首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of a one-step method for the continuous production of astaxanthin by the microalga Haematococcus pluvialis has been verified outdoors. To this end, influence of dilution rate, nitrate concentration in the feed medium, and irradiance on the performance of continuous cultures of H. pluvialis was firstly analyzed indoors in bubble column reactors under daylight cycles, and then outdoors, using a tubular photobioreactor. At the laboratory scale, the behavior of the cultures agreed with that previously recorded in continuous illumination experiences, and attested that the major factors determining biomass and astaxanthin productivity were average irradiance and specific nitrate supply. The rate of astaxanthin accumulation was proportional to the average irradiance inside the culture, provided that a nitrate limiting situation had been established. The accumulation of astaxanthin under daylight cycles was maximal for a specific nitrate input of 0.5 mmol/g day. The recorded performance has been modeled on the basis of previously developed equations, and the validity of the model checked under outdoor conditions. Productivity values for biomass and astaxanthin of 0.7 g/L day and 8.0 mg/L day respectively, were obtained in a pilot scale tubular photobioreactor operating under continuous conditions outdoors. The magnitude of the experimental values, which matched those simulated from the obtained model, demonstrate that astaxanthin can be efficiently produced outdoors in continuous mode through a precise dosage of the specific nitrate input, taking also into consideration the average irradiance inside the culture.  相似文献   

2.
Net productivity and biomass night losses in outdoor chemostat cultures ofPhaeodactylum tricornutum were analyzed in two tubular airlift photobioreactors at different dilution rates, photobioreactor surface/volume ratios and incident solar irradiance. In addition, an approximate model for the estimation of light profile and average irradiance inside outdoor tubular photobioreactors was proposed. In both photobioreactors, biomass productivity increased with dilution rate and daily incident solar radiation except at the highest incident solar irradiances and dilution rates, when photoinhibition effect was observed in the middle of the day. Variation of estimated average irradiance vs mean incident irradiance showed two effects: first, the outdoor cultures are adapted to average irradiance, and second, simultaneous photolimitation and photoinhibition took place at all assayed culture conditions, the extent of this phenomena being a function of the (incident)1 irradiance and light regime inside the culture. Productivity ranged between 0.50 and 2.04 g L–1 d–1 in the tubular photobioreactor with the lower surface/volume ratio (S/V = 77.5 m–1) and between 1.08 and 2.76 g L–1 d–1 in the other (S/V = 122.0 m–1). The optimum dilution rate was 0.040 h–1 in both reactors. Night-time biomass losses were a function of the average irradiance inside the culture, being lower in TPB0.03 than TPB0.06, due to a better light regime in the first. In both photobioreactors, biomass night losses strongly decreased when the photoinhibition effect was pronounced. However, net biomass productivity also decreased due to lower biomass generation during the day. Thus, optimum culture conditions were obtained when photolimitation and photoinhibition were balanced.  相似文献   

3.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

4.
The feasibility of improving mass transfer characteristics of inclined tubular photobioreactors by installation of static mixers was investigated. The mass transfer characteristics of the tubular photobioreactor varied depending on the type (shape) and the number of static mixers. The volumetric oxygen transfer coefficient ( k(L)a) and gas hold up of the photobioreactor with internal static mixers were significantly higher than those of the photobioreactor without static mixers. The k(L)a and gas hold up increased with the number of static mixers but the mixing time became longer due to restricted liquid flow through the static mixers. By installing the static mixers, the liquid flow changed from plug flow to turbulent mixing so that cells were moved between the surface and bottom of the photobioreactor. In outdoor culture of Chlorella sorokiniana, the photobioreactor with static mixers gave higher biomass productivities irrespective of the standing biomass concentration and solar radiation. The effectiveness of the static mixers (average percentage increase in the productivities of the photobioreactor with static mixers over the productivities obtained without static mixers) was higher at higher standing biomass concentrations and on cloudy days (solar radiation below 6 MJ m(-2) day(-1)).  相似文献   

5.
以缺刻缘绿藻(Parietochloris incisa)为实验材料, 采用BG-11培养基, 分别在2种氮浓度和3种不同光径(LP)的柱状和平板光生物反应器中进行培养, 并探究其生长、油脂和花生四烯酸(AA)的积累规律。结果显示: 在两种光生物反应器中, 光径越小, 越有利于缺刻缘绿藻的生长。其中, 最大生物量均在17.6 mmol/L氮浓度时获得, 分别为5.09 g/L(2.5 cm-柱状)和2.98 g/L(3.0 cm-平板); 而最高油脂和AA绝对含量则均在1.0 mmol/L氮浓度和最大光径处获得, 分别为39.23%、13.21%(6.0 cm-柱状)和40.74%、11.33%(5.0 cm-平板); 另外, 两种光生物反应器中的最大油脂单位体积产率分别可以达到216.39 mg/(L·d)(17.6 mmol/L; 2.5 cm-柱状)和135.93 mg/(L·d)(1.0 mmol/L; 1.5 cm-平板); 而最高的AA单位体积产率均在1.0 mmol/L低氮条件, 最大光径处达到最大, 分别为21.65 mg/(L·d)(6.0 cm-柱状)和19.42 mg/(L·d)(5.0 cm-平板)。因此, 根据实际生产需要, 在1.0 mmol/L低氮条件下, 选择6.0 cm光径的柱状光生物反应器或5.0 cm光径的平板光生物反应器, 培养缺刻缘绿藻生产AA, 能有效降低生产成本。  相似文献   

6.
Continuous cultivation of Haematococcus pluvialis under moderate nitrogen limitation represents a straightforward strategy, alternative to the classical two-stage approach, for astaxanthin production by this microalga. Performance of the one-step system has now been validated for more than 40 combinations of dilution rate, nitrate concentration in the feed medium, and incident irradiance, steady state conditions being achieved and maintained in all instances. Specific nitrate input and average irradiance were decisive parameters in determining astaxanthin content of the biomass, as well as productivity of the system. The growth rate of the continuous photoautotrophic cultures was a hyperbolic function of average irradiance. As long as specific nitrate input was above the threshold value of 2.7 mmol/g day, cells performed green and astaxanthin was present at basal levels only. Below the threshold value, under moderate nitrogen limitation conditions, astaxanthin accumulated to reach cellular levels of up to 1.1% of the dry biomass. Increasing irradiance resulted in enhancement of astaxanthin accumulation when nitrogen input was limiting, but never under nitrogen sufficiency. Mean daily productivity values of 20.8 +/- 2.8 mg astaxanthin/L day (1.9 +/- 0.3 g dry biomass/L day) were consistently achieved for a specific nitrate input of about 0.8 mmol/g day and an average irradiance range of 77-110 microE/m(2) s. Models relating growth rate and astaxanthin accumulation with both average irradiance and specific nitrate input fitted accurately experimental data. Simulations provided support to the contention of achieving efficient production of the carotenoid through convenient adjustment of the determining parameters, and yielded productivity estimates for the one-step system higher than 60 mg astaxanthin/L day. The demonstrated capabilities of this production system, as well as its product quality, made it a real alternative to the current two-stage system for the production of astaxanthin-rich biomass.  相似文献   

7.
A photobioreactor containing microalgae is a highly efficient system for converting carbon dioxide (CO2) into biomass. Using a microalgal photobioreactor as a CO2 mitigation system is a practical approach to the problem of CO2 emission from waste gas. In this study, a marine microalga, Chlorella sp. NCTU‐2, was applied to assess biomass production and CO2 removal. Three types of photobioreactors were designed and used: (i) without inner column (i.e. a bubble column), (ii) with a centric‐tube column and (iii) with a porous centric‐tube column. The specific growth rates (μ) of the batch cultures in the bubble column, the centric‐tube and the porous centric‐tube photobioreactor were 0.180, 0.226 and 0.252 day?1, respectively. The porous centric‐tube photobioreactor, operated in semicontinuous culture mode with 10% CO2 aeration, was evaluated. The results show that the maximum biomass productivity was 0.61 g/L when one fourth of the culture broth was recovered every 2 days. The CO2 removal efficiency was also determined by measuring the influent and effluent loads at different aeration rates and cell densities of Chlorella sp. NCTU‐2. The results show that the CO2 removal efficiency was related to biomass concentration and aeration rate. The maximum CO2 removal efficiency of the Chlorella sp. NCTU‐2 culture was 63% when the biomass was maintained at 5.15 g/L concentration and 0.125 vvm aeration (volume gas per volume broth per min; 10% CO2 in the aeration gas) in the porous centric‐tube photobioreactor.  相似文献   

8.
A fed-batch culture process followed by subsequent photoautotrophic induction was established for the high density culture of astaxanthin-rich Haematococcus pluvialis using a CO2-fed flat type photobioreactor under unsynchronized illumination. Fed-batch culture was performed with an exponential feeding strategy of the growth-limiting nutrients, nitrate and phosphate, concurrently with the stepwise supplementation of light depending on the cell concentration. During the growth phase, a biomass of 1.47 g/L was obtained at a biomass productivity of 0.33 g/L/day. Photoautotrophic induction of the well-grown vegetative cells was performed consecutively by increasing the light intensity to 400 μmol photon/m2/s, while keeping the other conditions in the CO2-fed flat type photobioreactor fixed, yielding an astaxanthin production of 190 mg/L at an astaxanthin productivity of 14 mg/L/day. The proposed sequential photoautotrophic process has high potential as simple and productive process for the production of valuable Haematococcus astaxanthin.  相似文献   

9.
Volumetric productivity of Monodus subterraneus cultivated in an outdoor pilot-plant bubble column was predicted with a mathematical model. Two border cases to model the photobioreactor were chosen. Firstly, a model with no light integration in which it is assumed that microalgae can adapt immediately to local light conditions. Secondly, full light integration implicating that microalga can convert all absorbed light with a photosynthetic yield based on average light intensity. Because temperature and light conditions in our photobioreactor changed during the day, photosynthetic yields at any combination of temperature and light intensity were needed. These were determined in repeated-batch lab-scale experiments with an experimental design. The model was evaluated in an outdoor bubble column at different natural light conditions and different temperatures. Volumetric productivities in the bubble column were predicted and compared with experimental volumetric productivities. The light integration model over-estimated productivity, while the model in which we assumed no light integration under-estimated productivity. Light integration occurred partly (47%) during the period investigated. The average observed biomass yield on light was 0.60 g.mol(-1). The model of partly light integration predicted an average biomass yield on light of 0.57 g.mol(-1) and predicted that productivity could have been increased by 19% if culture temperature would have been maintained at 24 degrees C.  相似文献   

10.
An internally radiating photobioreactor was applied for the production of astaxanthin using the unicellular green alga Haematococcus pluvialis. The cellular morphology of H. pluvialis was significantly affected by the intensity of irradiance of the photobioreactor. Small green cells were widespread under lower light intensity, whereas big reddish cells were predominant under high light intensity. For these reasons, growth reflected by cell number or dry weight varied markedly with light conditions. Even under internal illumination of the photobioreactor, light penetration was significantly decreased as algal cells grew. Therefore, we employed a multistage process by gradually increasing the internal illuminations for astaxanthin production. Our results revealed that a multistage process might be essential to the successful operation of a photobioreactor for astaxnthin production using H. pluvialis.  相似文献   

11.
Pilot-scale (0.19 m column diameter, 2 m tall, and 60 L working volume) outdoor vertical bubble column (BC) and airlift photobioreactors (a split-cylinder (SC) and a draft-tube airlift device (DT)) were compared for fed-batch mixotrophic culture of the microalga Phaeodactylum tricornutum UTEX 640. The cultures were started photoautotrophically until the onset of a quasi-steady-state biomass concentration of 3.4 g L(-)(1). After this, the cultures were supplemented with organic nutrient (glycerol 0.1 M) and a reduced nitrogen source, resulting in an immediate growth rate boost, which was repeated with successive additions of nutrients in all three photobioreactors. During this period the biomass productivity was enhanced compared to photoautotrophic cultures in the three reactors, although differences were found among them. These could be attributed to the different hydrodynamic behavior influencing the transport phenomena inside the cultures. A 25.4 g L(-)(1) maximum biomass concentration was attained in the SC. Further additions of nutrients did not promote any more growth. The consumption of glycerol was quantitative in the first additions but slowed at high biomass concentration, suggesting that a minimum amount of light is needed to sustain growth. No significant effect of the supplied organic nutrient on carotenoids and chlorophylls content was observed, although it had a profound effect on the fatty acid composition. Eicosapentaenoic acid (EPA) content was increased up to 3% (DW) in mixotrophic growth, giving a productivity of 56 mg L(-)(1) d(-)(1), a significant increase compared to the photoautotrophic control, which yielded a maximum EPA content of 1.9% (DW) and a productivity of 18 mg L(-)(1) d(-)(1). The maximum biomass and EPA volumetric yields obtained in this work are comparable with those reported for commercial photoautotrophic monoculture of large quantities of P. tricornutum in closed continuous-run tubular loop bioreactors with tubes that are typically less than 0.08 m in diameter. When the comparison is established in terms of productivities based on the land area occupied, the vertical airlift and bubble-column bioreactors are extraordinarily more productive.  相似文献   

12.
The growth of the marine red microalga Porphyridium sp. in a bubble-column photobioreactor was simulated. The proposed model constitutes a dynamic integration of the kinetics of photosynthesis and photoinhibition with the fluid dynamics of the bubble column, including the effects of shear stress on the kinetics of growth. The kinetic data used in the model were obtained in independent experiments run in a thin-film photobioreactor with defined light/dark cycles. The maintenance term was modified to take into account the effects of liquid flow in the bioreactor on the growth rate. A hybrid method proposed for the approximate solution of the equations gave an appreciable reduction of the calculation time. Extrapolations of the model indicated the possibility of predicting the optimal diameter for an assembly of bubble column photobioreactors. Satisfactory fit was found with the experimental results of biomass growth in a 13-liter bubble column.  相似文献   

13.
Previously, we have successfully produced biodiesel using the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway open pond. Here, we investigated the effects of closed photobioreactors and operating variables on cell concentration and lipid content of the microalga to increase its lipid productivity. The flatplate photobioreactor (FPP) showed higher performance than bubble column and air-lift photobioreactors. Among the variables evaluated, light intensity, aeration rate, and carbon dioxide feeding significantly influenced cell concentration, whereas a simultaneous increase in light intensity and aeration rate, as well as carbon dioxide feeding noticeably increased the lipid content. The lipid productivity in the FPP was 26.7 × 10-3 g/L/day, which was 16.6 times higher than that produced by the microalga cultivated in the raceway pond, 4.8 times higher than that from the simple flask-grown control culture, and 2.1 times higher than that from the FPP under initial conditions.  相似文献   

14.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

15.
The influence of culture conditions on the quality of Haematococcus pluvialis biomass is assessed. Continuously grown cells have been characterised with respect to their astaxanthin, fatty acid content, and antioxidant activity and compared with those of non-growing haematocysts. Moderate limitation of nitrate availability (1.7 mM) under continuous growth conditions favoured the production of reddish palmelloid cells whose extracts possessed antioxidant activity equivalent to that of haematocyst extracts, despite the lower astaxanthin content (0.6%d.wt.), which is compensated by a higher fatty acid level (7.6%d.wt.). Green cells produced under nitrate saturation conditions (>4.7 mM) exhibit only 40% antioxidant activity than palmelloid. In addition, the major fatty acid present in palmelloid cells was oleic acid (40%f.a.), whereas, in both green cells and haematocysts, the main fatty acids were myristic, palmitic, and oleic acid (20–30%f.a. each). Biomass extracts were fractionated and analysed. The antioxidant capacity was a function of both the carotenoid and the fatty acid profiles, the antioxidant capacity of astaxanthin diesters fraction being 60% higher than astaxanthin monoesters fraction and twice than free astaxanthin. In such a way, the evaluation of the quality of H. pluvialis biomass must take into account both variables. When considering the production of H. pluvialis biomass for human consumption, special attention should be paid to the one-step continuous system approach for the generation of cells rich in both astaxanthin and fatty acids, as they have high antioxidant activity but without thick hard cell wall.  相似文献   

16.
实验研究了不同强度的UV-B(280-320 nm)辐射对雨生红球藻(Haematococcus pluvialis)的光合活性、生物量、色素含量、活性氧(ROS)含量和抗氧化酶活性等的影响, 以探讨利用UV-B辐射诱导虾青素生物合成增强的可能性。结果发现, 经UV-B辐射处理后,雨生红球藻的光合活性降低、生物量增长被抑制。UV-B辐射对叶绿素影响不大, 但会改变细胞的类胡萝卜素和虾青素含量:0.1和0.3 W/m2强度的UV-B辐射使细胞中的这两种色素含量升高, 0.5 W/m2组的色素含量短暂升高后恢复到对照水平。中低强度的UV-B可以促进雨生红球藻单细胞虾青素含量的增加, 但由于其对细胞生长的抑制作用, 并不能使虾青素大量积累。随辐射时间延长, 细胞内ROS含量未明显增加,但抗氧化酶(过氧化氢酶和超氧化物歧化酶)活性下降, 雨生红球藻可能主要依靠虾青素来淬灭ROS。以上结果表明, UV-B辐射对雨生红球藻的主要生理生化过程有抑制作用, UV-B辐射既可以诱导虾青素的合成又会消耗一部分虾青素, 对虾青素含量的影响与其强度有关, 而利用虾青素来清除细胞内的ROS可能是雨生红球藻抵御这种不利环境条件的最重要的途径。    相似文献   

17.
18.
This study proposes a novel double-region photobioreactor to simplify the commercial two-stage process of astaxanthin production by the cultivation of Haematococcus pluvialis. The feasibility of the double-region photobioreactor has been investigated and found to achieve high biomass yield in the inner core region and simultaneous astaxanthin accumulation in the outer jacket region. Among many environmental factors, light condition and nitrate level were manipulated for selective cell growth and astaxanthin production. In the outer jacket region, efficient astaxanthin production was accomplished by excessive irradiation (770+/-20 microE m(-2)s(-1)) and nitrate starvation, resulting in a dramatic increase of astaxanthin productivity (357 mg l(-1)). Meanwhile, attenuated light energy (40+/-3 microE m(-2)s(-1)) and sufficient nitrates were supplied to the vegetative cells in the inner core region, which continued to grow to a high cell concentration of 4.0 x 10(5) cells ml(-1). The sequential batch run was performed by utilizing the high-density vegetative cells as inoculum for the next batch run. The cultivation results exhibited similar trends as the previous run, reaching high cell density (4.3 x 10(5) cells ml(-1)) in the inner core region and high astaxanthin content (5.79% on a dry weight basis) in the outer jacket region. The present study indicates that the double-region photobioreactor and its method of operation possess a good potential for commercial production of astaxanthin by H. pluvialis.  相似文献   

19.
In this paper we study the outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors (3.0 m3). Experiments were performed modifying the dilution rate and evaluating biomass productivity and quality, in addition to the overall performance of the system. Results confirm that T. lutea can be produced outdoors on a commercial scale in continuous mode, obtaining productivities of up to 20 g m?2 day?1 of biomass, which are rich in proteins (45 % d.wt.) and lipids (25 % d.wt.). The utilization of this type of photobioreactor allows one to control the levels of contamination and pH within the cultures, but daily variations in solar radiation impose elevated dissolved oxygen concentrations and insufficient temperature conditions on the cells inside the reactor. Excessive dissolved oxygen reduces biomass productivity to 68 % of that which is maximal, whereas inadequate temperature reduces it to 63 % of maximum. Thus, by optimally controlling these parameters, biomass productivity can be almost doubled. These results confirm the potential for producing this valuable strain on a commercial scale in optimally designed/operated tubular photobioreactors as a viable biotechnological industry.  相似文献   

20.
Relatively large (0.19 m column diameter, 2 m tall, 0.06 m3 working volume) outdoor bubble column and airlift bioreactors (a split-cylinder and a draft-tube airlift device) were compared for monoseptic fed-batch culture of the microalga Phaeodactylum tricornutum. The three photobioreactors produced similar biomass versus time profiles and final biomass concentration (4 kg m−3). The maximum specific growth rate observed within a daily illuminated period in the exponential growth phase, had a value of 0.08 h−1 on the third day of culture. Because of night-time losses of biomass, the specific growth rate averaged over the 4-days of exponential phase was 0.021 h−1 for the three reactors.

The biomass in the vertical column reactors did not experience photoinhibition under conditions (photosynthetically active daily averaged irradiance value of 1150±52 μE m−2 s−1) that are known to cause photoinhibition in conventional thin-tube horizontal loop reactors. Because of good gas-liquid mass transfer, the dissolved oxygen concentration in the reactors at peak photosynthesis remained <120% of air saturation; thus, oxygen inhibition of photosynthesis and photo-oxidation of the biomass did not occur. Carbohydrate accumulation (up to 13% w/w) by the biomass was favored during light-limited linear growth. A declining light intensity caused a more than five-fold increase in cellular carotenoids but the chlorophylls increased only by about 2.5-fold during the course of the culture. In the stationary phase, up to 2% of the biomass was chlorophylls and carotenoids constituted up to 0.5% of the biomass dry weight.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号