首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The hypothesis was tested that bovine preantral follicles can be stimulated to grow in vitro by FSH and by the mitogens, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), but not by transforming growth factor-beta (TGFbeta), which generally inhibits EGF and bFGF action. Preantral follicles, 60 to 179 mum in diameter, were isolated from fetal ovaries by treatment with collagenase and DNase and cultured for 6 d in serum-free medium, with or without FSH and growth factors. Basic FGF (50 ng/ml), and to a lesser extent FSH (100 ng/ml) and EGF (50 ng/ml), stimulated thymidine incorporation by granulosa cells in bovine preantral follicles compared to control cultures (8-, 4- and 2.5-fold the labeling index of the controls; P < 0.05). Alone TGFbeta (10 ng/ml) had no effect on (3)H-thymidine incorporation, but it completely inhibited the bFGF- but not the FSH-stimulated increase in the labeling index and mean follicular diameter of preantral follicles (P < 0.05). By the end of the culture period oocytes in most treatments had degenerated, and the few surviving oocytes were in preantral follicles cultured with FSH or bFGF. Progesterone accumulation was greater (P < 0.05) in the presence of FSH (100 ng/ml) or EGF (50 ng/ml) than with bFGF, TGFbeta or control medium. Basic FGF strongly inhibited the effect of FSH on progesterone secretion (P < 0.05). Only FSH stimulated the conversion of exogenous testosterone to estradiol and both bFGF and TGFbeta markedly inhibited FSH-stimulated estradiol accumulation. These results indicate that proliferation of granulosa cells of bovine preantral follicles can be stimulated by bFGF, FSH and EGF, whereas TGFbeta inhibits growth, and that they are steroidogenically active in culture. Basic FGF and TGFbeta antagonize FSH-stimulated steroid production by granulosa cells of cultured bovine preantral follicles.  相似文献   

2.
3.
The experiments described here were conducted to examine regulation of cytochrome P-450 side-chain cleavage (SCC) mRNA accumulation in porcine granulosa cells isolated from small (1-4-mm) and medium (5-6-mm) follicles. Granulosa cells were cultured under the following conditions: 1) for 48 h or 96 h with 0, 50, or 200 ng/ml porcine FSH; 2) for 96 h with 200 ng/ml FSH and aminoglutethimide (100 microM); and 3) for 96 h with forskolin (100 microM). Total RNA was extracted and examined by Northern and dot-blot hybridization analysis, and culture media were assayed for progesterone concentration. Northern blot analysis revealed a single band approximately 2.1 kb in size. Accumulation of SCC mRNA by granulosa cells was both FSH dose- and culture time-dependent (p less than 0.05) with maximal increases approximately 4.5 times control levels. Aminoglutethimide reduced progesterone production by about 80% while having no effect on granulosa cell accumulation of SCC mRNA compared to cells stimulated with 200 ng/ml of FSH. Forskolin-treated cells produced significantly more progesterone than did cells treated with FSH, but accumulation of SCC mRNA was similar. In response to FSH, concentration of SCC mRNA did not vary with follicle size, but granulosa cells from small follicles produced significantly more progesterone than did those from medium follicles. These results demonstrate that concentration of SCC mRNA in cultured porcine granulosa cells is FSH dose-dependent, does not vary significantly in cells from small- and medium-sized follicles, and is correlated with progesterone production, but may not parallel progesterone secretion. This last observation indicates that control at sites other than SCC mRNA can affect progesterone production.  相似文献   

4.
In vivo and in vitro luteinization were investigated in the porcine ovary, with emphasis on expression of steroidogenic acute regulatory protein (StAR). StAR mRNA and protein as well as cytochrome P450 side-chain cleavage mRNA (P450scc) increased during the luteal phase in the corpus luteum (CL) and were absent in regressed CL. Cytochrome P450 aromatase mRNA (P450arom) was not detectable at any time in CL. In vitro luteinization of granulosa cells occurred over 96 h in culture, during which P450arom mRNA was present at 1 h after cell isolation but not detectable at 6 h; and P450scc and StAR mRNAs were first detectable at 6 h and 48 h, respectively. Incubation of cultures with insulin-like growth factor I (IGF-I, 10 ng/ml), dibutyryl cAMP (cAMP, 300 microM), or their combination, induced measurable StAR mRNA at 24 h (p < 0.05), increased progesterone accumulation at 48 h, and elevated both StAR and P450scc expression through 96 h. Incubation of luteinized granulosa cells with epidermal growth factor (EGF, 10 nM) changed their phenotype from epithelioid to fibroblastic, eliminated steady-state StAR expression, and interfered with cAMP induction of StAR mRNA and progesterone accumulation. EGF had little apparent effect on P450scc mRNA abundance. It is concluded that StAR expression characterizes luteinization, and early luteinization is induced by cAMP and IGF-I in vitro. Further, EGF induces a morphological and functional phenotype that appears similar to an earlier stage of granulosa cell function.  相似文献   

5.
6.
The effect of transforming growth factor-alpha (TGF alpha) on granulosa cell differentiation, as assessed by the acquisition of aromatase activity, was evaluated in vitro by using a primary culture of rat granulosa cells. Harvested from immature, diethylstilbestrol-treated rats, granulosa cells were cultured under serum-free conditions for 72 hr in the presence of saturating concentrations (10(-7)M) of aromatase substrate androstenedione with or without the specific experimental agents. Basal aromatase activity, as assessed by the generation of radioimmunoassayable estrogen was negligible, remaining unaffected by treatment with TGF alpha (10 ng/ml) by itself. Whereas treatment with follicle-stimulating hormone (FSH) resulted in a substantial increase in the extent of aromatization, concurrent treatment with TGF alpha (10 ng/ml) resulted in significant (P less than 0.05), yet reversible inhibition (78 +/- 5.6%) of FSH action. Significantly, this effect of TGF alpha could not be accounted for by a decrease in cellular viability or plating efficiency nor by a decrease in the number of cells or their DNA content. Although independent of the FSH dose employed, the TGF alpha effect proved dose- and time-dependent, with an apparent median inhibitory dose (EC50) of 0.33 +/- 0.04 ng/ml, and a minimal time requirement of 48 hr. Capable of substantial inhibition of the forskolin-stimulated accumulation of extracellular adenosine 3', 5' cyclic monophosphate (cAMP) and estrogen, TGF alpha had a measurable albeit limited effect on N6, 2-'O-Dibutyryladenosine 3':5'-cyclic monophosphate-supported estrogen production. Relative potency comparison revealed epidermal growth factor (EGF; EC50 = 0.24 +/- 0.03 ng/ml) and TGF alpha to be virtually equipotent as regards the attenuation of FSH-stimulated estrogen biosynthesis. Taken together, our findings indicate that TGF alpha, like EGF, acting at subnanomolar concentrations, is capable of attenuating the FSH-stimulated (but not basal) accumulation of estrogen. This effect of TGF alpha proved time- and dose-dependent, involving virtually complete neutralization of FSH action at site(s) both proximal and distal to cAMP generation. As such, these findings provide yet another example of the remarkable qualitative and quantitative similarities between EGF and TGF alpha, thereby reaffirming the prospect that ligands of the EGF/TGF alpha receptor may play a modulatory role in the course of granulosa cell ontogeny.  相似文献   

7.
This study examined the molecular mechanism by which BMP-4 inhibits progesterone production and the expression of genes involved in steroidogenesis. Granulosa cells were cultured in medium with or without BMP-4 for 0-96 h. BMP-4 inhibited progesterone secretion in granulosa cells and suppressed the expression of steroidogenic acute regulatory protein (StAR) at the mRNA and protein levels, whereas BMP-4 did not affect the proliferation of granulosa cells. In addition, we found that BMP-4 affected the expression of SR-B1 mRNA but not LDL-R in granulosa cells. To examine the protein-DNA interaction at specific sites within the StAR gene promoter, we used the quantitative real-time PCR and the ChIP technique. We demonstrated that BMP-4 suppresses the acetylation of histone H3 associated with the StAR promoter region at 48 and 72 h of culture in bovine granulosa cells. Our results showed for the first time that BMP-4 inhibited the acetylation of histone H3 associated with the StAR promoter region in bovine granulosa cells. Taken together, we propose that the inhibition of the acetylation of histone H3 associated with the StAR promoter region by BMP-4 may be one of the inhibitory molecular mechanisms of progesterone synthesis in granulosa cells. Our data suggested that theca cell-derived BMP-4 is important as a regulator of steroid hormone synthesis in granulosa cells during follicular development in the mammalian ovary.  相似文献   

8.
The ability of gonadotropins from six mammalian species to stimulate estrogen and progesterone production was investigated in granulosa cells of hypophysectomized estrogen-primed immature female rats. Granulosa cells were cultured for 2 days in the presence of delta 4-androstenedione (10(-7) M) with or without various gonadotropin preparations. Treatment with follitropin (follicle-stimulating hormone, FSH) from human, rat, ovine, porcine, equine, and bovine origins resulted in dose-dependent increases in steroidogenesis from negligible amounts to maximal levels of approximately 4-8 and 12-30 ng/10(5) cells for estrogen and progesterone, respectively. The ED50 values of the FSH preparations for stimulation of steroidogenesis were: human: 1-4 ng/ml; ovine: 2.5-30 ng/ml; rat: 1.6-4.0 ng/ml; porcine: 7.5-20 ng/ml; equine 2.5-6 ng/ml; and bovine greater than 100 ng/ml. Lutropin (luteinizing hormone, LH) from rat, ovine, bovine, and porcine origins, human chorionic gonadotropin (hCG), the alpha-subunit of human FSH and the beta-subunit of human LH were ineffective in stimulating steroidogenesis, indicating the specificity of the assay system for FSH. In a high concentration (600 ng/ml), the beta-subunit of human FSH-stimulated steroidogenesis to a small extent. Furthermore, pregnant mare serum gonadotropin and equine LH also caused a dose-dependent stimulation of estrogen and progesterone production, the half-maximal response values (ED50) being 1.8-4 and 7.5-10 ng/ml, respectively. This is consistent with previous in vivo and in vitro findings, showing the potent FSH activities of these hormones. Thus, the cultured rat granulosa cell system provides a sensitive assay for measuring FSH activities of gonadotropins from various mammalian species.  相似文献   

9.
Epidermal growth factor (EGF) modulates ovarian function, including folliculogenesis and steroidogenesis. We investigated the localization of EGF binding sites in the porcine ovary, and the effect of FSH on EGF binding to cultured granulosa cells. Autoradiographic study demonstrated that the binding sites for 125I-labeled mouse EGF in the porcine ovary were present in the granulosa and luteal cells, but not in the thecal cells. Porcine granulosa cells were collected by the needle aspiration method from small (1-2 mm) and medium-sized (3-5 mm) follicles. Scatchard analysis showed that a single class of the specific binding sites for EGF was present in the granulosa cells. The number of binding sites and the apparent dissociation constant were 5,540 binding sites/cell and 0.23 nM (medium-sized follicle), respectively. No significant difference was observed between small and medium-sized follicles. Granulosa cells were cultured for 48 h at 37 degrees C in medium alone or with increasing doses of ovine FSH (1-100 ng/ml). FSH treatment significantly increased EGF binding in a dose-dependent manner. In conclusion, it is suggested that the specific high affinity, low capacity binding sites for EGF are present in porcine granulosa cells, and that they are up-regulated by FSH.  相似文献   

10.
卵泡刺激素和表皮生长因子对小鼠精原细胞增殖的影响   总被引:2,自引:0,他引:2  
利用生殖细胞-体细胞体外无血清共培养模型研究了卵泡刺激素(FSH)和表皮生长因子(EGF)对小鼠A型精原细胞增殖的影响。精原细胞在ITS培养液(添加胰岛素、转铁蛋白和亚硒酸钠的DMEM)中培养24h后进行c-kit免疫细胞化学鉴定和EGF及其受体(EGFR)免疫细胞化学检测,72h后测定其形成集落数的情况。结果表明:ITS培养液能维持生殖细胞的活性,增殖细胞核抗原(PCNA)的表达增高。A型精原细胞呈c-kit阳性,EGF和EGFR主要表达于精原细胞。单独的FSH(1~100ng/ml)或EGF(1~10ng/ml)显著促进精原细胞集落数的增加。此外,EGF(0.1ng/ml)联合FSH(10ng/ml)具有加性效应,但更高剂量的EGF(1~10ng/ml)则降低了FSH的刺激作用。结果说明FSH可联合适量的EGF促进精原细胞的增殖。  相似文献   

11.
12.
We have recently observed that attomolar concentration of exogenously added TGF beta, a molecule structurally related to inhibin, can stimulate the basal secretion of FSH in a pituitary cell culture. Inhibin purified from porcine follicular fluid antagonizes this activity of TGF beta. To understand further the homeostatic regulatory properties of inhibin and TGF beta we have investigated whether the aromatase activity of ovarian granulosa cells is also subject to intra-ovarian modulation by these peptides. Granulosa cells from immature hypophysectomized diethylstilbestrol-treated rats were cultured for 2 days with androstenedione (10(-7) M) as a substrate, oFSH (2 ng), and different amounts of TGF beta or inhibin. Basal estrogen secretion was negligible and remained unaffected by treatment with purified TGF beta or inhibin (10 ng/ml), whereas treatment with oFSH (2 ng/ml) produced a 100-fold increase in estrogen accumulation. The concurrent application of increasing concentrations (10 pg-10 ng/ml) of TGF beta produced dose-dependent increments in the FSH-stimulated accumulation of estrogen with a ED50 of 0.3 +/- 0.02 ng/ml. On the other hand, concurrent incubation of FSH with inhibin ranging from 10 pg to 10 ng/ml decreases the FSH-mediated estrogen secretion. TGF beta antagonizes the inhibition of inhibin on aromatase activity. These findings suggest that inhibin and TGF beta, two closely related molecules, play novel and opposite roles in modulating the follicular functions.  相似文献   

13.
Genistein affects reproductive processes in animals. However, the mechanism of its action is not fully elucidated and differs among species. The objectives of the current study were: 1/ to establish an in vitro model of granulosa cell culture for studying the intracellular mechanism of phytoestrogen action in porcine ovary; 2/ to determine an in vitro effect of genistein on basal and FSH-stimulated P(4) and E(2) production by porcine granulosa cell populations (antral, mural, total) isolated from large, preovulatory follicles. Granulosa cells were isolated from large (> or =8 mm), preovulatory follicles and separated into antral and mural cell subpopulations. Cells were allowed to attach for 72 h (37 degrees Celsius, 10% serum, 95% air/5% CO2) and than cultured for next 48 hours with or without serum (0, 5 and 10%), FSH (0, 10 or 100 ng/ml) and genistein (0, 0.5, 5 or 50 microM). Basal P(4) and E(2) production did not differ among antral, mural and unseparated granulosa cells isolated form porcine preovulatory follicles. Only mural cells tended to secrete less P(4) and E(2) than other cell populations. FSH stimulated P(4) production in a dose dependent manner in all cell populations and culture systems. Genistein inhibited in a dose dependent manner basal and FSH-stimulated P(4) production by antral, mural and unseparated granulosa cells. However, genistein did not affect E(2) production by granulosa cells. In addition, viability of porcine granulosa cells was not affected by the pyhytoestrogen except the highest dose of genistein. It appears that genistein may be involved in the regulation of follicular function in pigs. Moreover, unseparated porcine granulosa cells may provide a suitable in vitro model for studying the intracellular mechanism of phytoestrogen action in porcine ovary.  相似文献   

14.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

15.
Granulosa cells from diethylstilboestrol-treated prepubertal rabbits were cultured for 6 days in M199 with FSH (1-100 ng ml(-1)) in uncoated or fibronectin-coated plates with or without androstenedione to define the time course profile of oestradiol and progesterone secretion, and the possible modulator role of androstenedione and fibronectin during FSH-induced rabbit granulosa cell differentiation. Every 48 h, cultures were photographed and samples of medium were collected and assayed by ELISA for oestradiol and progesterone. FSH increased oestradiol secretion in a dose-dependent manner. Androstenedione augmented FSH-stimulated oestradiol secretion, and led to a decrease in secretion of oestradiol with time in culture. FSH stimulated progesterone secretion in a dose-dependent manner. This was increased by androstenedione with 10 ng FSH ml(-1) (0-96 h) and 1 ng FSH ml(-1) (96-144 h). FSH-stimulated (100 ng ml(-1)) progesterone secretion decreased at 48-96 h. Fibronectin prevented this decrease, without affecting oestradiol or progesterone secretion at other time points. FSH caused cell reaggregation at 48 h. In conclusion, this serum-free culture system is appropriate for the study of mechanisms of rabbit granulosa cell differentiation. FSH induced cytodifferentiation and reaggregation of granulosa cells. Androstenedione appeared to act synergistically with FSH to promote steroidogenesis. Fibronectin sustained progesterone secretion during differentiation.  相似文献   

16.
The induction of luteinizing hormone (LH) receptors was studied in granulosa cells prepared from the ovaries of hypophysectomized diethylstilbestrol-treated immature rats. Incubation of granulosa cells for 48 h with increasing concentrations of follicle-stimulating hormone (FSH) or choleragen caused parallel rises in cAMP levels and LH receptors. These observations, with the finding that 8-Bromo-cAMP also induced LH receptor formation, indicate that hormonal stimulation of LH binding sites is mediated by cAMP. Peptide hormones that inhibited FSH-stimulated cAMP production, such as epidermal growth factor (EGF) and a gonadotropin-releasing hormone agonist (GnRHa), also prevented LH receptor formation. GnRHa and EGF had negligible effects on FSH-stimulated cAMP production from 0 to 24 h of culture, but reduced cAMP accumulation by 80% and 90%, respectively, from 24 to 48 h when the majority of LH receptors appeared. FSH-sensitive adenylate cyclase activity, as measured by the conversion of (3H)-ATP to (3H)-cAMP, was inhibited by GnRHa and EGF at 48 h of culture. EGF and GnRHa also reversed the inhibition of ectophosphodiesterase activity caused by FSH in granulosa cells between 48 and 72 h of culture. Both EGF and GnRHa inhibited induction of LH receptors by 8-Bromo-cAMP, suggesting that their effects are also on cAMP action. Addition of GnRHa, but not EGF, between 36 and 48 h of culture completely prevented further increases in LH receptors induced by 8-Bromo-cAMP, indicating that the inhibitory action of GnRHa can be initiated at later times during granulosa cell differentiation, whereas full expression of EGF action requires a longer period. These results demonstrate that EGF and GnRH inhibit FSH-induced LH receptor formation in the granulosa cell by reducing hormone-dependent cAMP production and also by impairing the ability of cAMP to stimulate LH receptor formation.  相似文献   

17.
The aim of the present study was to evaluate the role of prostaglandin (PG) on proliferation of granulosa cells from prehierarchical small yellow follicles (SYF) of buff laying hens. The granulosa layers were separated by mechanic method and dispersed into single cells. After 16 h pre-incubation in 0.5% FCS medium, the medium was replaced with serum-free medium, which was supplemented with 10 microg/ml insulin, 5 microg/ml transferrin and 3 x 10(-8)M selenite. Cells were challenged with PGE1 and FSH for 24 h and then assessed for proliferation. The results showed that PGE(1) (0.1-10 ng/ml) had a similar proliferating effect as FSH on granulosa cells, and these stimulating effects were restrained by the PGE receptor antagonist SC19220 at 10(-7) to 10(-5)M. Prostaglandin synthase antagonist indomethacin (10(-7) to 10(-5)M) suppressed FSH-induced increase in the number of granulosa cells in a dose-dependent manner. Downstream activation of protein kinase A by forskolin-activated adenylate cyclase resulted in elevated proliferation of granulosa cells, an effect unobserved by phorbol-12-myristrate-13-acetate-activated protein kinase C. In addition, PGE1-stimulated proliferation of granulosa cells was hindered by H89 (PKA inhibitor) but not by H7 (PKC inhibitor). Furthermore, the proliferating cell nuclear antigen labeling index (PCNA-LI) of granulosa cells displayed similar changes with the number of cells. These results indicated that PGE1 promoted the proliferation of granulosa cells from SYF and was also involved in mediating FSH-stimulated intracellular PKA signal transduction.  相似文献   

18.
Effects of interleukin-1 (IL-1) on FSH-induced differentiation of immature porcine granulosa cells in vitro were examined in short-term (48-h) cultures. IL-1 inhibited FSH induction of aromatase activity and of LH-stimulated cAMP accumulation by granulosa cells. Both these inhibitory actions of IL-1 were concentration-dependent. Significant inhibitory effects were observed with as low as 0.05-0.25 ng/ml of IL-1, with maximal effects at 25 ng/ml. IL-1 also significantly inhibited increases in [125I]iodo-LH binding and progesterone secretion induced by FSH, as well as reducing basal levels of aromatase activity and LH-stimulated cAMP accumulation. Studies on the mechanisms of IL-1 actions on FSH-induced differentiation of immature porcine granulosa cells revealed that IL-1 reduced cAMP accumulation by the cells in response to FSH in a time- and concentration-dependent manner. IL-1 also inhibited induction of aromatase activity and LH-stimulated cAMP accumulation induced by dibutyryl cAMP, suggesting that IL-1 also affects the steps distal to cAMP generation. In contrast, IL-1 had no effect on progesterone secretion induced by dibutyryl cAMP, suggesting that post-cAMP steps of progesterone secretion were unaffected by IL-1.  相似文献   

19.
20.
The modulation of ovarian steroidogenesis by epidermal growth factor (EGF) was investigated in cultured rat granulosa cells. Granulosa cells, obtained from ovaries of immature, hypophysectomized, estrogen-treated rats, were incubated for 2 days with EGF, follicle-stimulating hormone (FSH), or EGF plus FSH. Treatment with EGF did not affect estrogen production, but stimulated progestin (i.e. progesterone and 20 alpha-hydroxy-pregn-4-en-3-one) production in a dose-dependent manner. Stimulation of progestin production by EGF appears to be the result of an increase in pregnenolone biosynthesis as well as increases in the activities of 20 alpha-hydroxysteroid dehydrogenase and 3 beta-hydroxysteroid dehydrogenase/isomerase. Treatment with FSH increased both estrogen and progestin production by cultured granulosa cells. When cells were treated concomitantly with EGF, FSH-stimulated estrogen production was inhibited, while progestin production was further enhanced. The EGF enhancement of FSH-stimulated progestin production appears to be the result of synergistic increases in pregnenolone biosynthesis and 20 alpha-hydroxysteroid dehydrogenase activity, resulting in substantial increases in 20 alpha-hydroxypregn-4-en-3-one but not progesterone production. The effects of EGF were shown to be time-dependent. The concept of a direct action of EGF on rat granulosa cells is reinforced by the demonstration of high affinity (Kd approximately 3 X 10(-10) M), low capacity (approximately 5,000 sites/cell) EGF binding sites in these cells. Thus, EGF interacts with specific granulosa cell receptors to stimulate progestin but to inhibit estrogen biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号