首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The internodal cells of the characean algaNitellopsis obtusa were chosen to investigate the effect of gravity on cytoplasmic streaming. Horizontal cells exhibit streaming with equal velocities in both directions, whereas in vertically oriented cells, the downwardstreaming cytoplasm flows ca. 10% faster than the upward-streaming cytoplasm. These results are independent of the orientation of the morphological top and bottom of the cell. We define the ratio of the velocity of the downward- to the upward-streaming cytoplasm as the polar ratio (PR). The normal polarity of a cell can be reversed (PR<1) by treatment with neutral red (NR). The NR effect may be the result of membrane hyperpolarization, caused by the opening of K+ channels. The K+ channel blocker TEA Cl inhibits the NR effect.External Ca2+ is required for normal graviresponsivness. The [Ca2+] of the medium determines the polarity of cytoplasmic streaming. Less than 1 M Ca2+ resulted in a PR<1 while greater than 1 M Ca2+ resulted in the normal gravity response. The voltage-dependent Ca2+ -channel blocker, nifedipine, inhibited the gravity response in a reversible manner, while treatment with LaCl3 resulted in a PR<1, indicating the presence of two types of Ca2+ channels. A new model for graviperception is presented in which the whole cell acts as the gravity sensor, and the plasma membrane acts as the gravireceptor. This is supported by ligation and UV irradiation experiments which indicate that the membranes at both ends of the cell are required for graviperception. The density of the external medium also affects the PR ofNitellopsis. Calculations are presented that indicate that the weight of the protoplasm may provide enough potential energy to open ion channels.  相似文献   

2.
Summary The mechanism of the cessation of cytoplasmic streaming upon membrane excitation inCharaceae internodal cells was investigated.Cell fragments containing only cytoplasm were prepared by collecting the endoplasm at one cell end by centrifugation. In such cell fragments lacking the tonoplast, an action potential induced streaming cessation, indicating that an action potential at the plasmalemma alone is enough to stop the streaming.The active rotation of chloroplasts passively flowing together with the endoplasm also stopped simultaneously with the streaming cessation upon excitation. The time lag or interval between the rotation cessation and the electrical stimulation for inducing the action potential increased with the distance of the chloroplasts from the cortex. The time lag was about 1 second/15 m, suggesting that an agent causing the rotation cessation is diffused throughout the endoplasm.Using internodes whose tonoplast was removed by replacing the cell sap with EGTA-containing solution (tonoplast-free cells,Tazawa et al. 1976), we investigated the streaming rate with respect to the internal Ca2+ concentration. The rate was roughly identical to that of normal cells at a Ca2+ concentration of less than 10–7 M. It decreased with an increase in the internal Ca2+ concentration and was zero at 1 mM Ca2+.The above results, together with the two facts that Ca2+ reversibly inhibits chloroplast rotation (Hayama andTazawa, unpublished) and the streaming in tonoplast-free cells does not stop upon excitation (Tazawa et al. 1976), lead us to conclude that a transient increase in the Ca2+ concentration in the cytoplasm directly stops the cytoplasmic streaming. Both Ca influxes across the resting and active membranes were roughly proportional to the external Ca2+ concentration, which did not affect the rate of streaming recovery. Based on these results, several possibilities for the increase in Ca2+ concentration in the cytoplasm causing streaming cessation were discussed.  相似文献   

3.
Reetz  G.  Wiesinger  H.  Reiser  G. 《Neurochemical research》1997,22(5):621-628
Oscillations of cytosolic Ca2+ activity ([Ca2+]i) induced by stimulation with ATP in rat astrocytes in primary cultures were analysed. Astrocytes, prepared from the brains of newborn rats, loaded with the fluorescent Ca2+ indicator fura-2/AM, were continuously stimulated with ATP (10 M). ATP caused a large initial [Ca2+ peak, followed by regular [Ca2+]i oscillations (frequencies 1–5/min). Astrocytes were identified by glial fibrillary acidic protein staining of cells after [Ca2+]i recording. The oscillations were reversibly blocked by the P2 purinoceptor antagonist suramin (30 M). Influx of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores both contributed to the oscillations. The effects of hypertonic and hypotonic superfusion medium on ATP-induced [Ca2+]i oscillations were examined. Hypertonic medium (430 mOsm) reversibly suppressed the ATP-induced oscillations. Hypotonic medium (250 mOsm), in spite of having heterogeneous effects, most frequently induced a rise in [Ca2+]i, or reversibly increased the frequency of the oscillations. Thus, a change in cell volume might be closely connected with [Ca2+]i oscillations in astrocytes indicating that [Ca2+]i oscillations in glial cells play an important role in regulatory volume regulation in the brain.  相似文献   

4.
In both cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum (SR) there are several systems involved in the regulation of Ca2+-ATPase function. These include substrate level regulation, covalent modification via phosphorylation-dephosphorylation of phospholamban by both cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase (CaM kinase) as well as direct CaM kinase phosphorylation of the Ca2+-ATPase. Studies comparing, the effects of PKA and CaM kinase on cardiac Ca2+-ATPase function have yielded differing results; similar studies have not been performed in slow-twitch skeletal muscle. It has been suggested recently, however, that phospholamban is not tightly coupled to the Ca2+-ATPase in SR vesicles from slow-twitch skeletal muscle. Our results indicate that assay conditions strongly influence the extent of CaM kinase-dependent Ca2+-ATPase stimulation seen in both cardiac and slow-twitch skeletal muscle. Addition of calmodulin (0.2 M) directly to the Ca2+ transport assay medium results in minimal ( 112–130% of control) stimulation of Ca2+ uptake activity when the Ca2+ uptake reaction is initiated by the addition of either ATP or Ca2+/EGTA. On the other hand, prephosphorylation of the SR by the endogenous CaM kinase and subsequent transfer of the membranes to the Ca2+ transport assay medium results in stimulation of Ca2+ uptake activity (202% of control). These effects are observable in both cardiac and slow-twitch skeletal muscle SR. PKA stimulates Ca2+ uptake markedly (215% of control) when the Ca2+ uptake reaction is initiated by the addition of prephosphorylated SR membranes or by Ca2+/EGTA but minimally (130% of control) when the Ca2+ uptake reaction is initiated by the addition of ATP. These findings imply that (a) phospholamban is coupled to the Ca2+-ATPase in slow-twitch skeletal muscle SR (as in cardiac SR), and (b) the amount of Ca2+ uptake stimulation seen upon the addition of calmodulin or PKA depends strongly on the assay conditions employed. Our observations help to explain the wide range of effects of calmodulin or PKA addition reported in previous studies. It should be noted that, since CaM kinase is now known to phosphorylate the Ca2+-ATPase in addition to phospholamban, further studies are required to determine the relative contributions of phospholambanversus Ca2+-ATPase phosphorylation in the stimulation of Ca2+-ATPase function by CaM kinase. Also, earlier studies attributing all of the effects of CaM kinase stimulation of Ca2+ uptake and Ca2+-ATPase activity to phospholamban phosphorylation need to be re-examined.  相似文献   

5.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

6.
A boron-containing antibiotic, boromycin (BM), was found to influence the Ca2+ homeostasis in both excitable and non-excitable cells. In non-excitable cells (human erythrocytes and leucocytes) it inhibited the resting passive45Ca2+ transport in 10–6–10–5 mol/L concentrations. In human erythrocytes, the passive 45Ca2+ transport induced by the presence of 1 mmol/L NaVO3 was inhibited by boromycin (90% inhibition) as well. The inhibitory effect of BM on the NaVO3-induced passive 45Ca2+ transport was diminished in the presence of inhibitory concentrations of nifedipine (10 mol/L – 60% inhibition) or of those of K+ o (75 mmol/L – 20% inhibition). On the other hand, in rat brain synaptosomes, and rat cardiomyocytes, BM stimulated the passive 45Ca2+ transport in resting cells at similar concentrations. In rat cardiomyocytes the stimulation was transient. The stimulatory effect on the passive 45Ca2+ transport in rat brain synaptosomes was accompanied with the increase of cytoplasmic Ca2+ concentration measured by means of the entrapped fluorescent Ca2+ chelator fura-2. The stimulatory effect of BM was diminished when synaptosomes were pre-treated with veratridine (10 mol/L) which itself stimulated the passive 45Ca2+ transport. At saturating concentrations of veratridine, no stimulatory effect of BM was observed. These results could be explained by the indirect interaction of BM with both Ca2+ and Na+ transport systems via transmembrane ionic gradients of monovalent cations and could be useful in determining whether the cells belong to excitable, or non-excitable cells.  相似文献   

7.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

8.
T. Hayama  M. Tazawa 《Protoplasma》1980,102(1-2):1-9
Summary The effects of Ca2+ and other cations on chloroplast rotation in isolated cytoplasmic droplets ofChara were investigated by iontophoretically injecting them. Chloroplast rotation stopped immediately after Ca2+ injection and recovered with time, suggesting the existence of a Ca2+-sequestering system in the cytoplasm. The Ca2+ concentration necessary for the stoppage was estimated to be >10–4M. Sr2+ had the same effect as Ca2+. Mn2+ and Cd2+ induced a gradual decrease in the rotation rate with low reversibility. K+ and Mg2+ had no effects. Ba2+ had effects sometimes similar to Ca2+ or Sr2+ and sometimes similar to Mn2+ or Cd2+.Reversible inhibition by Ca2+, together with its specificity, strongly supports the hypothesis that a transient increase in the Ca2+ concentration in the cytoplasm upon membrane excitation directly stops the cytoplasmic streaming inCharaceae internodes (Hayama et al. 1979).  相似文献   

9.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

10.
In isolated scale melanophores ofLabeo rohita the melanosome aggregating effect of K+ was inhibited in Ca2+ deprived medium. Moreover, the Ca2+-antagonists, verapamil and lanthanum inhibited the action of K+ in concentration dependent manner. The elevation of extracellular Ca2+ could compromise the verapamil induced inhibition in a concentration dependent manner. The cation Ca2+ appeared to be required only for K+ -induced aggregation and not melanosome aggregationper se, as in this fish adrenaline and melanin concentrating hormone effectively caused aggregation of melanosomes in Ca2+ free medium  相似文献   

11.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

12.
In order to understand the modification of -adrenoceptor linked signal transduction by changes in the intracellular Ca2+, we examined the status of -adrenoceptors (-ARs), G-proteins and adenylyl cyclase (AC) in Ca2+-deficiency and Ca2+-overload by perfusing the isolated rat heart with Ca2+-free medium for 5 min and Ca2+-containing medium for 5 min following Ca2+-free perfusion, respectively. Ca2+-depletion caused not only an increase in basal, isoproterenol-, Gpp(NH)p-, NaF- and forskolin-stimulated AC activities but also produced an increase in the 1-AR affinity and density as well as up-regulation of Gs-protein function and uncoupling of Gi-protein to AC. Ca2+-repletion for 5 min following 5 min Ca2+-free perfusion reversed the increased AC activities to varying degrees. The 1-AR affinity was further increased upon Ca2+-repletion whereas its density was decreased. Ca2+-repletion also decreased protein content for AC and -AR kinase but augmented the changes in Gs- and Gi-protein functions. Although low Na+- medium perfusion during Ca2+-depletion prevented the changes in G-proteins during both Ca2+-depletion and Ca2+-repletion periods, the increased 1-AR affinity and density as well as changes in AC activities due to Ca2+-depletion were not affected while alterations due to Ca2+-repletion were fully prevented. These results suggest that changes in Ca2+-homeostasis may represent a mechanism for alterations in the -adrenergic signal transduction pathway in the heart under pathological conditions.  相似文献   

13.
In order to investigate the involvement of phosphoinositide-specific phospholipase C (PLC), an enzyme associated with phosphoinositide signal transduction pathway, for the occurrence of Ca2+-paradox (loss of contractile activity associated with contracture), rat hearts perfused with Ca2+-free medium (1 to 5 min) were reperfused (5 to 10 min) with medium containing 1.25 mM Ca2+. Crude membranes isolated from hearts perfused with Ca2+-free medium exhibited a significantly increased activity of PLC, whereas normal activity was detected in hearts reperfused with Ca2+-containing medium. A significant rise in PLC activity was observed at 1 min of Ca2+-free perfusion; maximal increase was seen at 4 min of Ca2+-free perfusion. Minimal concentration of Ca2+ in the perfusion medium required for showing an increase in PLC activity was 10 M, whereas that required for the occurrence of Ca2+-paradoxic changes in heart function upon reperfusion was 50M. Perfusion of the hearts with Ca2+-free medium in the presence of low Na+ or at low temperature, which prevents the occurrence of Ca2+-paradox upon reperfusion, did not prevent the increase in PLC activity. An increase during Ca2+-free perfusion similar to that seen for PLC was also observed for two other enzymes, namely the phosphatidylinositol (PI) 4-kinase and the PI-4-monophosphate (PIP) 5-kinase, which synthesize the PLC substrate, phosphatidylinositol 4,5-bisphosphate (PIP2). No alteration of the alpha-adrenoreceptors was observed after 5 min of Ca2+-free perfusion. On the other hand, the observed changes in PLC activity during Ca2+-free perfusion appear to be due to some redistribution of the enzyme in the myocardium. These results suggest a possible role of the phosphoinositide/PLC pathway in the induction of Ca2+-paradox via mechanisms which do not appear to be associated with changes in the characteristics of alpha-adrenergic receptors. (Mol Cell Biochem121: 181–190, 1993)  相似文献   

14.
We examined the effect of tricyclic antidepressants on intracellular Ca2+ signalling in cultured cells of neuronal and glial origin. High concentrations of amitriptyline and desipramine increased the intracellular Ca2+ in PC-12 and U-87 MG cells. In PC-12 cells amitriptyline induced a biphasic rise in intracellular Ca2+. A rapid and transient increase due to release of Ca2+ from intracellular pools was followed by sustained elevation of [Ca2+]i due to influx from the extracellular medium. Desipramine evoked the Ca2+ release from intracellular pools but the influx of Ca2+ was not elicited. In U-87 MG cells both the drugs induced Ca2+ release from intracellular pools, however amitriptyline also induced a transient influx of Ca2+. To delineate the mechanisms involved in mobilization of Ca2+ by the drugs pharmacological agents that inhibit IP3 formation in cells and Ca2+ channel blockers were used and changes in [Ca2+]i and membrane potential were monitored. The results show that both the drugs release Ca2+ from IP3 sensitive pools by activation of phospholipase C and amitriptyline in addition activates a non specific cation channel in the plasma membrane of cells. Paradoxically at relatively lower concentrations (< 50 M) amitriptyline and desipramine inhibited the Ca2+ signal induced by adenosine triphosphate in both the cell types. Our data demonstrate that tricyclic antidepressants at different doses may have inhibitory or stimulatory effects on cellular Ca2+ signalling.  相似文献   

15.
Z. Ping  I. Yabe  S. Muto 《Protoplasma》1992,171(1-2):7-18
Summary K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures have been investigated using the patch-clamp technique. In symmetrical 100mM K+, K+ channels opened at positive vacuolar membrane potentials (cytoplasmic side as reference) had different conductances of 57 pS and 24 pS. K+ channel opened at negative vacuolar membrane potentials had a conductance of 43 pS. The K+ channels showed a significant discrimination against Na+ and Cl. The Cl channel opened at positive vacuolar membrane potentials for cytoplasmic Cl influx had a high conductance of 110pS in symmetrical 100mM Cl. When K+ and Cl channels were excluded from opening, no traces were found of Ca2+ channel activity for vacuolar Ca2+ release induced by inositol 1,4,5-trisphosphate or other events. However, we found a 19pS Ca2+ channel which allowed influx of cytoplasmic Ca2+ into the vacuole when the Ca2+ concentration on the cytoplasmic side was high. When Ca2+ was substituted by Ba2+, the conductance of the 19 pS channel became 30 pS and the channel showed a selectivity sequence of Ba2+Sr2+Ca2+Mg2+=10.60.60.21. The reversal potentials of the channel shifted with the change in Ca2+ concentration on the vacuolar side. The channel could be efficiently blocked from the cytoplasmic side by Cd2+, but was insensitive to La3+, Gd3+, Ni2+, verapamil, and nifedipine. The related ion channels in freshly isolated vacuoles from red beet root cells were also recorded. The coexistence of the K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cells might imply a precise classification and cooperation of the channels in the physiological process of plant cells.  相似文献   

16.
Summary The effects on the cytosolic Ca2+ concentration of activating cholecystokinin receptors on single mouse pancreatic acinar cells have been investigated using patch-clamp whole-cell recording of Ca2+-dependent Cl current. We used the nonsulphated octapeptide of cholecystokinin (CCK8-NS) since the effects of even high concentrations were rapidly reversible which was not the case for the sulphated octapeptide. A submaximal concentration of CCK8-NS (10nm) evoked a current response consisting of short-lasting (a few seconds) spikes, and some of these spikes were seen to trigger larger and longer (about half a minute) current pulses. At a higher concentration (100nm) CCK8-NS evoked smooth and sustained responses. The effect of CCK8-NS was almost abolished when the internal perfusion solution contained a high concentration of the Ca2+ chelator EGTA (5mm). The responses evoked by CCK8-NS were independent of the presence of Ca2+ in the external solution at least for the first 5 min of stimulation. Internal perfusion with GTP--S markedly potentiated the effect of CCK8-NS or at a higher concentration itself induced responses very similar to those normally evoked by CCK8-NS. Caffeine added to the external solution at a low concentration (0.2–1mm) enhanced weak CCK8-NS responses, whereas high caffeine concentrations always inhibited the CCK8-NS-evoked responses. These inhibitory caffeine effects were quickly reversible. Forskolin evoked a similar inhibitory effect. Intracellular heparin (200 g/ml) infusion markedly inhibited the response to CCK8-NS stimulation. We conclude that the primary effect of activating CCK receptors is to induced inositoltrisphosphate (IP3) production. IP3 evokes a small and steady Ca2+ release, and this in turn evokes pulsatile release of a larger magnitude from a caffeine-sensitive Ca2+ pool. The action of CCK is thus very similar to that previously established for muscarinic receptor activation in the same cells. Nevertheless, the pattern of the cytosolic Ca2+ fluctuations are different, and the basic process of Ca2+-induced Ca2+ release and Ca2+ signal spreading must therefore be modulated by a messenger yet unknown.  相似文献   

17.
The proportions of calcium (Ca2+) channel subtypes in chick or rat P2 fraction and NG 108-15 cells were investigated using selective L-, N-, P- and P/Q- type Ca2+ channel blockers. KCl-stimulated 45Ca2+ uptake by chick P2 fraction was blocked by 40~50% using N-type Ca2+ channel blockers [-conotoxin GVIA, aminoglycoside antibiotics and dynorphin A(1–13)], but was not inhibited by P- or P/Q-type blockers (-agatoxin IVA or -conotoxin MVIIC). On the other hand, KCl-stimulated 45Ca2+ uptake by rat P2 fraction was blocked by 30~40% using P- or P/Q-type Ca2+ channel blockers, but was not inhibited by N-type Ca2+ channel blockers. The L-type Ca2+ channel blockers 1,4-dihydropyridines, diltiazem and verapamil, but not calciseptine (CaS), inhibited both KCl-stimulated 45Ca2+ uptake and veratridine-induced 22Na+ uptake by chick or rat P2 fraction with similar IC50 values. CaS did not have any effect on 45Ca2+ uptake by either chick or rat P2 fraction. In NG108-15 cells, CaS, -agatoxin IVA and -conotoxin MVIIC, but not -conotoxin GVIA, inhibited KCl-stimulated 45Ca2+ uptake by 30–40%. Various combinations of these Ca2+ channel blockers had no significant additional effects in chick or rat P2 fraction or NG 108-15 cells. These findings suggest that KCl-stimulated 45Ca2+ uptake by chick or rat P2 fraction and NG 108-15 cells is a convenient and useful model for screening whether or not natural or synthetic substances have selective effects as L-, N-, P-, or P/Q- type Ca2+ channel antagonists or agonists.  相似文献   

18.
Summary 45Ca fluxes and free-cytosolic Ca2+ ([Ca2+] i ) measurements were used to study the effect of Ca2+-mobilizing hormones on plasma membrane Ca2+ permeability and the plasma membrane Ca2+ pump of pancreatic acinar cells. We showed before (Pandol, S.J., et al., 1987.J. Biol. Chem. 262:16963–16968) that hormone stimulation of pancreatic acinar cells activated a plasma membrane Ca2+ entry pathway, which remains activated for as long as the intracellular stores are not loaded with Ca2+. In the present study, we show that activation of this pathway increases the plasma membrane Ca2+ permeability by approximately sevenfold. Despite that, the cells reduce [Ca2+]i back to near resting levels. To compensate for the increased plasma membrane Ca2+ permeability, a plasma membrane Ca2+ efflux mechanism is also activated by the hormones. This mechanism is likely to be the plasma membrane Ca2+ pump. Activation of the plasma membrane Ca2+ pump by the hormones is time dependent and 1.5–2 min of cell stimulation are required for maximal Ca2+ pump activation. From the effect of protein kinase inhibitors on hormone-mediated activation of the pump and the effect of the phorbol ester 12-0-tetradecanoyl phorbol, 13-acetate (TPA) on plasma membrane Ca+ efflux, it is suggested that stimulation of protein kinase C is required for the hormone-dependent activation of the plasma membrane Ca2+ pump.  相似文献   

19.
Procedures were developed for measurement of Na+/Ca2+ exchange in resealed plasma membrane vesicles from postmortem human brain. The vesicle preparation method permits use of stored frozen tissue with minimal processing required prior to freezing. Vesicles prepared in this manner transport Ca2+ in the presence of a Na+ gradient. The kinetic characteristics of the Na+/Ca2+ exchange process were determined in membrane vesicles isolated from hippocampus and cortex. The Kact for Ca2+ was estimated to be 32 M for hippocampal and 17 M for cortical tissue. The maximal rate of Ca2+ uptake (Vmax) was 3.5 nmol/mg protein/15 sec and 3.3 nmol/mg protein/15 sec for hippocampal and cortical tissue, respectively. Exchange activity was dependent on the Na+ gradient, and was optimal in the high pH range. Therefore, membranes in which Na+-dependent o Ca2+ transport activity is preserved can be isolated from postmortem human brain and could be used to determine the influence of pathological conditions on this transport system.  相似文献   

20.
The regulatory role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ transport system of rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. The release of Ca2+ from the Ca2+-loaded nuclei was evoked progressively after Ca2+ uptake with 1.0 mM ATP addition, while it was only slightly in the case of 2.0 mM ATP addition, indicating that the consumption of ATP causes a leak of Ca2+ from the Ca2+-loaded nuclei. The presence of N-ethylmaleimide (NEM; 0.1 mM) caused an inhibition of nuclear Ca2+ uptake and induced a promotion of Ca2+ release from the Ca2+-loaded nuclei. NEM (0.1 and 0.2 mM) markedly inhibited nuclear Ca2+-ATPase activity. This inhibition was completely blocked by the presence of dithiothreitol (DTT; 0.1 and 0.5 mM). Also, DTT inhibited the effect of NEM (0.1 mM) on nuclear Ca2+ uptake and release. Meanwhile, verapamil and diltiazem (10 M), a blocker of Ca2+ channels, did not prevent the NAD+ (1.0 and 2.0 mM), zinc sulfate (1.0 and 2.5 M) and arachidonic acid (10 M)-induced increase in nuclear Ca2+ release, suggesting that Ca2+ channels do not involve on Ca2+ release from the nuclei. These results indicates that an inhibition of nuclear Ca2+-ATPase activity causes the decrease in nuclear Ca2+ uptake and the release of Ca2+ from the Ca2+-loaded nuclei. The present finding suggests that Ca2+-ATPase plays a critical role in the regulatory mechanism of Ca2+ uptake and release in rat liver nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号