首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

2.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

3.
 Diatom composition and biomass were investigated in the nearshore water (<30 m in depth) of Maxwell Bay, Antarctica during the 1992/1993 austral summer. Epiphytic or epilithic diatoms such as Fragilaria striatula, Achnanthes brevipes var. angustata and Licmophora spp. dominated the water column microalgal populations. Within the bay, diatom biomass in surface water was several times higher at the nearshore (2.4–14 μg C l-1) than at the offshore stations (>100 m) (1.2–3.2 μg C l-1) with a dramatic decrease towards the bay mouth. Benthic forms accounted for >90% of diatom carbon in all nearshore stations, while in the offshore stations planktonic forms such as Thalassiosira antarctica predominated (50–>90%). Microscopic examination revealed that many of these diatoms have become detached from a variety of macroalgae growing in the intertidal and shallow subtidal bottoms. Epiphytic diatoms persistently dominated during a 19-day period in the water column at a fixed nearshore station, and the biomass of these diatoms fluctuated from 0.86 to 53 μg C l-1. A positive correlation between diatom biomass and wind speed strongly suggests that wind-driven resuspension of benthic forms is the major mechanism increasing diatom biomass in the water column. Received: 28 April 1995/Accepted: 1 April 1996  相似文献   

4.
三峡水库神农溪2014年春季浮游藻类演替成因分析   总被引:1,自引:0,他引:1  
摘要:【目的】研究三峡水库神农溪库湾春季水华期间浮游藻类演替及其成因分析。【方法】2014年3–5月在神农溪库湾布置了6个断面(SN01–SN06),在神农溪汇入长江干流河口附近水域设置1个断面CJBD,对浮游藻类、相关环境因子及水动力因子进行了同步监测,据此分析了水体层化结构及水动力特性。【结果】神农溪在监测时段内共检测到浮游藻类6门38种(属);库湾浮游藻类生物量时间上差异显著(ANOVA,P<0.05)。春季浮游藻类群落结构具有明显的演替规律,3月份暴发大面积的硅藻水华(藻密度>100×105 cells/L),小环藻(Cyclotella spp.)为优势藻种;4月在SN02–SN06暴发以小球藻(Chlorella spp.)为主要优势种、衣藻(Chlamydomonas spp.)为次优势种的绿藻水华(藻密度>100×105 cells/L),5月份受水位大幅消落影响,浮游藻类生物量降低且无明显优势藻种。【结论】在具备充足的营养盐的水体中,水体层化结构与水动力特性对浮游藻类演替影响重大。三峡水库水位处于快速消落阶段时,流速成为抑制神农溪库湾藻类生长的主要因素。  相似文献   

5.
Only a combination of nutrient load abatement and food-web management proved efficient for the management of water quality in the deep stratifying Wupper Reservoir. Reduction of nutrient loading, was completed in winter 1992/1993, but resulted only in reduced winter/spring mixing of phosphorus concentrations. Since the capacity of the diatom spring bloom to remove nutrients from the trophogenic layer of this slightly eutrophic water-body was never exhausted, the surplus of total phosphorus available to support summer algal growth remained unchanged. Thus, nutrient reduction alone did not improve the water quality, as expected. Subsequent replacement of the smaller Daphnia cucullata by the larger Daphnia galeata-hyalina complex that was attributable to successful food-web management did, however, result in a shift from a turbid to a clear water regime in 1999. Clearly, the zooplankton community, and therefore food-web structure, played an integral role in nutrient recycling and in the repartitioning of the phosphorus pool. As diatom settling and grazing became much more tightly linked with the appearance of the larger-bodied Daphnia galeata-hyalina complex, which exploits lower-level food resources as early as May, daphnids increasingly acted as a sink for phosphorus. This increased export fluxes out of the pelagic zone and leaves a smaller surplus of total phosphorus to support the accumulation of summer algae. Consequently, water transparency and total chlorophyll concentrations in summer improved with food-web restructuring, indicating real oligotrophication of Wupper Reservoir driven by internal feedbacks. Handling editor: S. I. Dodson  相似文献   

6.
The seasonal succession of phytoplankton diversity, and the variations in the diel vertical distribution of phyto‐ and zooplankton were investigated in a small shallow pond (1.7 m water depth) in 2003. It was inferred that the water tended to stratify weakly in the daytime from February to June. In February and April, the green alga Golenkinia radiata Chodat dominated the phytoplankton assemblage. The cell density of G. radiata greatly decreased in April, when rotifers increased near the bottom. The vertical mixing was attenuated in June, large populations of the euglenoids (Lepocinclis salina Fritsch, Phacus acuminatus Stokes, Trachelomonas hispida (Perty) Stein et Deflandre) developed, and the cyanobacterium Aphanizomenon flos‐aquae var. klebahnii Elenk. appeared at low density. Euglenoids and A. flos‐aquae were mostly distributed in the bottom layer. In late September, when the water was mixed throughout the day, euglenoids and A. flos‐aquae were distributed evenly throughout the water column. The zooplankton (cyclopoid copepods and rotifers) densities in September were the lowest throughout the year. The vertical mixing increased in November, and the phytoplankton community was composed of A. flos‐aquae, P. acuminatus, T. hispida and the green alga Ankistrodesmus falcatus (Corda) Ralfs. In November, at the final stage of water bloom of A. flos‐aquae, its population density decreased with depth. The two euglenoids exhibited similar cell distributions at 0.8 m and 1.6 m during 1–3 November. A. falcatus was distributed evenly throughout the water column; however, when the vertical mixing lessened, the cells at the surface started to sink. Copepod nauplii and rotifers appeared at high densities in November. Seasonal variation in the phytoplankton community structure in the pond seemed to be related to the vertical mixing of the water. In addition, zooplankton, especially rotifers, might play an important role in initiating a spring clear‐water phase and in the bloom collapse of A. flos‐aquae.  相似文献   

7.
Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.  相似文献   

8.
1. Metaphyton mats typically originate as benthic algal biofilms that experience higher solar radiation and temperatures, and reduced access to nutrients, once they reach the water surface, but the impacts of these physicochemical changes on metaphyton condition and community composition have received little attention. 2. Using microprobes positioned at 0, 2, 4 and 6 cm depth, we recorded small‐scale differences in water chemistry within metaphyton mats constrained in floating nets during an 8‐week period. Concurrent weekly samples of filamentous algae and their diatom epiphytes were collected from the top, middle and bottom of the mats and were analysed for changes in ash‐free dry mass (AFDM) and chlorophyll‐a, nutrient (N, P, C, Si) content and taxonomic composition. 3. Light intensity, temperature and dissolved oxygen declined both with increasing depth in the mat and over the study period. The autotrophic index (=AFDM/chlorophyll‐a) was greatest at the top of the mats and increased over time; samples also had higher C/P and C/N ratios than samples deeper within the mat. 4. Pithophora was consistently the dominant algal filament throughout the study (representing 85% of all filaments averaged over time and depth); epiphytic diatom cover on Pithophora (calculated as epiphyte area index) declined over time, particularly at the top of the mat. 5. Densities of the diatom epiphytes Gomphonema, Cocconeis and Fragilaria increased with increasing depth within the mat, whereas Cymbella/Encyonema was more common in surface samples. 6. Our results indicate that metaphyton mats are highly dynamic communities, spatially organised in part by small‐scale environmental variation and subject to changes in taxonomic composition following their arrival at the water surface.  相似文献   

9.
Previous studies have shown major differences in the way biomass of stream periphyton is controlled by spatial variations in velocity. We hypothesize that these differences may be the result of different growth forms within the community. Some dense and coherent growth forms (e.g. mucilaginous diatom/cyanobacterial mats) may be resistant to diffusion and also resistant to dislodgment by shear stress. Higher velocities applied to such communities could therefore be expected to enhance biomass accrual by increasing rates of mass transfer, but without greatly increasing losses through sloughing. Conversely, other growth forms (e.g. long filamentous green algae) have an open matrix, and high rates of diffusion into the mats can potentially occur even at low velocity. However, as velocities increase, high skin friction and form drag should lead to higher rates of sloughing. The overall result of these processes should be that maximum biomass occurs at low velocities. This “subsidy-stress” hypothesis was tested twice with each of three different periphytal growth forms: a coherent, mucilaginous, diatom community; a moderately coherent, stalked/ short, filamentous diatom community; and an open-weave, long, filamentous green algal community. A monotonic increase in chl a biomass occurred as a function of near-bed velocities for the first of the two mucilaginous diatom communities investigated. No biomass-velocity relationship was found, however, with the second mucilaginous community, probably because the waters were highly enriched and mass transfer driven by molecular diffusion was probably high throughout the velocity gradient. Biomass was moderate at low velocities, peaked at near-bed velocities from 0.18 to 0.2 m·s?1 (~0.40–0.45 m·s?1 mean column velocity), and then decreased at higher velocities in both of the stalked/ short filament communities of diatoms analyzed. With the long filamentous green algal communities, a monotonic reduction in biomass occurred as a function of increases in velocity. Proliferations greater than 100 mg·m?2 chl a occurred at low near-bed velocities (i.e. <0.2 m·s?1), after which biomass declined nearly exponentially as a function of increasing velocity to less than 10 mg·m?2 chl a at velocities greater than 0.4 m·s?1. These biomass-velocity trends support our hypothesis that community growth form determines periphytal responses to spatial variations in velocity within stream reaches.  相似文献   

10.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

11.
1. Pacific salmon are a textbook example of migratory animals that transfer nutrients between ecosystems, but little is known about how salmon‐derived nutrients (SDN) affect the biodiversity of recipient freshwater ecosystems. We examined paleolimnological records from six Alaskan lakes to define how changes in SDN from sockeye salmon (Oncorhynchus nerka) influenced sedimentary diatom community structure and beta‐diversity among lakes and through time. 2. Using an isotopic mixing model, we showed that SDN loading could account for >80% of the lake total nitrogen budgets and strongly regulated diatom community composition. Spatial dissimilarity in diatom communities was positively related to differences in SDN among lakes (r2 = 0.69, P < 0.01, n = 10). Likewise, temporal dissimilarity in diatom communities was positively related to differences in SDN in a sediment core with substantial variation in salmon spawner dynamics between 1700 and 1950 AD (r2 = 0.34, P < 0.01, n = 19). Finally, beta‐diversity metrics quantifying temporal turnover within each lake’s sediment record were also positively related to the variance in SDN loading among lakes (r2 = 0.88, P < 0.05, n = 5). Mean SDN was only negatively correlated to temporal diatom beta‐diversity. 3. Spatially subsidised systems often receive temporally variable resource inputs, and thus, it is not surprising that, unlike previous studies, we found that resource variability was the key driver of community composition and beta‐diversity. In habitats that receive strongly fluctuating external nutrient loads, environment heterogeneity may overweigh stochastic community processes. In addition, freshwater diatoms are characterised by great dispersal capabilities and short life cycles and therefore may be a more sensitive indicator for evaluating the role of resource variability than previously used model organisms. These results suggest that productivity–diversity relationship vary with the nature of nutrient loading and the life history of the community studied. 4. Overall, our study highlights that the transport of nutrients by sockeye salmon across ecosystem boundaries is a significant driver of algal community and biodiversity in nursery lakes, mainly through changing the magnitude of nutrient variation. As such, freshwater species diversity in regions like the U.S. Pacific Northwest may become impoverished where there have been long‐term declines in salmon populations and decreases in nutrient variability among lakes.  相似文献   

12.
Jagadish S. Patil 《Biofouling》2013,29(3-4):189-206
Abstract

Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

13.
Gut contents of larval, juvenile, and adult specimens of the Hawaiian gobiid fish Sicyopterus stimpsoni were examined to catalog the algal flora ingested by this species. The developmental stages of S. stimpsoni examined represented hallmark points in the fish’s life cycle corresponding with major migratory and metamorphic transitions. The algal flora was dominated by diatom species and shifted from taxa representative of a marine, planktonic community in larval fish to a freshwater, benthic community in juvenile and adult fish. This change in diet corresponds with the migration of larval fish to freshwater streams just prior to juvenile development in which rapid modification in mouth anatomy makes ingestion of planktonic algal species difficult. Benthic diatoms from juvenile and adult fish assemblages represented multiple genera that live in a narrow set of environmental conditions. These algae grow during a specific period in the development of the benthic algal community in Hawaiian streams. This suggests a highly specialized dietary behavior that depends heavily on continually restarting the benthic algal successional pattern, which appears to be regulated by the hydrological cycles of streams on the island.  相似文献   

14.
Hubble  David S.  Harper  David M. 《Hydrobiologia》2002,488(1-3):89-98
Lake Naivasha is a shallow freshwater lake in the Rift Valley of Kenya. Since the 1980s, when the lake showed a seasonal shift between diatom and cyanobacterial dominance it has become moderately eutrophic. Its algal assemblage is now dominated by a persistent Aulacoseira italica population both numerically and in terms of contribution to overall primary production. Algal and cyanobacterial counts were used to derive Simpson's diversity, succession rate and total community succession, focusing on the 10 most numerically abundant taxa. 170 species were identified, 43 of which were in common with the 143 found in 1979–80, before the increase in trophic state. Most diatoms are indicators of moderate to high nutrient conditions. There is little horizontal or vertical variation in successional processes throughout the lake and although the absolute abundance of cells varies widely, proportional composition is relatively stable. In Crescent Island lagoon, the only regularly stratified site, hypolimnetic succession rates are lower than those in the epilimnion. Overall, community composition is controlled by mixing (and hence light regime) and nutrient availability. With `endless summer' conditions and full mixing, there is a successional pattern of `muted seasonality' adapted to physical instability and environmental stability.  相似文献   

15.
1. Cladophora glomerata is the dominant filamentous green alga in the tailwaters of the Colorado River, U.S.A., below Glen Canyon Dam, but becomes co-dominant with filamentous cyanobacteria, Oscillatoria spp., below the confluence of the Paria River (26km below the dam) where suspended sediments are elevated. 2. Benthic algal assemblages played an important role in the distribution of the amphipod, Gammarus lacustris, in the dam-controlled Colorado River through Grand Canyon National Park, Arizona. Cladophara and G. lacustris showed a weak positive relationship at ten cobble-riffle habitats in the Colorado River from Lees Ferry (25km below the dam) to Diamond Creek (362km downstream), while no relationship was found between Oscillatoria and G. lacustris. 3. The relationship between algal substrata and G. lacustris was tested by a series of in situ habitat choice experiments. G. lacustris showed a significant preference for Cladophora (with epiphytes) over Oscillatoria spp., detritus and gravel in treatment pans at Lees Ferry. 4. Epiphytic diatoms (i.e. food) were the overriding determinant of subtratum choice by G. lacustris in laboratory experiments. Gammarus chose the Cladophora/epiphytic diatom community over sonicated Cladophora with few diatoms. The amphipods also chose string soaked in diatom extract over string without diatom extract. 5. Importance of mutualistic interactions in aquatic benthic community structure is discussed.  相似文献   

16.
1. Measurements of total phosphorus (TP) concentrations since 1975 and a 50‐year time series of phytoplankton biovolume and species composition from Lake Mondsee (Austria) were combined with palaeolimnological information on diatom composition and reconstructed TP‐levels to describe the response of phytoplankton communities to changing nutrient conditions. 2. Four phases were identified in the long‐term record. Phase I was the pre‐eutrophication period characterised by TP‐levels of about 6 μg L?1 and diatom dominance. Phase II began in 1966 with an increase in TP concentration followed by the invasion of Planktothrix rubescens in 1968, characterising mesotrophic conditions. Phase III, from 1976 to 1979, had the highest annual mean TP concentrations (up to 36 μg L?1) and phytoplankton biovolumes (3.57 mm3 L?1), although reductions in external nutrient loading started in 1974. Phases II and III saw an expansion of species characteristic of higher nutrient levels as reflected in the diatom stratigraphy. Oligotrophication (phase IV) began in 1980 when annual average TP concentration, Secchi depth and algal biovolume began to decline, accompanied by increasing concentrations of soluble reactive silica. 3. The period from 1981 to 1986 was characterised by asynchronous trends. Annual mean and maximum total phytoplankton biovolume initially continued to increase after TP concentration began to decline. Reductions in phytoplankton biovolume were delayed by about 5 years. Several phytoplankton species differed in the timing of their responses to changing nutrient conditions. For example, while P. rubescens declined concomitantly with the decline in TP concentration, other species indicative of higher phosphorus concentrations, such as Tabellaria flocculosa var. asterionelloides, tended to increase further. 4. These data therefore do not support the hypotheses that a reduction in TP concentration is accompanied by (i) an immediate decline in total phytoplankton biovolume and (ii) persistence of the species composition characterising the phytoplankton community before nutrient reduction.  相似文献   

17.
The importance of immigration, growth, and competition for nutrients and light in benthic diatom succession was studied in experimental channels in a low-nutrient stream. Diatom accumulation was greater in channels enriched with nitrate and phosphate (NP) than in control channels, reaching about 5 × 106 and 2 × 106 cells-cm?2, respectively, after 30 d. Shading during late stages of community development reduced algal standing crop. Synedra ulna (Nitz.) Ehr. and Achnanthes minutissima Kütz. were codominant during early stages of community development in both habitats, but succession to an A. minutissima-dominated community was much faster in NP-enriched than in control conditions. Species dominating early stages tended to immigrate quickly, whereas species that increased in relative abundance during community development had either fast growth rates or fast immigration and average growth rates. Decreases in growth rates indicated resource supply became limiting during community development in control and enriched channels. Density-dependent competition was indicated because nutrient concentrations in the water column and light did not decrease during the 30-d study. Species autecologies were defined by effects of nutrient enrichment, shading, and community development on species growth rates. Differing autecologies of early and late succession species indicated that competition for nutrients was more important than competition for light. Species autecologies also indicated ecological strategies. The species most stimulated by nutrient enrichment were least able to maintain growth rates as algal abundances on substrata increased. In addition, these species that best sustained their growth rates during succession tended to have the highest immigration rates, indicating that drift and immigration may have been an important mechanism of persistence for some populations when resources become limiting within thick benthic mats.  相似文献   

18.
Physical constrains such as water discharge, suspended solids and turbidity act as dominant factors in driving the planktonic diatom assemblages of the River Adige (North-Eastern Italy). Two sampling stations, characterised by different hydromorphological features (Cortina all’Adige and Boara Pisani, with torrential and more potamal characteristics, respectively) were sampled fortnightly following an integrated approach encompassing physical, chemical and biological measurements and aiming at identifying the dominant factors controlling the temporal development of the community. A morpho-functional approach was used to classify the diatom assemblages where Morpho-Functional Diatom Groups (MFDG) were defined for diatom genera, according to their morphology, habitat selection and modality of adhesion to river substrate. In the two sampling points, algal growth was never limited by nutrients or zooplankton. The irregular development of MFDG was determined by the stochastic hydrological events and changes in variables related to water discharge (suspended solids and light attenuation). Tychoplanktonic, benthic and drifted taxa (such as Diatoma spp., Encyonema spp., Navicula spp. and Nitzschia spp.) were dominant in the torrential station (Cortina all’Adige), while the contribution of euplanktonic unicellular centric taxa (such as Cyclotella spp., and Stephanodiscus spp.) was higher in the potamal station (Boara Pisani).  相似文献   

19.
Diatoms in Lake Baikal exhibit significant spatial variation, related to prevailing climate, lake morphology and fluvial input into the lake. Here we have assessed the threats to endemic planktonic diatom species (through the development of empirical models), which form a major component of primary production within the lake. Multivariate techniques employed include redundancy analysis (RDA) and Huisman–Olff–Fresco (HOF) models. Our analyses suggest that eight environmental variables were significant in explaining diatom distribution across the lake, and in order of importance these are snow thickness on the ice, water depth, duration of days with white ice, suspended matter in the lake, days of total ice duration, temperature of the water surface in July, concentration of zooplankton and suspended organic matter. Impacts on dominant phytoplankton diatom species are highlighted using t‐value biplots. Predictions of future climate change on Lake Baikal are likely to result in shorter periods of ice cover, decreased snow cover across the lake in spring, increased fluvial input into the lake, and an increase in the intensification of surface water stratification during summer months. All these factors are likely to impact negatively on the slow‐growing, cold‐water endemics such as Aulacoseira baicalensis and Cyclotella minuta, which currently dominate diatom assemblages. Instead, taxa that are only intermittently abundant, at present, in offshore areas (e.g. Stephanodiscus meyerii) are likely to become more frequent. However, given the climatic gradient across the lake, the timing and extent of changes in community structure are likely to vary. Moreover, palaeolimnological records show that Lake Baikal diatom assemblages have been dynamic throughout the Holocene, with both endemic and cosmopolitan species exhibiting periods of dominance. Effects of climate change on the entire lake ecosystem may yet be profound as the structure of the pelagic food web may change from one based on endemic diatom taxa to one dominated by nondiatom picoplankton, and as limnological functioning (e.g. stratification and mixing) affects deepwater oxygen availability, nutrient cycling and trophic linkages.  相似文献   

20.
Interactions between phytoplankton and bacteria play major roles in global biogeochemical cycles and oceanic nutrient fluxes. These interactions occur in the microenvironment surrounding phytoplankton cells, known as the phycosphere. Bacteria in the phycosphere use either chemotaxis or attachment to benefit from algal excretions. Both processes are regulated by quorum sensing (QS), a cell–cell signalling mechanism that uses small infochemicals to coordinate bacterial gene expression. However, the role of QS in regulating bacterial attachment in the phycosphere is not clear. Here, we isolated a Sulfitobacter pseudonitzschiae F5 and a Phaeobacter sp. F10 belonging to the marine Roseobacter group and an Alteromonas macleodii F12 belonging to Alteromonadaceae, from the microbial community of the ubiquitous diatom Asterionellopsis glacialis. We show that only the Roseobacter group isolates (diatom symbionts) can attach to diatom transparent exopolymeric particles. Despite all three bacteria possessing genes involved in motility, chemotaxis, and attachment, only S. pseudonitzschiae F5 and Phaeobacter sp. F10 possessed complete QS systems and could synthesize QS signals. Using UHPLC–MS/MS, we identified three QS molecules produced by both bacteria of which only 3-oxo-C16:1-HSL strongly inhibited bacterial motility and stimulated attachment in the phycosphere. These findings suggest that QS signals enable colonization of the phycosphere by algal symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号