首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carboxyl-terminal domains of secretin family peptides have been shown to contain key determinants for high affinity binding to their receptors. In this work, we have examined the interaction between carboxyl-terminal residues within secretin and the prototypic secretin receptor. We previously utilized photoaffinity labeling to demonstrate spatial approximation between secretin residue 22 and the receptor domain that includes the first 30 residues of the amino terminus (Dong, M., Wang, Y., Pinon, D. I., Hadac, E. M., and Miller, L. J. (1999) J. Biol. Chem. 274, 903-909). Here, we further refined the site of labeling with the p-benzoyl-phenylalanine (Bpa(22)) probe to receptor residue Leu(17) using progressive cleavage of wild type and mutant secretin receptors (V13M and V16M) and sequence analysis. We also developed a new probe incorporating a photolabile Bpa at position 26 of secretin, closer to its carboxyl terminus. This analogue was also a potent agonist (EC(50) = 72 +/- 6 pm) and bound to the secretin receptor specifically and with high affinity (K(i) = 10.3 +/- 2.4 nm). It covalently labeled the secretin receptor at a single site saturably and specifically. This was localized to the segment between residues Gly(34) and Ala(41) using chemical and enzymatic cleavage of labeled wild type and A41M mutant receptor constructs and immunoprecipitation of epitope-tagged receptor fragments. Radiochemical sequencing identified the site of covalent attachment as residue Leu(36). These new insights, along with our recent report of contact between residue 6 within the amino-terminal half of secretin and this same amino-terminal region of this receptor (Dong, M., Wang, Y., Hadac, E. M., Pinon, D. I., Holicky, E. L., and Miller, L. J. (1999) J. Biol. Chem. 274, 19161-19167), support a key role for this region, making the molecular details of this interaction of major interest.  相似文献   

2.
The widespread 28-amino acid neuropeptide vasoactive intestinal peptide (VIP) exerts its many biological effects through interaction with serpentine class II G protein-coupled receptors named VPAC receptors. We previously provided evidence for a physical contact between the side chain at position 22 of VIP and the N-terminal ectodomain of the hVPAC1 receptor (Tan, Y. V., Couvineau, A., Van Rampelbergh, J., and Laburthe, M. (2003) J. Biol. Chem. 278, 36531-36536). We explored here the contact site between hVPAC1 receptor and the side chain at position 6 of VIP by photoaffinity labeling. The photoreactive para-benzoyl-l-Phe (Bpa) was substituted for Phe(6) in VIP resulting in [Bpa(6)]-VIP, which was shown to be a hVPAC1 receptor agonist in Chinese hamster ovary cells stably expressing the recombinant receptor. After obtaining the covalent (125)I-[Bpa(6)-VIP].hVPAC1 receptor complex, it was sequentially cleaved by cyanogen bromide, peptide N-glycosidase F, endopeptidase Glu-C, and trypsin, and the cleavage products were analyzed by electrophoresis. The data demonstrated that (125)I-[Bpa(6)-VIP] were covalently attached to the short 104-108 fragment within the N-terminal ectodomain of the receptor. The data were confirmed by creation of a receptor mutant with new CNBr cleavage site. In a three-dimensional model of the receptor N-terminal ectodomain, this fragment was located on one edge of the putative VIP-binding groove and was adjacent to the fragment covalently attached to the side chain at position 22 of VIP. Altogether these data showed that the central part of VIP, at least between Phe(6) and Tyr(22), interacts with the N-terminal ectodomain of the hVPAC1 receptor.  相似文献   

3.
By superimposing data obtained by photo-cross-linking RGD-containing ligands to the human alpha(V)beta(3) integrin onto the crystal structure of the ectopic domain of this receptor (Xiong et al. (2001) Science 294, 339-345), we have identified the binding site for the RGD triad within this integrin. We synthesized three novel analogues of the 49-amino acid disintegrin, echistatin: [Bpa(21),Leu(28)]-, [Bpa(23),Leu(28)]-, and [Bpa(28)]echistatin. Each contains a photoreactive p-benzoyl-phenylalanyl (Bpa) residue in close proximity to the RGD motif which spans positions 24-26; together, the photoreactive positions flank the RGD motif. The analogues bind with high affinity to the purified recombinant alpha(V)beta(3) integrin, but very poorly to the closely related human alpha(IIb)beta(3) platelet integrin. While echistatin analogues containing Bpa in either position 23 or 28 cross-link specifically and almost exclusively to the beta(3) subunit of alpha(V)beta(3), [Bpa(21),Leu(28)]echistatin cross-links to both the alpha(V) and the beta(3) subunits, with cross-linking to the former favored. [Bpa(23),Leu(28)]echistatin cross-links 10-30 times more effectively than the other two analogues. We identified beta(3)[109-118] as the domain that encompasses the contact site for [Bpa(28)]echistatin. This domain is included in beta(3)[99-118] (Bitan et al. (2000) Biochemistry 39, 11014-11023), a previously identified contact domain for a cyclic RGD-containing heptapeptide with a benzophenone moiety in a position that is similar to the placement of the benzophenone in [Bpa(28)]echistatin relative to the RGD triad. Recently, we identified beta(3)[209-220] as the contact site for an echistatin analogue with a photoreactive group in position 45, near the C-terminus of echistatin (Scheibler et al. (2001) Biochemistry 40, 15117-14126). Taken together, these results support the hypothesis that the very high binding affinity of echistatin to alpha(V)beta(3) results from two distinct epitopes in the ligand, a site including the RGD triad and an auxiliary epitope at the C-terminus of echistatin. Combining our results from photoaffinity cross-linking studies with data now available from the recently published crystal structure of the ectopic domain of alpha(V)beta(3), we characterize the binding site for the RGD motif in this receptor.  相似文献   

4.
Son CD  Sargsyan H  Naider F  Becker JM 《Biochemistry》2004,43(41):13193-13203
Analogues of alpha-factor, Saccharomyces cerevisiae tridecapeptide mating pheromone (H-Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr-OH), containing p-benzoylphenylalanine (Bpa), a photoactivatable group, and biotin as a tag, were synthesized using solid-phase methodologies on a p-benzyloxybenzyl alcohol polystyrene resin. Bpa was inserted at positions 1, 3, 5, 8, and 13 of alpha-factor to generate a set of cross-linkable analogues spanning the pheromone. The biological activity (growth arrest assay) and binding affinities of all analogues for the alpha-factor receptor (Ste2p) were determined. Two of the analogues that were tested, Bpa(1) and Bpa(5), showed 3-4-fold lower affinity than the alpha-factor, whereas Bpa(3) and Bpa(13) had 7-12-fold lower affinities. Bpa(8) competed poorly with [(3)H]-alpha-factor for Ste2p. All of the analogues tested except Bpa(8) had detectable halos in the growth arrest assay, indicating that these analogues are alpha-factor agonists. Cross-linking studies demonstrated that [Bpa(1)]-alpha-factor, [Bpa(3)]-alpha-factor, [Bpa(5)]-alpha-factor, and [Bpa(13)]-alpha-factor were cross-linked to Ste2p; the biotin tag on the pheromone was detected by a NeutrAvidin-HRP conjugate on Western blots. Digestion of Bpa(1), Bpa(3), and Bpa(13) cross-linked receptors with chemical and enzymatic reagents suggested that the N-terminus of the pheromone interacts with a binding domain consisting of residues from the extracellular ends of TM5-TM7 and portions of EL2 and EL3 close to these TMs and that there is a direct interaction between the position 13 side chain and a region of Ste2p (F55-R58) at the extracellular end of TM1. The results further define the sites of interaction between Ste2p and the alpha-factor, allowing refinement of a model for the pheromone bound to its receptor.  相似文献   

5.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

6.
SecA interacts with presecretory proteins through recognition of the positive charge at the amino terminus of the signal peptide (Akita, M., Sasaki, S., Matsuyama, S., and Mizushima, S. (1989) J. Biol. Chem. 265, 8164-8169). A large variety of amino-terminal and carboxyl-terminal fragments of SecA were prepared in 6 M guanidine hydrochloride. SecA analogues were then reconstituted from them and examined for their ability to cross-link with [35S]proOmpF-Lpp, a presecretory protein, in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The reconstituted SecA analogues were active in the cross-linking with proOmpF-Lpp when the SecA fragments used were large enough to structurally complement each other. The cross-linking was signal peptide-dependent and suppressed in the presence of other presecretory proteins. The cross-linking was enhanced in the presence of ATP. The SecA fragments that cross-linked with proOmpF-Lpp were then analyzed on sodium dodecyl sulfate-polyacrylamide gels. The cross-linking preferentially took place on fragments possessing the amino terminus of SecA. Weak cross-linking was also observed with carboxyl-terminal fragments when they were large enough. The smallest amino-terminal and carboxyl-terminal fragments with which the cross-linking was observed were 39 and 72 kDa, respectively. From these results, the region responsible for the cross-linking with presecretory proteins was deduced to be located between amino acid residues 267 and 340 from the amino terminus of SecA. These results are discussed in relation to the structure and function of SecA.  相似文献   

7.
The calcitonin receptor is a member of the class B family of G protein-coupled receptors, which contains numerous potentially important drug targets. Delineation of themes for agonist binding and activation of these receptors will facilitate the rational design of receptor-active drugs. We reported previously that a photolabile residue within the carboxyl-terminal half (residue 26) and mid-region (residue 16) of calcitonin covalently label the extracellular amino-terminal domain of this receptor (Dong, M., Pinon, D. I., Cox, R. F., and Miller, L. J. (2004) J. Biol. Chem. 279, 1167-1175). Chimeric receptor studies support the importance of this region and suggest important contributions of extracellular loop domains. To examine whether other parts of the ligand may contact those loops, we developed another probe that has its photolabile site of labeling within the amino-terminal half in position 8 of the ligand. This probe was a full agonist (EC(50) = 563 +/- 67 pm), stimulating cAMP accumulation in receptor-bearing human embryonic kidney 293 cells in a concentration-dependent manner. It bound specifically and saturably (K(i) = 14.3 +/- 1.9 nm) and was able to efficiently label the calcitonin receptor. By purification, specific cleavage, and sequencing of labeled wild-type and mutant calcitonin receptors, the site of attachment was identified as residue Leu(368) within the third extracellular loop of the receptor, a domain distinct from that labeled by previous probes. These data are consistent with a common ligand binding mechanism for receptors in this important family.  相似文献   

8.
Distinct spatial approximations between residues within the secretin pharmacophore and its receptor can provide important constraints for modeling this agonist-receptor complex. We previously used a series of probes incorporating photolabile residues into positions 6, 12, 13, 14, 18, 22, and 26 of the 27-residue peptide and demonstrated that each covalently labeled a site within the receptor amino terminus. Although supporting a critical role of this domain for ligand binding, it does not explain the molecular mechanism of receptor activation. Here, we developed probes having photolabile residues at the amino terminus of secretin to explore possible approximations with a different receptor domain. The first probe incorporated a photolabile p-benzoyl-l-phenylalanine into the position of His(1) of rat secretin ([Bpa(1),Tyr(10)]secretin-27). Because His(1) is critical for function, we also positioned a photolabile Bpa as an amino-terminal extension, in positions -1 (rat [Bpa(-1),Tyr(10)]secretin-27) and -2 (rat [Bpa(-2),Gly(-1),Tyr(10)]secretin-27). Each analog was shown to be a full agonist, stimulating cAMP accumulation in receptor-bearing Chinese hamster ovary-SecR cells in a concentration-dependent manner, with the position -2 probe being most potent. They bound specifically and saturably, although the position 1 analog had lowest affinity, and all were able to label the receptor efficiently. Sequential specific cleavage, purification, and sequencing demonstrated that the sites of covalent attachment for each probe were high within the sixth transmembrane segment. This suggests that secretin binding may exert tension between the receptor amino terminus and the transmembrane domain to elicit a conformational change effecting receptor activation.  相似文献   

9.
Substance P (SP) belongs to the tachykinin family of bioactive peptides and exerts its many biological effects through functional interaction with its cell-surface, G protein-coupled neurokinin-1 receptor (NK-1R). Previous studies from our laboratory have shown that (125)I-Bolton-Hunter reagent-labeled p-benzoylphenylalanine(8)-SP (Bpa(8)SP) covalently attaches to Met(181), whereas (125)I-Bolton-Hunter reagent-labeled Bpa(4)SP covalently attaches to Met(174), both of which are located on the second extracellular loop (EC2) of the NK-1R. In this study, evidence has been obtained that at equilibrium, the photoreactive SP analogue (125)I-[D-Tyr(0)]Bpa(3)SP covalently labels residues in two distinct extracellular regions of the NK-1R. One site of (125)I-[D-Tyr(0)]Bpa(3)SP photoinsertion is located on EC2 within a segment of the receptor extending from residues 173 to 177; a second site of (125)I-[D-Tyr(0)]Bpa(3)SP photoinsertion is located on the extracellular N terminus within a segment of the receptor extending from residues 11 to 21, a sequence that contains both potential sites for N-linked glycosylation. Since competition binding data presented in this study do not suggest the existence of multiple peptide.NK-1R complexes, it is reasonable to assume that the receptor sequences within EC2 and N terminus identified by peptide mapping are in close proximity in the equilibrium complex.  相似文献   

10.
Structural requirements for binding to the bone calcitonin (CT) receptor and for CT bioactivity both in vitro and in vivo were assessed for a series of N-terminally truncated, N alpha-acetylated, fragments of salmon calcitonin (sCT). Sequential deletion of amino acid residues from the amino-terminus of [Ala7]sCT-(2-32) peptide amide first led to partial agonists and, upon deletion of residues 1 to 7, to a high affinity antagonist, N alpha-acetyl-sCT-(8-32)-NH2. The presence of two separate domains within the sCT sequence is proposed: (I) a binding domain comprising residues 9-32 and (II) an activation domain requiring residues 3 to 6. N alpha-acetyl-sCT-(8-32)-NH2, in several bioassays including plasminogen activator release from LLC-PK1 cells (pA2 = 7.31), cAMP production in UMR-106-06 cells (pA2 = 7.81) and in the fetal rat long bone resorption assay showed potent antagonistic properties.  相似文献   

11.
Photoaffinity labeling is a powerful tool for the characterization of the molecular basis of ligand binding. We recently used this technique to demonstrate the proximity between a residue within the carboxyl-terminal half of a secretin-like ligand and the amino-terminal domain of the secretin receptor (Dong, M., Wang, Y., Pinon, D. I., Hadac, E. M., and Miller, L. J. (1999) J. Biol. Chem. 274, 903-909). In this work, we have developed another novel radioiodinatable secretin analogue ([Bpa6,Tyr10]rat secretin-27) that incorporates a photolabile p-benzoyl-L-phenylalanine (Bpa) residue into position 6 of the amino-terminal half of the ligand and used this to identify a specific receptor residue proximate to it. This probe specifically bound to the secretin receptor with high affinity (IC50 = 13.2 +/- 2.5 nM) and was a potent stimulant of cAMP accumulation in secretin receptor-bearing Chinese hamster ovary-SecR cells (EC50 = 720 +/- 230 pM). It covalently labeled the secretin receptor in a saturable and specific manner. Cyanogen bromide cleavage of this molecule yielded a single labeled fragment that migrated on an SDS-polyacrylamide gel at Mr = 19,000 that shifted to 10 after deglycosylation, most consistent with either of two glycosylated fragments within the amino-terminal tail. By immunoprecipitation with antibody directed to epitope tags incorporated into each of the two candidate fragments, the most distal fragment at the amino terminus was identified as the domain of labeling. The labeled domain was further refined to the first 16 residues by endoproteinase Lys-C cleavage and by cyanogen bromide cleavage of another receptor construct in which Val16 was mutated to Met. Radiochemical sequencing of photoaffinity-labeled secretin receptor fragments established that Val4 was the specific site of covalent attachment. This provides the first residue-residue contact between a secretin ligand and its receptor and will contribute substantially to the molecular understanding of this interaction.  相似文献   

12.
Human placental calcitonin receptors.   总被引:4,自引:1,他引:3       下载免费PDF全文
Receptors for the hypocalcaemic hormone, calcitonin (CT), have been identified in a membrane fraction prepared from term human placentae. Binding of 125I-labelled salmon CT (125I-sCT) to the membranes was time- and temperature-dependent, saturable (Bmax. 58 +/- 11 fmol/mg of protein), of high affinity (Kd 80 +/- 21 pM) and poorly reversible. Species-specific CTs and CT analogues competed for 125I-sCT binding with potencies proportional to their known biological potencies. Various unrelated peptide hormones did not compete, indicating that receptor binding was specific for CT. Photoaffinity labelling using a derivatized biologically active sCT analogue, [Arg11,18,3-nitrophenylazide-Lys14]sCT, identified a receptor component of Mr approximately 85,000, comparable with findings in osteoclasts and other target cells. The presence of CT receptors in the human placenta supports other evidence that CT may have a role in the regulation of placental function.  相似文献   

13.
We have investigated receptor structural components responsible for ligand-dependent inverse agonism in a constitutively active mutant of the human parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor type 1 (hP1R). This mutant receptor, hP1R-H223R (hP1R(CAM-HR)), was originally identified in Jansen's chondrodysplasia and is altered in transmembrane domain (TM) 2. We utilized the PTHrP analog, [Bpa(2),Ile(5),Trp(23),Tyr(36)]PTHrP-(1-36)-amide (Bpa(2)-PTHrP-(1-36)), which has valine 2 replaced by p-benzoyl-l-phenylalanine (Bpa); this substitution renders the peptide a photoreactive inverse agonist at hP1R(CAM-HR). This analog cross-linked to hP1R(CAM-HR) at two contiguous receptor regions as follows: the principal cross-link site (site A) was between receptor residues Pro(415)-Met(441), spanning the TM6/extracellular loop three boundary; the second cross-link site (site B) was within the TM4/TM5 region. Within the site A interval, substitution of Met(425) to Leu converted Bpa(2)-PTHrP-(1-36) from an inverse agonist to a weak partial agonist; this conversion was accompanied by a relative shift of cross-linking from site A to site B. The functional effect of the M425L mutation was specific for Bpa(2)-containing analogs, as inverse agonism of Bpa(2)-PTH-(1-34) was similarly eliminated, whereas inverse agonism of [Leu(11),d-Trp(12)]PTHrP-(5-36) was not affected. Overall, our data indicate that interactions between residue 2 of the ligand and the extracellular end of TM6 of the hP1R play an important role in modulating the conversion between active and inactive receptor states.  相似文献   

14.
Calcitonin (CT) binding activity has been extracted from a membrane fraction of human placenta using the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonic acid (Chaps). Approximately two-thirds of the available binding sites were extracted using 5 mM-Chaps. The binding characteristics of 125I-labelled salmon CT(125I-sCT) to the solubilized extract were similar to those obtained previously with placental membranes and other targets such as osteoclasts, renal cells and certain human cancer cell lines. 125I-sCT binding was saturable (Bmax. 75 +/- 6 fmol/mg of protein, n = 3) and Scatchard analysis revealed a single class of high-affinity binding sites (Kd 165 +/- 28 pM, n = 3). In competitive-binding studies, various species-specific CTs and CT analogues showed the same rank order of potencies as seen in CT bioassays and several unrelated peptides did not compete at high doses. A biologically active CT analogue, [Arg11,18, Lys14]sCT, derivatized with the photoreactive phenylazide cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate, was used to identify receptor components of Mr approximately 88,000 and approximately 71,000 in both particulate placental membranes and the solubilized extract. Receptor components of Mr 85-90,000 have been identified in other CT target cells previously using chemical- and photoaffinity-labelling techniques. These results demonstrate the first successful solubilization of the CT receptor in a form which purification.  相似文献   

15.
Radiolabeled insulin was affinity cross-linked to purified insulin receptor with six separate bifunctional N-hydroxysuccinimide esters of different lengths. Results were qualitatively identical for each cross-linker in that insulin was predominantly cross-linked through its B chain to the receptor's alpha subunit. The maximum efficiencies of cross-linking were 10-15% for the most effective reagents, and this value was dependent upon the concentration and length of the cross-linker. In an effort to locate the cross-linking site, monoiodoinsulin was cross-linked to affinity-purified insulin receptor with disuccinimidyl suberate. Limited proteolysis of the hormone/receptor adduct with Staphylococcus aureus V8 protease, chymotrypsin, or thermolysin in an SDS-containing buffer rapidly generated a 55-kDa, insulin-labeled fragment as shown by SDS-polyacrylamide gel electrophoresis. We reported earlier that the 55-kDa chymotryptic fragment contained multiple internal disulfide bonds as evidenced by its shifting mobility on an SDS gel after dithiothreitol treatment [Boni-Schnetzler et al. (1987) J. Biol. Chem. 262, 8395-8401]. Here we show that the 55-kDa fragment is also formed by proteolysis of the receptor in the absence of prior insulin cross-linking. This fragment was prepared in amounts sufficient for sequence analysis and was purified by passage successively over gel permeation and reverse-phase HPLC columns. The sequence of the fragment's amino terminus corresponds to that of the amino terminus of the receptor's alpha subunit. This fragment also reacts with an antibody raised against a synthetic peptide corresponding to residues 242-253 of the receptor's alpha subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Calcitonins are 32-amino acid peptide hormones with both peripheral and central actions mediated via specific cell surface receptors, which belong to the class II subfamily of G protein-coupled receptors. Understanding receptor function, particularly in terms of ligand recognition by calcitonin receptors, may aid in the rational design of calcitonin analogs with increased potency and improved selectivity. To directly identify sites of proximity between calcitonin and its receptor, we carried out photoaffinity labeling studies followed by protein digestion and mapping of the radiolabeled photoconjugated receptor. A fully active salmon calcitonin analog [Arg(11,18),Bpa19]sCT, incorporating a photolabile p-benzoyl-L-phenylalanine into position 19 of the ligand, has been used to demonstrate spatial proximity between residue 19 of the peptide and the amino-terminal extracellular domain of the receptor. Cyanogen bromide cleavage together with endoproteinase Asp-N digestion indicated that binding was predominantly to the region delimited by receptor residues Cys134 and Met187. Binding to this fragment was supported further by cyanogen bromide-digestion of receptors that were mutated to remove the predicted cleavage site at Met133 (M133A, M133L). Binding within the 54-amino acid fragment was refined further by digestion with endoproteinase Lys-C to the 8-amino acid region corresponding to Cys134-Lys141. These results provide the first direct demonstration of a contact domain between salmon calcitonin and its receptor and will contribute toward modeling of the calcitonin-receptor interface.  相似文献   

17.
Henry LK  Khare S  Son C  Babu VV  Naider F  Becker JM 《Biochemistry》2002,41(19):6128-6139
Saccharomyces cerevisiae haploid cells communicate with their opposite mating type through peptide pheromones (alpha-factor and a-factor) that activate G protein-coupled receptors (GPCRs). S. cerevisiaewas used as a model system for the study of peptide-responsive GPCRs. Here, we detail the synthesis and characterization of a number of alpha-factor (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) pheromone analogues containing the photo-cross-linkable group 4-benzoyl-L-phenylalanine (Bpa). Following characterization, one analogue, [Bpa(1), Tyr(3), Arg(7), Phe(13)]alpha-factor, was radioiodinated and used as a probe for Ste2p, the GPCR for alpha-factor. Binding of the di-iodinated probe was saturable (K(d) = 200 nM) and competable by alpha-factor. Cross-linking into Ste2p was specific for this receptor and reversed by the wild-type pheromone. Chemical and enzymatic cleavage of the receptor/radioprobe complex indicated that cross-linking occurred on a portion of Ste2p spanning residues 251-294 which encompasses transmembrane domain 6, the extracellular loop between transmembrane domains 6 and 7, and transmembrane domain 7. This fragment was verified using T7-epitope-tagged Ste2p and a biotinylated, photoactivatable alpha-factor. After cross-linking with the biotinylated photoprobe and trypsin cleavage, the cross-linked receptor fragment was revealed by both an anti T7-epitope antibody and a biotin probe. This is the first determination of a specific contact region between a Class IV GPCR and its ligand. The results demonstrate that Bpa alpha-factor probes are useful in determining contacts between alpha-factor and Ste2p and initiate mapping of the ligand binding site of this GPCR.  相似文献   

18.
Recently, we have described a COOH-terminal deletion mutation of the human insulin receptor (HIR delta CT) that exhibits normal insulin-mediated kinase activity and endocytosis, but is inefficient in stimulating glucose transport and glycogen synthase (McClain, D. A., Maegawa, H., Levy, J., Huecksteadt, T., Dull, T. J., Lee, J., Ullrich, A., and Olefsky, J.M. (1988) J. Biol. Chem. 263, 8904-8911; Maegawa, H., McClain, D. A., Freidenberg, G., Olefsky, J. M., Napier, M., Lipari, T., Dull, T. J., Lee, J., and Ullrich, A. (1988) J. Biol. Chem. 263, 8912-8917). In this paper, we report that despite this defect in metabolic signaling, the truncated receptor exhibits augmented mitogenic activity compared to normal receptors. These results were verified in three independently isolated clones of Rat 1 fibroblasts transfected with the HIR delta CT cDNA. The increase in insulin sensitivity of mitogenic stimulation was proportional to the number of HIR delta CT receptors expressed on the cells. By contrast, only the cells with normal receptors and none of the HIR delta CT clones exhibit increased sensitivity for a metabolic action of insulin, the stimulation of glucose uptake. Stimulation of cells by other mitogens and autoradiographic analysis confirm that the enhanced mitogenic effects seen in HIR delta CT cells are attributable only to the presence of the truncated insulin receptors. These receptors mediate the tyrosine phosphorylation of a number of cellular proteins, and the pattern of these phosphorylations differs quantitatively from that seen in cells with normal receptors. We conclude: 1) The COOH terminus plays a role in signaling metabolic actions of insulin, perhaps through its recognition of substrates for the receptor kinase. 2) By contrast, the COOH terminus is an inhibitory regulator of mitogenesis, and removal of the terminal 43 amino acids converts the receptor from a moderately active growth signaler to a very active one. 3) The changes seen in biologic activities of the HIR delta CT receptor are associated with quantitative changes in substrate phosphorylation by the receptor kinase.  相似文献   

19.
We have previously shown that a minimized insulin receptor (IR) consisting of the first 468 amino acids of the insulin receptor fused to 16 amino acids from the C terminus of the alpha-subunit (CT domain) bound insulin with nanomolar affinity (Kristensen, C., Wiberg, F. C., Sch?ffer, L., and Andersen, A. S. (1998) J. Biol. Chem. 273, 17780-17786). In the present study, we show that a smaller construct that has the first 308 residues fused to the CT domain also binds insulin. Insulin receptor fragments consisting of the first 468 or 308 residues did not bind insulin. However, when these fragments were mixed with a synthetic peptide corresponding to the CT domain, insulin binding was detectable. At concentrations of 10 microm CT peptide, insulin binding was fully reconstituted yielding apparent affinities of 9-11 nm. To further investigate the minimum requirement for the length of the N terminus of IR, we tested smaller receptor fragments for insulin binding in the presence of the CT peptide and found that a fragment consisting of the first 255 amino acids of IR was able to fully reconstitute the insulin binding site, yielding an apparent affinity of 11 +/- 4 nm for insulin.  相似文献   

20.
The heptadecapeptide nociceptin, also known as orphanin FQ, is the endogenous agonist of the opioid receptor-like 1 (ORL1) G protein-coupled receptor. An affinity labeling approach has been implemented to probe the interactions of the neuropeptide with the receptor using the photolabile nociceptin derivative, [p-benzoyl-l-Phe(10),Tyr(14)]nociceptin ([Bpa(10),Tyr(14)]noc). In recombinant Chinese hamster ovary cells expressing the human ORL1 receptor, [Bpa(10),Tyr(14)]noc binds the receptor with high affinity (K(i) approximately 0.7 nm) and is as potent as nociceptin in the inhibition of forskolin-induced cAMP synthesis (EC(50) approximately 0.5 nm). UV irradiation at 365 nm of the complex formed by the ORL1 receptor and radioiodinated [Bpa(10),Tyr(14)]noc results in the irreversible labeling of a glycoprotein of approximately 65 kDa, determined by SDS-polyacrylamide gel electrophoresis. Complete digestion of the partially purified 65-kDa complex with kallikrein generates a single labeled fragment (approximately 6.5 kDa) that is readily cleaved by endoproteinase Glu-C to yield a labeled fragment of approximately 3.2 kDa. Kallikrein treatment of the photoaffinity cross-linked Glu(295) --> Asp mutant receptor also yields a single labeled fragment of approximately 6.5 kDa but is resistant to further cleavage by endoproteinase Glu-C. Based upon the expected proteolytic fingerprint of the labeled receptor, the photoreactive region can be identified as ORL1-(296-302; residues Thr-Ala-Val-Ala-Ile-Leu-Arg) spanning the C terminus of extracellular loop 3 and the N terminus of transmembrane helix VII. Molecular modeling of the ORL1 receptor complex with [Bpa(10)]noc suggests that reaction of the Bpa carbonyl group may occur with the side chain of Ile(300) within the experimentally identified photoreactive region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号