首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pedroso I  Irún MP  Machicado C  Sancho J 《Biochemistry》2002,41(31):9873-9884
The conformational stability of a single-chain Fv antibody fragment against a hepatitis B surface antigen (anti-HBsAg scFv) has been studied by urea and temperature denaturation followed by fluorescence and circular dichroism. At neutral pH and low protein concentration, it is a well-folded monomer, and its urea and thermal denaturations are reversible. The noncoincidence of the fluorescence and circular dichroism transitions indicates the accumulation in the urea denaturation of an intermediate (I(1)) not previously described in scFv molecules. In addition, at higher urea concentrations, a red-shift in the fluorescence emission maximum reveals an additional intermediate (I(2)), already reported in the denaturation of other scFvs. The urea equilibrium unfolding of the anti-HBsAg scFv is thus four-state. A similar four-state behavior is observed in the thermal unfolding although the intermediates involved are not identical to those found in the urea denaturation. Global analysis of the thermal unfolding data suggests that the first intermediate displays substantial secondary structure and some well-defined tertiary interactions while the second one lacks well-defined tertiary interactions but is compact and unfolds at higher temperature in a noncooperative fashion. Global analysis of the urea unfolding data (together with the modeled structure of the scFv) provides insights into the conformation of the chemical denaturation intermediates and allows calculation of the N-I(1), I(1)-I(2), and I(2)-D free energy differences. Interestingly, although the N-D free energy difference is very large, the N-I(1) one, representing the "relevant" conformational stability of the scFv, is small.  相似文献   

2.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

3.
4.
Directed evolution of a stable scaffold for T-cell receptor engineering   总被引:13,自引:0,他引:13  
Here we have constructed a single-chain T-cell receptor (scTCR) scaffold with high stability and soluble expression efficiency by directed evolution and yeast surface display. We evolved scTCRs in parallel for either enhanced resistance to thermal denaturation at 46 degrees C, or improved intracellular processing at 37 degrees C, with essentially equivalent results. This indicates that the efficiency of the consecutive kinetic processes of membrane translocation, protein folding, quality control, and vesicular transport can be well predicted by the single thermodynamic parameter of thermal stability. Selected mutations were recombined to create an scTCR scaffold that was stable for over an hour at 65 degrees C, had solubility of over 4 mg ml(-1), and shake-flask expression levels of 7.5 mg l(-1), while retaining specific ligand binding to peptide-major histocompatibility complexes (pMHCs) and bacterial superantigen. These properties are comparable to those for stable single-chain antibodies, but are markedly improved over existing scTCR constructs. Availability of this scaffold allows engineering of high-affinity soluble scTCRs as antigen-specific antagonists of cell-mediated immunity. Moreover, yeast displaying the scTCR formed specific conjugates with antigen-presenting cells (APCs), which could allow development of novel cell-to-cell selection strategies for evolving scTCRs with improved binding to various pMHC ligands in situ.  相似文献   

5.
Despite the well-known crucial role of intradomain disulfide bridges for immunoglobulin folding and stability, the single-chain variable fragment of the anti-viral antibody F8 is functionally expressed when targeted to the reducing environment of the plant cytoplasm. We show here that this antibody fragment is also functionally expressed in the cytoplasm of Escherichia coli. A gel shift assay revealed that the single-chain variable fragment (scFv) accumulating in the plant and bacterial cytoplasm bears free sulfhydryl groups. Guanidinium chloride denaturation/renaturation studies indicated that refolding occurs even in a reducing environment, producing a functional molecule with the same spectral properties of the native scFv(F8). Taken together, these results suggest that folding and functionality of this antibody fragment are not prevented in a reducing environment. This antibody fragment could therefore represent a suitable framework for engineering recombinant antibodies to be targeted to the cytoplasm.  相似文献   

6.
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.  相似文献   

7.
This protocol describes the process of isolating and engineering antibodies or proteins for increased affinity and stability using yeast surface display. Single-chain antibody fragments (scFvs) are first isolated from an existing nonimmune human library displayed on the yeast surface using magnetic-activated cell sorting selection followed by selection using flow cytometry. This enriched population is then mutagenized, and successive rounds of random mutagenesis and flow cytometry selection are done to attain desired scFv properties through directed evolution. Labeling strategies for weakly binding scFvs are also described, as well as procedures for characterizing and 'titrating' scFv clones displayed on yeast. The ultimate result of following this protocol is a panel of scFvs with increased stability and affinity for an antigen of interest.  相似文献   

8.
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 microg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.  相似文献   

9.
Fusion proteins comprised of a binding domain and green fluorescent protein (GFP) have the potential to act as one-step binding reagents. In this study, eight single-chain antibodies (scFv) and one single-chain T-cell receptor (scTCR) were secreted as fusions to GFP using a Saccharomyces cerevisiae expression system. Fusion protein secretion levels ranged over 3 orders of magnitude, from 4 μg/liter to 4 mg/liter, and correlated well with the secretion levels of the unfused scFv/scTCR. Three fusion types with various linker lengths and fusion orientations were tested for each scFv/scTCR. Although the fusion protein secretion levels were not significantly affected by the nature of the fusion construct, the properties of the fusion protein were clearly influenced. The fluorescence yield per fusion molecule was increased by separating the scFv/scTCR and GFP with an extended (GGGGS)3 linker, and fusions with scFv/scTCR at the carboxy-terminus were more resistant to degradation. By evaluating leader sequence processing and using GFP fluorescence to track intracellular processing, it was determined that the majority of fusion protein synthesized by the yeast was not secreted and in most cases was accumulating in an immature, although active, endoplasmic-reticulum (ER)-processed form. This contrasted with unfused scFv, which accumulated in both immature ER-processed and mature post-Golgi forms. The results indicated that yeast can be used as an effective host for the secretion of scFv/scTCR-GFP fusion proteins and that as a result of intracellular secretory bottlenecks, there is considerable yeast secretory capacity remaining to be exploited.  相似文献   

10.
Screening randomly mutagenized proteins displayed on a phage surface by biopanning is a powerful strategy to obtain evolved clones with improved properties such as higher stability and functionality. We utilized this method to overcome the problem that functional single-chain antibodies against active gibberellins, a class of plant hormones, can not be prepared by some of the conventional methods. Single-chain antibody libraries with random mutations were constructed from two independent anti-bioactive gibberellin monoclonal antibody lines in a phagemid vector, so that the mutagenized scFvs were expressed in a phage-displayed form upon helper phage infection. From both libraries, scFv clones with binding activity to GA(4) were successfully obtained by successive rounds of biopanning against BSA-GA(4), the original immunogen. The results are highly suggestive that this approach might be a general solution when a single-chain antibody does not show binding activity. We found further that a ribosomal frameshift to complement a nonsense mutation frequently occurred in an amber suppressor strain of E. coli TG1, resulting in the display of a functional antibody, while such a nonsense mutant failed to produce a soluble antibody in a non-amber suppressor strain. This result explains at least partly why single-chain antibodies are sometimes functional only in a phage-displayed form, not in a soluble form.  相似文献   

11.
Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of “randomly paired” scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.  相似文献   

12.
The utility of single-chain Fv proteins as therapeutic agents would be realized if the circulating lives of these minimal antigen-binding polypeptides could be both prolonged and adjustable. We have developed a general strategy for creating tailored monoPEGylated single-chain antibodies. Free cysteine residues were engineered in an anti-TNF-alpha scFv at the C-terminus or within the linker segments of both scFv orientations, V(L)-linker-V(H) and V(H)-linker-V(L). High-level expression of 10 designed variant scFv proteins in Pichia pastoris allowed rapid purification. Optimization of site-specific conjugate preparation with 5, 20 and 40 kDa maleimide-PEG polymers was achieved and a comparison of the structural and functional properties of the scFv proteins and their PEGylated counterparts was performed. Peptide mapping and MALDI-TOF mass spectrometric analysis confirmed the unique attachment site for each PEG polymer. Independent biochemical and bioactivity analyses, including binding affinities and kinetics, antigenicity, flow cytometric profiling and cell cytotoxicity rescue, demonstrated that the functional activities of the 10 designed scFv conjugates are maintained, while scFv activity variations between these alternative assays can be correlated with conjugate and analytical designs. Pharmacokinetic studies of the PEGylated scFv in mice demonstrated up to 100-fold prolongation of circulating lives, in a range comparable to clinical antibodies.  相似文献   

13.
While cell surface antigens represent the most common targets for antibody-based cancer therapy, isolation of new antibodies specific for these targets from single-chain Fv phage display libraries has been hindered by limitations associated with traditional selection techniques. Solid phase panning is often associated with conformational changes to the target protein due to its immobilization on plastic tubes that can limit the ability of the isolated scFv to bind to conformational epitopes and solution panning methods require the use of secondary tags that often mask desired sequences and create unintended epitopes. Commonly utilized cell-based panning methods typically yield a panel of single-chain Fv (scFv) molecules that are specific for numerous cell surface antigens, often obscuring the desired clones. Here, we describe a novel cell sorter-based system to isolate single-chain Fv molecules specific for defined antigen targets expressed on stably-transformed mammalian cells. We employed these methods to isolate promising scFv clones that bind specifically to the Müllerian inhibiting substance type II receptor, a cell surface ovarian cancer antigen that has proven to be a difficult target for selection strategies.  相似文献   

14.
Mucin-type O-glycosylation is initiated by a large number of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-T). Although extensive in vitro studies using synthetic peptides as substrates suggest that most GalNAc-Ts exhibit overlapping substrate specificities, many studies have shown that individual GalNAc-Ts play an important role in both animals and humans. Further investigations of the functions of individual GalNAc-Ts including in vivo substrate proteins and O-glycosylation sites are necessary. In this study, we attempted to generate single-chain variable fragment (scFv) antibodies to bind to GalNAc-T1, T2, T3, and T4 using a yeast two-hybrid system for screening a naive chicken scFv library. Several different scFvs were isolated against a single target GalNAc-T isoform specifically under expressed in yeast and were confirmed to be expressed in mammalian cells and to retain binding activity inside the cells. Generation of these specific antibodies provides an opportunity to modify and exploit antibodies for specific applications in investigations of GalNAc-T functions.  相似文献   

15.
Expression of recombinant antibodies in mammalian cells is one of the key problems in immuno-biotechnology. Alternatively, expression of a broad panel of antibodies and of their fragments may be effectively performed in yeast cells. We obtained expression strains of the methylotrophic yeast Pichia pastoris producing single-chain human catalytic antibody A17 (A.17scFv), Fab-fragment (A.17Fab), and full-size light chain (A.17Lch). These antibodies were characterized in terms of functional activity. The capacity to specifically bind and transform organophosphorus compounds has been demonstrated for A.17scFv and A.17Fab. The loss of activity of the antibody light chain when expressed alone indicates that the active site is formed by both heavy and light chains of the antibody. We determined the reversible constant K d and the first order constant (k 2) of the reaction of the covalent modification of A.17scFv and A.17Fab by irreversible inhibitor of the serine proteases p-nitrophenyl 8-methyl-8-azobicyclo[3.2.1]phosphonate (phosphonate X). Calculated values indicate that activity of the antibodies expressed in yeast is similar to the full-size antibody A17 and to the single-chain antibody A.17 expressed in CHO and E. coli cells, respectively.  相似文献   

16.
Efficiency of yeast cell surface display can serve as a proxy screening variable for enhanced thermal stability and soluble secretion efficiency of mutant proteins. Several single-chain T cell receptor (scTCR) single-site mutants that enable yeast surface display, along with their double and triple mutant combinations, were analyzed for soluble secretion from the yeast Saccharomyces cerevisiae. While secretion of the wild-type scTCR was not detected, each of the single, double, and triple mutants were produced in yeast supernatants, with increased expression resulting from the double and triple mutants. Soluble secretion levels were strongly correlated with the quantity of active scTCR displayed as a fusion to Aga2p on the surface of yeast. Thermal stability of the scTCR mutants correlated directly with the secreted and surface levels of scTCR, with evidence suggesting that intracellular proteolysis by the endoplasmic reticulum quality control apparatus dictates display efficiency. Thus, yeast display is a directed evolution scaffold that can be used for the identification of mutant eucaryotic proteins with significantly enhanced stability and secretion properties.  相似文献   

17.
A fluorescein-binding single-chain Fv (scFv) was chosen as a model for the study of the physicochemical parameters associated with synthetic IgG fragments. Three such scFv proteins were designed from the primary sequences of one anti-fluorescyl monoclonal antibody (Mab 4.4.20). These were constructed with varying-length interdomain peptide linkers of between 12 and 25 residues, expressed in Escherichia coli, and the protein folding, stability, and antigen-binding characteristics were assessed. Efficient renaturation could be accomplished in vitro to yield approximately 26 mg of active scFv/L of fermentation. Scatchard analysis for fluorescein ligand binding revealed that the scFv designs come within 2-fold of the Ka = 1.99 (+/- 0.18) x 10(9) observed for the parental 4.4.20 Fab and have identical stoichiometries (n approximately 0.99). Reversible solvent denaturation studies demonstrated that the unfolding/refolding equilibria for the scFv proteins can be fit to a simple two-state model and that two of the scFv designs were found to be slightly more stable than single IgG domains (VL and CL) when assessed in terms of the free energy of unfolding, delta Gon-u, or nearly identical to other multiple domain immunoglobulin proteins such as light chains and Fab's when relative transition midpoints, Cm, are compared. Linkers which conferred conformational flexibility beyond the minimally required length of 12 residues were found to have a stabilizing effect. By these criteria of ligand-binding function and protein stability, the scFv proteins were found to be bona fide minimal replicas of their parental IgG molecules.  相似文献   

18.
Intracellular antibodies (intrabodies) provide an attractive means for manipulating intracellular protein function, both for research and potentially for therapy. A challenge in the isolation of effective intrabodies is the ability to find molecules that exhibit sufficient binding affinity and stability when expressed in the reducing environment of the cytoplasm. Here, we have used yeast surface display of proteins to isolate novel scFv clones against huntingtin from a non-immune human antibody library. We then applied yeast surface display to affinity mature this scFv pool and analyze the location of the binding site of the mutant with the highest affinity. Interestingly, the paratope was mapped exclusively to the variable light chain domain of the scFv. A single domain antibody was constructed consisting solely of this variable light chain domain, and was found to retain full binding activity to huntingtin. Cytoplasmic expression levels in yeast of the single domain were at least fivefold higher than the scFv. The ability of the single-domain intrabody to inhibit huntingtin aggregation, which has been implicated in the pathogenesis of Huntington's disease (HD), was confirmed in a cell-free in vitro assay as well as in a mammalian cell culture model of HD. Significantly, a single-domain intrabody that is functionally expressable in the cytoplasm was derived from a non-functional scFv by performing affinity maturation and binding site analysis on the yeast cell surface, despite the differences between the cytoplasmic and extracellular environment. This approach may find application in the development of intrabodies to a wide variety of intracellular targets.  相似文献   

19.
Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD) as low as 0.8 nm. We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule–positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.  相似文献   

20.
A W?rn  A Plückthun 《Biochemistry》1999,38(27):8739-8750
A classification of scFv fragments concerning their unfolding/refolding equilibria is proposed. It is based on the analysis of different mutants of the levan-binding A48 scFv fragment and the HER-2 binding 4D5 scFv fragment as well as a "hybrid" scFv carrying the VL domain of 4D5 and the VH domain of an A48 mutant. The denaturant-induced unfolding curves of the corresponding scFv fragments were measured and, if necessary for the classification, compared with the denaturation of the isolated domains. Depending on the relative intrinsic stabilities of the domains and the stability of the interface, the different scFv fragments were grouped into different classes. We also demonstrate with several examples how such a classification can be used to improve the stability of a given scFv fragment, by concentrating engineering efforts on the "weak part" of the particular molecule, which may either be the intrinsic stability of VL, of VH, or the stability of the interface. One of the scFv fragments obtained by this kind of approach is extremely stable, starting denaturation only at about 7 M urea. We believe that such extremely stable frameworks may be very suitable recipients in CDR grafting experiments. In addition, the thermodynamic equilibrium stabilities of seven related A48 scFv mutants covering a broad range of stabilities in urea unfolding were shown to be well correlated with thermal aggregation properties measured by light scattering and analytical gel filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号