首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Locusts are the most serious pests of crops in greater part of the world. They locate their host plants primarily through olfactory cues, using antennal chemosensilla, which house olfactory receptor neurons (ORNs). Despite the great economical interest of these species, their olfactory neurons have been poorly investigated at the functional level. In this study, we have used single sensillum recordings (SSRs) to obtain response patterns of ORNs from the antennal trichoid sensilla to various chemicals in the oriental locust Locusta migratoria. On the basis of their spontaneous spike amplitudes, trichoid sensilla could be distinguished into two types, housing two or three ORNs, respectively. These two structural types could be further classified into seven functional subtypes. Nine different odorants that are present in the locust feces were used as stimulants during SSRs. In particular, benzaldehyde elicited inhibitory responses in most of the ORNs tested. Moreover, in a majority of these ORNs, the excitatory responses obtained with trans-2-hexenal or 2-heptanone was inhibited when benzaldehyde was mixed with these stimulants. At least 16 response patterns of these ORNs to nine chemicals were identified by SSRs, suggesting a high complexity of the cellular mechanisms underlying chemoreception in locusts.  相似文献   

2.
In insects, olfactory receptor neurons (ORNs) are located in cuticular sensilla, that are present on the antennae and on the maxillary palps. Their axons project into spherical neuropil, the glomeruli, which are characteristic structures in the primary olfactory center throughout the animal kingdom. ORNs in insects often respond specifically to single odor compounds. The projection patterns of these neurons within the primary olfactory center, the antennal lobe, are, however, largely unknown.We developed a method to stain central projections of intact receptor neurons known to respond to host odor compounds in the malaria mosquito, Anopheles gambiae. Terminal arborizations from ORNs from antennal sensilla had only a few branches apparently restricted to a single glomerulus. Axonal arborizations of the different neurons originating from the same sensillum did not overlap.ORNs originating from maxillary palp sensilla all projected into a dorso-medial area in both the ipsi- and contralateral antennal lobe, which received in no case axon terminals from antennal receptor neurons. Staining of maxillary palp receptor neurons in a second mosquito species (Aedes aegypti) revealed unilateral arborizations in an area at a similar position as in An. gambiae.  相似文献   

3.
Antennal olfactory receptor neurons (ORNs) for pheromone and plant volatile compounds were identified and characterized in male and female clover root weevil, Sitona lepidus (Gyllenhal), using the single sensillum recording technique with five pheromone-related compounds, and 40 host and non-host plant volatile compounds. Overall, seven different types of olfactory sensilla containing specialized ORNs were identified in each sex of S. lepidus. Among them, three different types of sensilla in the males and two types in the females housed ORNs specialized for pheromone-related compounds. The ORNs in males were specialized for 4-methyl-3,5-heptanedione or one or more of four stereoisomers of 5-hydroxy-4-methyl-3-heptanone. In contrast, female sensilla did not contain ORNs sensitive to 4-methyl-3,5-heptanedione while they contained ORNs sensitive to and specialized for the stereoisomers of (4S,5S)-5-hydroxy-4-methyl-3-heptanone. In addition to the pheromone-related ORNs, four types of olfactory sensilla contained ORNs responsive to plant volatile compounds in male S. lepidus, and five types in females. Most of the ORNs identified in S. lepidus showed a high degree of specificity to specific volatile compounds although some of the active compounds showed overlapping response spectra in the ORNs across different types of sensilla. The most active plant volatile compounds were the four green leaf volatile compounds, (E)-2-hexenol, (Z)-2-hexenol, (Z)-3-hexenol and (E)-2-hexenal, and isomers of two monoterpenols, (±)-linalool and (±)-α-terpineol, all eliciting strong responses from relatively large numbers of ORNs in male and female S. lepidus. Our study indicates that S. lepidus has a set of highly sensitive and selective ORNs for pheromone and plant volatile compounds. Further work is needed to elucidate the behavioral implications of these findings.  相似文献   

4.
蚊虫主要依赖嗅觉系统与外界环境进行化学信息交流。蚊虫通过嗅觉感受系统寻找食物、 配偶和产卵场所, 进而做出相应的行为反应。本文综述了近年来蚊虫嗅觉系统对气味信号神经传导机制的研究进展。蚊虫的嗅觉感器主要位于触角和下颚须, 触角上的毛形感器和锥形感器感受氨水、 乳酸、 羧酸类化合物等人体和其他动物释放的微量气味物质, 下颚须上的锥形感器则感受呼出的二氧化碳以及一些其他的挥发性物质; 蚊虫嗅觉感器内部有受体神经细胞, 其上分布有嗅觉受体蛋白, 蚊虫对外界环境的化学感受就是通过气味物质与这些受体蛋白互作而得以实现; 根据对不同气味物质的反应谱差异, 嗅觉神经细胞被分为不同的功能类型; 来自嗅觉神经细胞的神经信号进一步从外周传导至中枢神经中脑触角叶内的神经小球, 在此对信息进行初步的处理, 通过评估嗅觉神经细胞的反应和触角叶内的神经小球相应被激活的区域, 不同小球被分别命名; 最后, 神经信号继续整合, 由投射神经传向前脑, 最终引发一系列昆虫行为反应。这些研究从理论上剖析了气味信号在蚊虫嗅觉系统中的神经转导通路, 对于我们深刻理解蚊虫的嗅觉系统具有重要意义, 同时也有助于进一步理解其他昆虫甚至人类的气味识别机制及进行更深层次神经科学的探索。  相似文献   

5.
Syed Z  Leal WS 《Chemical senses》2007,32(8):727-738
A single type of olfactory sensilla on maxillary palps in many species of mosquitoes houses a very sensitive olfactory receptor neuron (ORN) for carbon dioxide reception. We performed extensive single sensillum recordings from this peg sensillum in Culex quinquefasciatus and have characterized the response threshold and kinetics for CO(2) reception, with a detection threshold less than the CO(2) concentration in the atmosphere. This ORN responded in a tonic mode to lower concentrations of CO(2), whereas higher concentrations generated a phasic-tonic mode of action potential firing. Sensillum potentials accurately represented the response magnitude and kinetics of carbon dioxide-elicited excitatory responses. Stimulation of these ORNs with human breath, a complex mixture of mosquito kairomones and up to 4.5% CO(2), elicited excitatory responses that were reliably detected by CO(2)-sensitive ORNs. Another ORN housed in these sensilla responded to 1-octen-3-ol and to various plant-derived compounds, particularly floral and green leaf volatiles. This ORN showed remarkable sensitivity to the natural enantiomer, (R)-(-)-1-octen-3-ol, rivaling pheromone-detecting ORNs in moths. Maximum neuronal response was elicited with a 10 ng dose. A biological, ecological role of maxillary palps in detection of plant- and nectar-related sources is proposed.  相似文献   

6.
The distribution, fine structure and function of the sensilla present on the antennal club of Rhynchophorus palmarum were studied. No sex dimorphism was observed. Scanning and transmission electron microscopy showed five types of hair-like structures, four of which were evenly distributed on the antennal club. Two types of hair (IV and V) showed wall pores, a characteristic of olfactory sensilla. The antenna numbers 11,190 +/- 3040 type IV and 7360 +/- 1500 type V hairs. Using single sensillum recording, we identified 17 types of olfactory receptor neurons (ORNs) on the basis of their responses to pheromone and host plant odors, triggering synergic behavioral responses. We characterized highly specific and sensitive ORNs tuned to the aggregation pheromone (18% ORNs; 0.01-1 ng response threshold) and to host plant odors such as ethyl acetate, ethanol, acetoin and guaiacol (10% ORNs; 1-10 ng response threshold). Eleven percent of the ORNs were more generalist, responding to several odors with low sensitivity. Nine percent of the ORNs showed a complex pattern of responses, being co-activated by the pheromone and plant odors. This suggests an interaction at the sensory neuron level between pheromone and plant odors, triggering synergic behavioral responses.  相似文献   

7.
8.
We used single sensillum recordings to define male Helicoverpa zea olfactory receptor neuron physiology followed by cobalt staining to trace the axons to destination glomeruli of the antennal lobe. Receptor neurons in type A sensilla that respond to the major pheromone component, (Z)-11-hexadecenal, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of these sensilla a second receptor neuron was stained that projected consistently to a specific glomerulus residing in a previously unrecognized glomerular complex with six other glomeruli stationed immediately posterior to the MGC. Cobalt staining corroborated by calcium imaging showed that receptor neurons in type C sensilla sensitive to (Z)-9-hexadecenal projected to the dorsomedial posterior glomerulus of the MGC, whereas the co-compartmentalized antagonist-sensitive neurons projected to the dorsomedial anterior glomerulus. We also discovered that the olfactory receptor neurons in type B sensilla exhibit the same axonal projections as those in type C sensilla. Thus, it seems that type B sensilla are anatomically type C with regard to the projection destinations of the two receptor neurons, but physiologically one of the receptor neurons is now unresponsive to everything except (Z)-9-tetradecenal, and the other responds to none of the pheromone-related odorants tested.  相似文献   

9.
Phytophagous insects detect volatile compounds produced by host and non-host plants, using species-specific sets of olfactory receptor neurons (ORNs). To investigate the relationship between the range of host plants and the profile of ORNs, single sensillum recordings were carried out to identify ORNs and corresponding active compounds in female Uraba lugens (Lepidoptera: Nolidae), an oligophagous eucalypt feeder. Based on the response profiles to 39 plant volatile compounds, 13 classes of sensilla containing 40 classes of ORNs were identified in female U. lugens. More than 95% (163 out of 171) of these sensilla contained 16 classes of ORNs with narrow response spectra, and 62.6% (107 out of 171) 18 classes of ORNs with broad response spectra. Among the specialized ORNs, seven classes of ORNs exhibited high specificity to 1,8-cineole, (±)-citronellal, myrcene, (±)-linalool and (E)-β-caryophyllene, major volatiles produced by eucalypts, while nine other classes of ORNs showed highly specialized responses to green leaf volatiles, germacrene D, (E)-β-farnesene and geranyl acetate that are not produced by most eucalypts. We hypothesize that female U. lugens can recognize their host plants by detecting key host volatile compounds, using a set of ORNs tuned to host volatiles, and discriminate them from non-host plants using another set of ORNs specialized for non-host volatiles. The ORNs with broad response spectra may enhance the discrimination between host and non-host plants by adding moderately selective sensitivity. Based on our finding, it is suggested that phytophagous insects use the combinational input from both host-specific and non-host specific ORNs for locating their host plants, and the electrophysiological characterization of ORN profiles would be useful in predicting the range of host plants in phytophagous insects.  相似文献   

10.
Summary (Z)-11-tetradecenyl acetate (Z-11, 14:AC) must be in a 1009 ratio with (E)-11-tetradecenyl acetate (E-11,14:AC) to produce maximal wing fanning and attraction in male redbanded leafrollers. Earlier electrophysiological studies had indicated that mixtures of these pheromone components elicited responses from olfactory receptor neurons that appeared to differ from those expected on the basis of the responses to the individual components. Here we evaluate whether the behavioral sensitivity to particular ratios of Z- and E-11,14:AC has a correlate in the response properties of olfactory receptor neurons.The stimuli included the ratios of Z- and E-11, 14:AC used in earlier behavioral work plus several different mixtures of the seven components found in the pheromone blend, and equivalent amounts of the individual components. These stimuli were presented over a range of intensities to individual trichoid sensilla on the male antenna. In common with earlier results, the receptor neuron with the larger amplitude action potential responded most strongly to Z-11,14:AC, whereas the companion receptor neuron in the sensillum responded most strongly to E-11,14:AC. In contrast with earlier results, each receptor neuron responded exclusively to its own most effective stimulus, without regard to the presence of any other compound. They failed to respond uniquely to any of the other five compounds in the female pheromone blend, or to any of the tested combinations of these compounds. These minor components also failed to modulate the responses elicited in receptor neurons by appropriate ratios of Z- and E-11,14:AC. Thus, the responses of the two types of olfactory receptor neurons found in trichoid sensilla failed to show an optimum at the pheromone ratio known to elicit peak behavioral activity.Abbreviation RBLR redbanded leafroller moth  相似文献   

11.
In the long trichoid sensilla on male Helicoverpa zea antennae, approximately 40% of the sensilla having a large-spiking olfactory receptor neuron responding to the major pheromone component, (Z)-11-hexadecenal, also exhibit small-spiking action potentials that also seem to be responsive to this same compound. In this study, we investigated whether these small-spiking signals are a result of intrusive electrical signals generated from neighboring sensilla. Two methods were used for this study. First, the sensillum was completely covered by the saline-filled recording electrode to physically prevent the sensillum from being contacted by exposure to (Z)-11-hexadecenal. In this case, activation of the large-spiking neuron in response to the pheromone component was prevented, whereas the small-spiking activity continued to be influenced by the airborne delivery of the pheromone. In the second method the (Z)-11-hexadecenal was applied directly in solution through the cut tip of the sensillum through the recording electrode. In this case only large-spiking activity occurred in response to (Z)-11-hexadecenal, with no increase whatsoever in the firing frequency of the small spikes. We conclude that these long trichoid olfactory sensilla are not completely isolated electrically from neighboring sensilla and that small spikes in some recordings originate from large-spiking olfactory receptor neurons (ORNs) in neighboring sensilla.  相似文献   

12.
Olfactory responses at the receptor level have been thoroughly described in Drosophila melanogaster by electrophysiological methods. Single sensilla recordings (SSRs) measure neuronal activity in intact individuals in response to odors. For sensilla that contain more than one olfactory receptor neuron (ORN), their different spontaneous spike amplitudes can distinguish each signal under resting conditions. However, activity is mainly described by spike frequency.Some reports on ORN response dynamics studied two components in the olfactory responses of ORNs: a fast component that is reflected by the spike frequency and a slow component that is observed in the LFP (local field potential, the single sensillum counterpart of the electroantennogram, EAG). However, no apparent correlation was found between the two elements.In this report, we show that odorant stimulation produces two different effects in the fast component, affecting spike frequency and spike amplitude. Spike amplitude clearly diminishes at the beginning of a response, but it recovers more slowly than spike frequency after stimulus cessation, suggesting that ORNs return to resting conditions long after they recover a normal spontaneous spike frequency. Moreover, spike amplitude recovery follows the same kinetics as the slow voltage component measured by the LFP, suggesting that both measures are connected.These results were obtained in ab2 and ab3 sensilla in response to two odors at different concentrations. Both spike amplitude and LFP kinetics depend on odorant, concentration and neuron, suggesting that like the EAG they may reflect olfactory information.  相似文献   

13.
We used single-sensillum recordings to characterize male Heliothis subflexa antennal olfactory receptor neuron physiology in response to compounds related to their sex pheromone. The recordings were then followed by cobalt staining in order to trace the neurons' axons to their glomerular destinations in the antennal lobe. Receptor neurons responding to the major pheromone component, (Z)-11-hexadecenal, in the first type of sensillum, type-A, projected axons to the cumulus of the macroglomerular complex (MGC). In approximately 40% of the type-A sensilla, a colocalized receptor neuron was stained that projected consistently to the posterior complex 1 (PCx1), a specific glomerulus in an 8-glomerulus complex that we call the Posterior Complex (PCx). We found that receptor neurons residing in type-B sensilla and responding to a secondary pheromone component, (Z)-9-hexadecenal, send their axons to the dorsal medial glomerulus of the MGC. As in the type-A sensilla, we found a cocompartmentalized neuron within type-B sensilla that sends its axon to a different glomerulus of the PCx4. One neuron in type-C sensilla tuned to a third pheromone component, (Z)-11-hexadecenol, and a colocalized neuron responding to (Z)-11-hexadecenyl acetate projected their axons to the anteromedial and ventromedial glomeruli of the MGC, respectively.  相似文献   

14.
Drosophila olfactory receptor neurons are found within specialized sensory hairs on antenna and maxillary palps. The linking of odorant-induced responses to olfactory neuron activities is often accomplished via Single Sensillum Recordings (SSR), in which an electrode inserted into a single sensory hair records the neuronal activities of all the neurons housed in that sensillum. The identification of the recorded sensillum requires matching the neuronal responses with known odor-response profiles. To record from specific sensilla, or to systematically screen all sensillar types, requires repetitive and semi-random SSR experiments. Here, we validate an approach in which the GAL4/UAS binary expression system is used for targeting specific sensilla for recordings. We take advantage of available OrX-Gal4 lines, in combination with recently generated strong membrane targeted GFP reporters, to guide electrophysiological recordings to GFP-labeled sensilla. We validate a full set of reagents that can be used to rapidly screen the odor-response profiles of all basiconic, intermediate, and trichoid sensilla. Fluorescence-guided SSR further revealed that two antennal trichoid sensilla types should be re-classified as intermediate sensilla. This approach provides a simple and practical addition to a proven method for investigating olfactory neurons, and can be extended by the addition of UAS-geneX effectors for gain-of-function or loss-of-function studies.  相似文献   

15.
东北大黑鳃金龟嗅感器超微结构   总被引:5,自引:0,他引:5  
孙凡  胡基华  王广利  彭璐 《昆虫学报》2007,50(7):675-681
利用扫描电镜和透射电镜对东北大黑鳃金龟Holotrichia diomphalia成虫触角嗅感器进行超微结构研究。结果表明: 其嗅感器集中于触角鳃片上,着生在表皮内陷形成的凹腔里。嗅感器包括锥形感器和板形感器两种,锥形感器根据锥体形状的差异可分为4种类型,板形感器根据盘体形状的不同可分为5种类型。嗅感器表皮为单壁,壁上具有微孔和孔道微管。嗅感器内神经元的数目并不一致,1~3个不等。雄性触角鳃片的长度长于雌性触角鳃片,并且雄性触角嗅感器的总数远远多于雌性,其中雄性板形感器的数目与雌性差异不大,但雄性锥形感器的数目却远远的多于雌性,几乎是雌性的9倍。由此推测锥形感器是感受性信息素的感器,而板形感器用于感受植物气味。  相似文献   

16.
The response of antennal olfactory receptor neurons (ORNs) of Monochamus galloprovincialis to several odourants was tested using single sensillum electrophysiology. Behaviourally active pheromone, and kairomone (host and sympatric bark beetle pheromone) odours were tested alongside smoke compounds released by burnt wood that are potentially attractive to the insect. The antennae bore several types of sensilla. Two plate areas in the proximal and distal ends of each antennal segment were covered with basiconic sensilla that responded to the odour stimuli. Sensilla basiconica contained one or two cells of different spike amplitude. The 32 male and 38 female ORNs tested responded with excitations or inhibitions to the different plant odours. In general the response of male and female receptors was very similar so they were pooled to perform a cluster analysis on ORN responses. Six ORNs were clearly specialised for pheromone reception. Responses to kairomone and smoke odours were less specific than those of pheromone, but a group of 9 cells was clearly excited by smoke compounds (mainly eugenol and 4-methyl 2-methoxyphenol), a group of 8 cells was very responsive to α-pinene, β-pinene and cis-verbenol, and a group of 14 cells responded to a wider range of compounds. The rest of the cells (47%) were either non-responsive or slightly inhibited by smoke compounds. Dose–response curves were obtained for several compounds. Different compounds induced significantly different latencies and these appeared to be unrelated to their boiling point.  相似文献   

17.
Olfactory receptor neurons (ORNs) in the antenna of insects serve to encode odors in action potential activity conducted to the olfactory lobe of the deuterocerebrum. We performed an analysis of the electrophysiological responses of olfactory neurons in the antennae of the female malaria mosquito Anopheles gambiae s.s. and investigated the effect of blood feeding on responsiveness. Forty-four chemicals that are known to be present in human volatile emanations were used as odor stimuli. We identified 6 functional types of trichoid sensilla and 5 functional types of grooved-peg sensilla (GP) based on a hierarchical cluster analysis. Generalist ORNs, tuned to a broad range of odors, moderate specialist ORNs and 2 ORNs tuned to only one odor were identified in different sensilla types. Neurons in GP were tuned to more polar compounds including the important behavioral attractant ammonia and its synergist L-lactic acid, responses to which were found only in GP. Combinatorial coding is the most plausible principle operating in the olfactory system of this mosquito species. We document for the first time both up- and downregulation of ORN responsiveness after blood feeding. Modulation of host-seeking and oviposition behavior is associated with both qualitative and quantitative changes in the peripheral sensory system.  相似文献   

18.
In female Aedes aegypti L. mosquitoes, a blood meal induces physiological and behavioral changes. Previous studies have shown that olfactory receptor neurons (ORNs) housed in grooved peg sensilla on the antennae of Ae. aegypti down-regulate their sensitivity to lactic acid, a key component driving host-seeking behavior, which correlates with observed changes in the host-seeking behavior of this species. In the present study, we performed electrophysiological recordings from the most abundant antennal sensillum type, sensilla trichodea. Our results indicate that the response spectra of ORNs contained within most trichoid sensilla do not change in response to blood feeding. However, we observe an increase in sensitivity to primarily indole and phenolic compounds in neurons housed within four of the five functional types of short blunt tipped II trichoid sensilla, both at 24 and 72 h post-blood feeding, which was more pronounced at 24 h than 72 h. Furthermore, sensitivity to undecanone, acetic acid and propionic acid was observed to increase 72 h post-blood meal. Considering the timing of these changes, we believe that these neurons may be involved in driving the orientation behavior of female mosquitoes to oviposition sites, which are known to release these compounds.  相似文献   

19.
The morphological sensillum types on the antennae of male and female Cactoblastis cactorum were visualized by scanning electron microscopy. Electrophysiological recordings were performed for the first time on single olfactory sensilla of C. cactorum. The male sensilla trichodea house a receptor cell responding to the putative pheromone component (9Z,12E)-tetradecadienyl acetate. The sensilla trichodea of the females were much shorter than those of the males and contained specialized receptor cells responding to certain terpenoids, the most frequent being the nerolidol-sensitive cell. The sensilla auricillica and sensilla basiconica of both sexes contained cells responding less specifically to terpenoid compounds as well as to green leaf volatiles. Cells of the sensilla coeloconica responded to aliphatic aldehydes and acids. Eight volatile organic compounds emitted by Opuntia stricta, a host plant of C. cactorum, were identified using gas chromatography-mass spectrometry, beta-caryophyllene being the major compound. Five compounds identified by gas chromatography in the headspace of O. stricta elicited responses in olfactory receptor cells of C. cactorum, nonanal being the most active compound and therefore a candidate attractant of C. cactorum.  相似文献   

20.
The insect olfactory system is challenged to decipher valid signals from among an assortment of chemical cues present in the airborne environment. In the moth, Heliothis virescens, males rely upon detection and discrimination of a unique blend of components in the female sex pheromone to locate mates. The effect of variable odor mixtures was used to examine physiological responses from neurons within sensilla on the moth antenna sensitive to female sex pheromone components. Increasing concentrations of heliothine sex pheromone components applied in concert with the cognate stimulus for each neuronal type resulted in mixture suppression of activity, except for one odorant combination where mixture enhancement was apparent. Olfactory receptor neuron (ORN) responses were compared between moths with intact and transected antennal nerves to determine whether specific instances of suppression might be influenced by central mechanisms. Type A sensilla showed little variation in response between transected and intact preparations; however, recordings from type B sensilla with transected antennal nerves exhibited reduced mixture suppression. Testing by parallel stimulation of distal antennal segments while recording and stimulating proximal segments dismissed the possibility of interneuronal or ephaptic effects upon sensillar responses. The results indicate that increasing concentrations of "noncognate" odorants in an odor mixture or antennal nerve transection can produce variation in the intensity and temporal dynamics of physiological recordings from H. virescens ORNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号