首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Noradrenaline caused a prompt but transient increase in the rate of45Ca2+ efflux from isolated rat islets of Langerhans perifused in Ca2+ depleted medium. The response was modest in size and was unaffected by isosmotic replacement of NaCl with choline chloride or by inclusion of 0.5 mM dibutyryl cAMP in the perifusion medium, suggesting that it was not mediated by Na+: Ca2+ exchange nor by lowered cAMP. Despite its effect on45Ca2+ efflux, noradrenaline treatment did not alter the kinetics of45Ca2+ efflux in response to the muscarinic agonist, carbamylcholine, nor did it change the magnitude of the response to this agent. Simultaneous introduction of 20 mM glucose with noradrenaline prevented a rise in45Ca2+ efflux and indeed resulted in inhibition of45Ca2+ efflux. The data suggest that noradrenaline does not directly activate the mechanisms which regulate Ca2+ extrusion from islets cells, and they do not support a primary role for the Ca2+ efflux response in mediating adrenergic inhibition of insulin secretion.  相似文献   

2.
Hydroperoxy-eicosatetraenoic acids (HPETEs) and less effectively, also hydroxy-eicosatetraenoic acids (HETEs) stimulated Ca2+ release from rat liver mitochondria. Ca2+ release is accompanied by intramitochondrial pyridine nucleotide oxidation and hydrolysis. Both Ca2+ release and pyridine nucleotide oxidation are impeded when the flow of electrons between pyridine nucleotides and HPETE is impaired. Measurements of the mitochondrial membrane potential indicate that HPETE-stimulated Ca2+ release is not due to uncoupling of mitochondria. It is suggested that HPETEs and HETEs may act as mobilizers of mitochondrial Ca2+ during signal transduction related to proliferation and tumor promotion.  相似文献   

3.
Noradrenaline (1-10 microM) inhibited Ca2+-induced insulin secretion from electrically permeabilised islets of Langerhans with an efficacy similar to that for inhibition of glucose-induced insulin secretion from intact islets. The inhibition of insulin secretion from permeabilised islets was blocked by the alpha 2-adrenoreceptor antagonist, yohimbine. Adenosine 3',5'-cyclic monophosphate (cAMP) did not relieve the noradrenaline inhibition of Ca2+-induced secretion from the permeabilised islets, although noradrenaline did not affect the secretory responses to cAMP at substimulatory (50 nM) concentrations of Ca2+. These results suggest that catecholamines do not inhibit insulin secretion solely by reducing B-cell adenylate cyclase activity, and imply that one site of action of noradrenaline is at a late stage in the secretory process.  相似文献   

4.
Regulation of glucose-induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) was investigated by using a novel technique, electroporation from an electrolyte-filled capillary, to deliver energy metabolites to the intracellular compartment of mouse islets. Intracellular application of ATP resulted in a nifedipine-sensitive increase in [Ca2+]i, consistent with a KATP-channel dependent mechanism of Ca2+ influx. [Ca2+]i in islets exposed to 10 mM glucose oscillated with a period of approximately 3 min, often superimposed with faster oscillations. Electroporation of ATP blocked all types of oscillations and elevated [Ca2+]i while delivery of ADP had no effect on oscillations. Intracellular delivery of glucose-6-phosphate or fructose-1,6-bisphosphate tended to transform slow oscillations to fast oscillations. These results demonstrate that modulation of ATP concentrations and glycolytic flux are important in development of slow oscillations.  相似文献   

5.
6.
Intracellular Ca2+ levels were monitored in single, acutely isolated mouse islets of Langerhans by dual emission Indo-1 fluorometry. High-frequency (3.1 min-1) [Ca2+]i oscillations with a brief rising time (1-2 s) and 10 s half-width ('fast' oscillations) were detected in 11 mM glucose. Raising the glucose concentration to 16.7 mM increased the duration of these oscillations, which were otherwise absent in 5.5 mM glucose. [Ca2+]i waves of lower frequency (0.5 min-1) and longer rising time ('slow' oscillations) were also recorded. The data indicate that "fast" oscillations are directly related to beta-cell bursting electrical activity, and suggest the existence of extensive networks of electrically coupled cells in the islet.  相似文献   

7.
Protein carboxymethylation in rat islets of Langerhans   总被引:1,自引:0,他引:1  
  相似文献   

8.
《Life sciences》1996,60(3):PL57-PL62
In isolated rat cardiomyocytes, exogenous lysophosphatidylcholine (LPC) (15 μM) increased the intracellular Ca2+ concentration ([Ca2+]i) from 72 ± 5 to 3042 ± 431 nM accompanied by cell injury as indicated by the hypercontracture of the cells and the increase in creatine phosphokinase (CPK) release. In order to understand whether the cell injury induced by LPC was a consequence of the elevation of [Ca2+]i, the effect of LPC was examined in the Ca2+-free solution containing EGTA. Under the Ca2+ -free conditions, LPC did not increase [Ca2+]i, whereas it still inflicted injury on the cells in terms of cell-shape change and CPK release to the same degree as that under the Ca2+-present condition. Addition of ryanodine (10 μM) failed to prevent the changes in cell-shape and CPK release induced by LPC under both Ca2+-free and Ca2+ -present conditions. Preincubation of the myocytes with d-propranolol (50 μM) inhibited the LPC-induced changes in cell-shape and CPK release under both Ca2+ -free and Ca2+ -present conditions (p < 0.05). Our study provides clear evidence that the cellular injury induced by LPC could be independent of the increase in [Ca2+]i, and the Ca2+ -independent cellular injury induced by LPC could be attenuated by d-propranolol, although the mechanism remains unknown.  相似文献   

9.
The immediate reaction products of PLA2-mediated hydrolysis of phospholipids were tested for their ability to induce Ca2+ mobilization from internal stores in permeabilized ob/ob mouse pancreatic islets. Lysophospholipids and unsaturated fatty acids increased the free Ca2+ concentration in the incubation medium of permeabilized ob/ob mouse pancreatic islets. The potency of the lysophospholipids decreased in the following order: lysophosphatidylcholine = lysophosphatidylglycerol much greater than lysophosphatidylinositol greater than lysophosphatidylserine much greater than lysophosphatidylethanolamine. Arachidonic acid and palmitoleic acid had a potency comparable to lysophosphatidylinositol, while palmitic acid was ineffective. The Ca(2+)-mobilizing effect of inositol-1,4,5-trisphosphate (IP3) in permeabilized islet cells was additive to the lysophospholipid effect, indicating different sites of action. Both Ca(2+)-mobilizing effects were counteracted by the polyamine spermine, while the presence of Mg2+ shifted the Ca2+ concentrations to higher levels. Since not only an activation of a phospholipase C but also an activation of a phospholipase A2 with subsequent generation of lysophospholipids and free fatty acids is reported to occur in glucose-induced insulin secretion, the interaction of the phospholipase C reaction product IP3 with a lysophospholipid or an unsaturated fatty acid may affect the extent and duration of the rise in the free cytoplasmic Ca2+ concentration responsible for initiation of insulin secretion.  相似文献   

10.
ADP-ribosylation of isolated rat islets of Langerhans   总被引:1,自引:0,他引:1  
A rapid and reproducible radioimmunoassay method was developed for rat atrial natriuretic factor (ANF)-IV. The method is also applicable to human atrial peptide. ANF was detected in rat hypothalamus (5.03 pmoles/g tissue), right (86.8 pmoles/mg tissue) and left atria (52.5 pmoles/mg tissue), and plasma (156 fmoles/ml). After high salt intake immunoreactive ANF in atria and plasma increased significantly, while a significant decrease was observed in hypothalamus. Gel chromatography revealed high and low molecular weight ANF in atria and hypothalamus while only a low molecular weight form was found in plasma.  相似文献   

11.
Pentitols and insulin release by isolated rat islets of Langerhans   总被引:7,自引:13,他引:7       下载免费PDF全文
1. Insulin secretion was studied in isolated islets of Langerhans obtained by collagenase digestion of rat pancreas. In addition to responding to glucose and mannose as do whole pancreas and pancreas slices in vitro, isolated rat islets also secrete insulin in response to xylitol, ribitol and ribose, but not to sorbitol, mannitol, arabitol, xylose or arabinose. 2. Xylitol and ribitol readily reduce NAD(+) when added to a preparation of ultrasonically treated islets. 3. Adrenaline (1mum) inhibits the effects of glucose and xylitol on insulin release. Mannoheptulose and 2-deoxy-glucose, however, inhibit the response to glucose but not that to xylitol. 4. The intracellular concentration of glucose 6-phosphate is increased when islets are incubated with glucose but not with xylitol, suggesting that xylitol does not promote insulin release by conversion into glucose 6-phosphate. 5. Theophylline (5mm) potentiates the effect of 20mm-glucose on insulin release from isolated rat islets of Langerhans, but has no effect on xylitol-mediated release. These results indicate that xylitol does not stimulate insulin release by alterations in the intracellular concentrations of cyclic AMP. 6. A possible role for the metabolism of hexoses via the pentose phosphate pathway in the stimulation of insulin release is discussed.  相似文献   

12.
Responsiveness to ouabain of the inotropic and chronotropic effects in rat atrial muscles during development (3-18 wks old) was examined. In spontaneously beating rat right atrial muscles, ouabain (3-30 microM) caused a potent positive inotropic effect in a concentration-dependent manner, but failed to have a chronotropic effect; at 30 microM, 78.6 +/- 3.4% (n = 14, p<0.01) in the contractile force and -1.1 +/- 2.3% (n = 14, p>0.05) in the sinus rate in 10-wk-old rats. The myocardium during development increased the responsiveness to ouabain (10 microM) by 27.6 +/- 2.1% (n = 14, p<0.01), 58.7 +/- 3.3% (n = 14, p<0.001), and 47.2 +/- 2.3% (n = 14, p<0.001) in 3-, 10-, and 18- wk-old rats, respectively. However, the response on the sinus rate was not modified in all of the developing stages. Higher frequencies of stimulation caused the more potent inotropic effect in left atrial muscles. In the experiments using a Ca2+-sensitive fluorescent dye (Fura-2), ouabain (10 and 30 microM) increased the cellular Ca2+ concentrations by 3.0 +/- 2.1% (n = 6, p>0.05) and 12.7 +/- 1.5% (n = 6, p<0.05) in 3-wk-old rats and by 13.0 +/- 2.7% (n = 6, p<0.05) and 42.9 +/- 3.1% (n = 6, p<0.01) in 18-wk-old rats, respectively. These results suggest that the ouabain-evoked response is enhanced during development (but tends to decrease from the maximum after maturing), presumably resulting from developmental degrees of cellular mechanisms such as Na+/K+ pump activity and Na+/Ca2+ exchange and is reflected by changes in the cellular Ca2+ concentration.  相似文献   

13.
Resting platelets maintain a stable level of low cytoplasmic calcium ([Ca2+]cyt) and high dense tubular system calcium ([Ca2+]dts). During thrombosis, activators cause a transient rise in inositol trisphosphate (IP3) to trigger calcium mobilization from stores and elevation of [Ca2+]cyt. Another major source of [Ca2+]cyt elevation is store-operated calcium entry (SOCE) through plasmalemmal calcium channels that open in response to store depletion as [Ca2+]dts drops. A 34-species systems model employed kinetics describing IP3-receptor, DTS-plasmalemma puncta formation, SOCE via assembly of STIM1 and Orai1, and the plasmalemma and sarco/endoplasmic reticulum Ca2+-ATPases. Four constraints were imposed: calcium homeostasis before activation; stable in zero extracellular calcium; IP3-activatable; and functional SOCE. Using a Monte Carlo method to sample three unknown parameters and nine initial concentrations in a 12-dimensional space near measured or expected values, we found that model configurations that were responsive to stimuli and demonstrated significant SOCE required high inner membrane electric potential (>−70 mV) and low resting IP3 concentrations. The absence of puncta in resting cells was required to prevent spontaneous store depletion in calcium-free media. Ten-fold increases in IP3 caused saturated calcium mobilization. This systems model represents a critical step in being able to predict platelets’ phenotypes during hemostasis or thrombosis.  相似文献   

14.
Calcium (Ca2+) signals are generated across a broad time range. Kinetic considerations impact how information is processed to encode and decode Ca2+ signals, the choreography of responses that ensure specific and efficient signaling and the overall temporal amplification such that ephemeral Ca2+ signals have lasting physiological value. The reciprocal importance of timing for Ca2+ signaling, and Ca2+ signaling for timing is exemplified by the altered kinetic profiles of Ca2+ signals in certain diseases and the likely role of basal Ca2+ fluctuations in the perception of time itself.  相似文献   

15.
A Ca2+-activated and calmodulin-dependent protein kinase activity which phosphorylates predominantly two endogenous proteins of 57kDa and 54kDa was found in a microsomal fraction from islet cells. Half-maximal activation of the protein kinase occurs at approx. 1.9 microM-Ca2+ and 4 micrograms of calmodulin/ml (250 nM) for phosphorylation of both protein substrates. Similar phosphoprotein bands (57kDa and 54kDa) were identified in intact islets that had been labelled with [32P]Pi. Islets prelabelled with [32P]Pi and incubated with 28 mM-glucose secreted significantly more insulin and had greater incorporation of radioactivity into the 54 kDa protein than did islets incubated under basal conditions in the presence of 5 mM-glucose. Thus the potential importance of the phosphorylation of these proteins in the regulation of insulin secretion is indicated both by activation of the protein kinase activity by physiological concentrations of free Ca2+ and by correlation of the phosphorylation of the substrates with insulin secretion in intact islets. Experiments undertaken to identify the endogenous substrates indicated that this calmodulin-dependent protein kinase may phosphorylate the alpha- and beta-subunits of tubulin. These findings suggest that Ca2+-stimulated phosphorylation of islet-cell tubulin via a membrane-bound calmodulin-dependent protein kinase may represent a critical step in the initiation of insulin secretion from the islets of Langerhans.  相似文献   

16.
17.
Rat liver mitochondria are able to temporarily lower the steady-state concentration of external Ca2+ after having accumulated a pulse of added Ca2+. This has been attributed to inhibition of a putative -modulated efflux pathway [Bernardi, P. (1984)Biochim. Biophys. Acta 766, 277–282]. On the other hand, the rebounding could be due to stimulation of the uniporter by Ca2+ [Kröner, H. (1987)Biol. Chem. Hoppe-Seyler 369, 149–155]. By measuring unidirectional Ca2+ fluxes, it was found that the uniporter was stimulated during the rebounding peak both under Bernardi's and Kröner's conditions, while no effects on the efflux could be demonstrated. The rate of unidirectional efflux of Ca2+ was not affected by inhibition of the uniporter. It appears likely that the rebounding is due to stimulation of the uniporter rather than inhibition of efflux.  相似文献   

18.
Summary The effect of Ca2+ on the stability of the Ca2+-stimulated ATPase has been investigated. Our results showed that the preincubation of the rat red cell membranes in presence of Ca2+ causes an irreversible inhibition of the enzyme. The same effect was obtained with Ba2+ instead of Ca2+. Once initiated the inactivation of the enzyme could be halted by the addition of ethylene glycol bis (B-amino ethyl ether) N,N-tetra acitic acid (EGTA), but inactivation was irreversible. The presence of ATP in the preincubation with Ca2+ prevented the inactivation but calmodulin did not.  相似文献   

19.
20.
Local Ca2+ rises and propagated Ca2+ signals represent different patterns that are differentially decoded for fine tuning cellular signalling. This Ca2+ concentration plasticity is absolutely required to allow adaptation to different needs of the cells ranging from contraction or increased learning to proliferation and cell death. A wide diversity of molecular structures and specific location of Ca2+ signalling molecules confer spatial and temporal versatility to the Ca2+ changes allowing specific cellular responses to be elicited. Various types of local Ca2+ signals have been described. Ca2+ spikes correspond to Ca2+ signals spanning several micrometers but displaying limited propagation into a cell leading to regulation of cellular functions in one particular zone of this cell. This is of particular relevance in cells presenting distinct morphological specializations, i.e. apical versus basal sites or dendritic versus somatic/axonal sites. More stereotyped elementary Ca2+ events (denominated Ca2+ sparks or Ca2+ puffs depending on the type of endoplasmic reticulum Ca2+ release channel involved) are highly confined and non-propagated Ca2+ rises which are observed in the close neighbouring of the Ca2+ channels. These elementary Ca2+ events play a major role in controlling cellular excitability. Elementary Ca2+ events involve Ca2+ release channels such as the ryanodine receptors (RyRs) and the inositol 1,4,5-trisphosphate receptors (InsP3Rs). The molecular bases underlying the various local Ca2+ release events will be discussed by reviewing the channels and particularly the different isoforms of RyRs and InsP3Rs and their role in inducing localized Ca2+ responses. These calcium release events are controlled by various second messengers and are regulated by Ca2+ channel-associated proteins, intra-luminal Ca2+ content of the endoplasmic reticulum (ER) and other Ca2+ organelles. We will discuss on how the control of local cellular Ca2+ content may account for cellular functions in physiological and physiopathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号