion of the 35K gene reduced yields of extracellular, budded virus from 200- to 15,000-fold, depending on input multiplicity. Mutant replication was characterized by dramatically diminished levels of late and very late (occlusion-specific) virus gene expression and premature cell lysis. In contrast, 35K gene inactivation had no effect on virus growth in cultured Trichoplusia ni (TN368) cells. Insertion of the 35K gene and its promoter at an alternate site (polyhedrin locus) restored virus replication to wild-type levels in SF21 culture. Subsequent insertion of 4 bp after codon 81 generated a frameshift mutant that exhibited a virus phenotype indistinguishable from that of 35K deletion mutants and demonstrated that the 35K gene product (p35) was required for wild-type replication in SF21 cells. Mutagenesis also indicated that the C terminus of p35, including the last 12 residues, was required for function. In complementation assays, wild-type virus bearing a functional 35K gene allele stimulated all aspects of 35K null mutant replication and suppressed early cell lysis. These findings indicated that p35 is a trans-dominant factor that facilitates AcMNPV growth in a cell line-specific manner.  相似文献   

17.
18.
A co-occlusion process was evaluated as a commercially and ecologically acceptable strategy for the development of genetically improved baculovirus insecticides. Coinfection of Spodoptera frugiperda (IPLB-SF-21) tissue culture cells with Autographa californica nuclear polyhedrosis virus (AcMNPV) and an AcMNPV mutant (Ac-E10) lacking the polyhedrin gene resulted in occlusion of both virus types within polyhedra. The amount of occluded Ac-E10 virions in progeny polyhedra populations during serial passage in Trichoplusia ni larvae was evaluated. Maintenance of the mutant in progeny polyhedra required polyhedra inocula containing equal numbers of the two virus types at a high dose. A significant reduction in occluded mutant nucleocapsids occurs with inoculum levels below a 100% lethal dose. At inoculum levels below a 30% lethal dose, the majority of fourth-instar larvae were infected with only one type of virus. The commercial application and ecological advantages of the co-occlusion process are discussed.  相似文献   

19.
A mutant of the Autographa californica nuclear polyhedrosis virus (AcMNPV) with increased virulence in Trichoplusia ni larvae was isolated following replication of a random virus clone in the presence of 2-aminopurine. The LT50 of the mutant, designated HOB, was significantly shorter than those of either the wild isolate or parental clone of AcMNPV. Also, fifth-instar larvae infected with this mutant gained significantly less weight and consistently produced more virus occlusion bodies than larvae infected with the wild isolate or parental clone. No alterations in the in vitro replication of nonoccluded virions, occluded virus structural proteins, or DNA restriction endonuclease patterns were observed with the HOB mutant.  相似文献   

20.
Autographa californica nuclear polyhedrosis virus (AcMNPV) mutants that lack the apoptotic suppressor gene p35 cause apoptosis in Spodoptera frugiperda SF21 cells. To identify a viral signal(s) that induces programmed cell death, we first defined the timing of apoptotic events during infection. Activation of a P35-inhibitable caspase, intracellular fragmentation of host and AcMNPV DNA, and cell membrane blebbing coincided with the initiation of viral DNA synthesis between 9 and 12 h after infection and thus suggested that apoptotic signaling begins at or before this time. Virus entry was required since binding of budded virus to host cell receptors alone was insufficient to induce apoptosis. To therefore determine the contribution of early and late replication events to apoptotic signaling, we used the AcMNPV mutant ts8 with a temperature-sensitive lesion in the putative helicase gene p143. At the nonpermissive temperature at which viral DNA synthesis was conditionally blocked, ts8 caused extensive apoptosis of the SF21 cell line p3576D, which dominantly interferes with anti-apoptotic function of viral P35. Confirming that apoptosis can be induced in the absence of normal viral DNA synthesis, parental SF21 cells also underwent apoptosis when infected with a ts8 p35 deletion mutant at the nonpermissive temperature. However, maximum levels of ts8 p35 deletion mutant-induced apoptosis required a temperature-sensitive event(s) that included the initiation of viral DNA synthesis. Collectively, these data suggested that baculovirus-induced apoptosis can be triggered by distinct early (pre-DNA synthesis) and late replicative events, including viral DNA synthesis or late gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号