首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We evaluate the conservation status and threats faced by sea turtle nesting populations at Bioko Island, Equatorial Guinea (Central Africa). Beaches were monitored to obtain a detailed sea turtle nest census and, where possible, tagging of adult females was undertaken. Four sea turtle species were found nesting in the area: the green turtle (Chelonia mydas), the leatherback (Dermochelys coriacea), the olive ridley (Lepidochelys olivacea) and the hawksbill (Eretmochelys imbricata); with the former two species nesting in regionally important numbers. Nesting activity was concentrated between November and February, with a peak in December–January. Tagging and recapture of green turtles in two consecutive seasons suggested an estimated 560 (interquartile range: 420–1,681) and 414 (interquartile range: 190–1,255) nesting females in the area, respectively. Estimated numbers of nesting leatherbacks ranged from 123 to 215 and 243 to 293 in the first and second season, respectively. The other two species were less abundant (olive ridley: 19–29 and 28–43; hawksbill: 4–10 and 2 turtles). Data were compared with more recent surveys in the area and contextualised with information on human related threats. Despite the size of nesting stocks, ongoing permitted and illegal take of adult turtles at the nesting site constitutes a serious threat for these breeding aggregations. Additionally, tag returns from throughout the Gulf of Guinea suggest that the level of take in regional fisheries may also be a major threat.  相似文献   

2.
The loggerhead sea turtle (Caretta caretta) is a federally threatened species and listed as endangered by the World Conservation Union (IUCN). We describe primers and polymerase chain reaction (PCR) conditions to amplify 11 novel tetranucleotide microsatellite loci from the loggerhead sea turtle. We tested primers using samples from 22 females that nested at Melbourne Beach, Florida (USA). Primer pairs yielded an average of 11.2 alleles per locus (range of 4–24), an average observed heterozygosity of 0.83 (range 0.59–0.96), and an average polymorphic information content of 0.80 (range 0.62–0.94). We also demonstrate the utility of these primers, in addition to primers for 15 loci previously described, for amplifying microsatellite loci in four additional species representing the two extant marine turtle families: olive ridley (Lepidochelys olivacea), hawksbill (Eretmochelys imbricata), green turtle (Chelonia mydas), and leatherback (Dermochelys coriacea).  相似文献   

3.
Three species of sea turtles (the leatherback, Dermochelys coriacea; the green turtle, Chelonia mydas; and the olive ridley, Lepidochelys olivacea) nest abundantly in the Guianas, especially on the beaches adjacent to the mouth of the Marowijne River. Tagging demonstrated that green turtles nesting in Surinam are recruited from feeding grounds in or near the State of Ceará, Brazil, while olive ridleys, after nesting in Surinam, spread out over 3800 km of the coast of northern South America. A single tagged leatherback was recovered in Ghana.  相似文献   

4.
Paolo Casale  Gaspard Abitsi  Marie Pierre Aboro  Pierre Didier Agamboue  Laureen Agbode  Nontsé Lois Allela  Davy Angueko  Jean Noel Bibang Bi Nguema  François Boussamba  Floriane Cardiec  Emmanuel Chartrain  Claudio Ciofi  Yves Armand Emane  J. Michael Fay  Brendan J. Godley  Carmen Karen Kouerey Oliwiwina  Jean de Dieu Lewembe  Donatien Leyoko  Georges Mba Asseko  Pulcherie Mengue M’adzaba  Jean Hervé Mve Beh  Chiara Natali  Clauvice Nyama-Mouketou  Jacob Nzegoue  Carole Ogandagas  Richard J. Parnell  Guy Anicet Rerambyath  Micheline Schummer Gnandji  Guy-Philippe Sounguet  Manjula Tiwari  Bas Verhage  Raul Vilela  Lee White  Matthew J. Witt  Angela Formia 《Biodiversity and Conservation》2017,26(10):2421-2433
Gabon hosts nesting grounds for several sea turtle species, including the world’s largest rookery for the leatherback turtle (Dermochelys coriacea), Africa’s largest rookery for the olive ridley turtle (Lepidochelys olivacea) and smaller aggregations of the hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas). To assess the level of incidental captures of turtles by the Gabonese trawl fishery, an onboard observer program was conducted in the period 2012–2013. A total of 143 turtles were captured by 15 trawlers during 271 fishing days. The olive ridley turtle was the main species captured (80% of bycaught turtles), with mostly adult-sized individuals. The remaining 20% included green turtles, hawksbill turtles, leatherback turtles and undetermined species. Bycatch per unit of effort (BPUE) of olive ridley turtles varied greatly depending on the period of the year (range of means: 0.261–2.270). Dead and comatose turtles were 6.2 and 24.6% respectively (n = 65). By applying the available fishing effort to two BPUE scenarios (excluding or considering a seasonal peak), the total annual number of captures was estimated as ranging between 1026 (CI 95% 746–1343) and 2581 (CI 95% 1641–3788) olive ridley turtles, with a mortality ranging from 63 (CI 95% 13–135) to 794 (CI 95% 415–1282) turtles per year depending on the scenario and on the fate of comatose turtles. Such a potential mortality may be reason for concern for the local breeding population of olive ridley turtles and recommendations in terms of possible conservation measures and further research are given.  相似文献   

5.
Most marine turtle species are non-annual breeders and show variation in both the number of eggs laid per clutch and the number of clutches laid in a season. Large levels of inter-annual variation in the number of nesting females have been well documented in green turtle nesting populations and may be linked to environmental conditions. Other species of marine turtle exhibit less variation in nesting numbers. This inter-specific difference is thought to be linked to trophic status. To examine whether individual reproductive output is more variable in the herbivorous green turtle (Chelonia mydas Linneaeus 1758) than the carnivorous loggerhead (Caretta caretta Linneaeus 1758), we examined the nesting of both species in Cyprus over nine seasons. Green turtles showed slower annual growth rates (0.11 cm year−1 curved carapace length (CCL) and 0.27 cm year−1 curved carapace width (CCW)) than loggerhead turtles (0.36 cm year−1 CCL, 0.51 cm year−1 CCW). CCL was highly correlated to mean clutch size in both green (R2=0.51) and loggerhead turtles (R2=0.61) and maximal clutch size of green turtles (R2=0.58). Larger females did not lay a greater number of clutches or have a shorter remigration interval than smaller females of either species. On average, the size of green turtle clutches increased and that of loggerhead turtles decreased as the season progressed. Individual green turtles, however, produced more eggs per clutch through the season to a maximum in the third or fourth clutch. In loggerhead turtles, clutches 1-4 were very similar in size but the fifth clutch was 38% smaller than the first. No individuals of either species were recorded laying more than five clutches. Green turtles may not be able to achieve their maximum reproductive output with respect to clutch size throughout the season, whereas only loggerhead turtles laying five clutches (n=5) appear to become resource depleted. Green turtles nesting in years when large numbers of nests were recorded laid a greater number of clutches than females nesting in years with lower levels of nesting.  相似文献   

6.
Aim This study examines the relationship between the distribution of existing sea turtle nesting sites and historical patterns of tropical cyclone events to investigate whether cyclones influence the current distribution of sea turtle nesting sites. The results, together with information on predicted cyclone activity and other key environmental variables, will help in the identification and prediction of future nesting sites for sea turtles as changes to the coastal environment continue. Location Queensland, Australia. Methods We used data on the nesting distribution of seven populations of four species of sea turtles [green (Chelonia mydas), flatback (Natator depressus), hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta)] from the eastern Queensland coast, and tropical cyclone track data from 1969 to 2007 to explore the relationship between (1) sea turtle nesting phenology and cyclone season, and (2) sea turtle nesting sites and cyclone distribution. Furthermore, using two green turtle populations as a case study, we investigated the relationship between cyclone disturbance and sea turtle reproductive output, nesting site and season. Bootstrapping was used to explore if current sea turtle nesting sites are located in areas with lower or higher cyclone frequency than areas where turtles are currently not nesting. Results All populations of sea turtles studied here were disturbed by cyclone activity during the study period. The exposure (frequency) of tropical cyclones that crossed each nesting site varied greatly among and within the various sea turtle populations. This was mainly a result of the spatial distribution of each population’s nesting sites. Bootstrapping indicated that nesting sites generally have experienced lower cyclone activity than other areas that are available for nesting. Main conclusions Tropical cyclones might have been sufficiently detrimental to sea turtle hatching success on the eastern Queensland coast that through a natural selection process turtles in this region are now nesting in areas with lower cyclone activity. Therefore, it is important that future studies that predict climate or range shifts for sea turtle nesting distributions consider future cyclone activity as one of the variables in their model.  相似文献   

7.
Marine turtle fibropapillomatosis (FP) is a devastating neoplastic disease characterized by single or multiple cutaneous and visceral fibrovascular tumors. Chelonid alphaherpesvirus 5 (ChHV5) has been identified as the most likely etiologic agent. From 2010 to 2013, the presence of ChHV5 DNA was determined in apparently normal skin, tumors and swab samples (ocular, nasal and cloacal) collected from 114 olive ridley (Lepidochelys olivacea) and 101 green (Chelonia mydas) turtles, with and without FP tumors, on the Pacific coasts of Costa Rica and Nicaragua. For nesting olive ridley turtles from Costa Rica without FP, 13.5% were found to be positive for ChHV5 DNA in at least one sample, while in Nicaragua, all olive ridley turtles had FP tumors, and 77.5% tested positive for ChHV5 DNA. For green turtles without FP, 19.8% were found to be positive for ChHV5 DNA in at least one of the samples. In turtles without FP tumors, ChHV5 DNA was detected more readily in skin biopsies than swabs. Juvenile green turtles caught at the foraging site had a higher prevalence of ChHV5 DNA than adults. The presence of ChHV5 DNA in swabs suggests a possible route of viral transmission through viral secretion and excretion via corporal fluids.  相似文献   

8.
Orissa, on the east coast of India, is one of the three mass nesting sites in the world for olive ridley turtles (Lepidochelys olivacea). This population is currently under threat as a result of fishery-related mortality; more than 100 000 olive ridleys have been counted dead in the last 10 years in Orissa. In general, the globally distributed olive ridley turtle has received significantly less conservation attention than its congener, the Kemp's ridley turtle (L. kempi), because the latter is recognized as a distinct species consisting of a single endangered population. Our study of mitochondrial DNA haplotypes suggests that the ridley population on the east coast of India is panmictic, but distinct from all other populations including Sri Lanka. About 96% of the Indian population consisted of a distinct 'K' clade with haplotypes not found in any other population. Nested clade analysis and conventional analysis both supported range expansions and/or long-distance colonization from the Indian Ocean clades to other oceanic basins, which suggested that these are the ancestral source for contemporary global populations of olive ridley turtles. These data support the distinctiveness of the Indian Ocean ridleys, suggesting that conservation prioritization should be based on appropriate data and not solely on species designations.  相似文献   

9.
Tagging programs have revealed parts of the patterns of reproductivemigration of some sea turtle populations, but much of the ecologicgeography of the species remains unknown. The present papertakes stock of the advances and gaps in our knowledge of thegroup. Kemp's ridley and the Tortuguero green turtle populationare used as sources of examples of these strong and weak areas.Possible causes of one-season nesting and its bearing on seaturtle demography are discussed. An apparent dichotomy in the"lost-year" ecology of the Tortuguero green turtles and Kemp'sridley is suggested. Some hatchlings of both evidently driftaway in major currents, while others pass this stage circlingin local eddies—Chelonia in the West Caribbean Gyre andLepidochelys kempi within the Gulf of Mexico.  相似文献   

10.
We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199–397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp''s ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp''s ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp''s ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9–76.3%) of turtles came from Mexico, 14.8% (11–18%) from Costa Rica, 5.9% (4.8–7.9%) from countries in northern South America, 3.4% (2.4–3.5%) from the United States and 1.6% (0.6–2.0%) from West African countries. Thus, the spill''s impacts may extend far beyond the current focus on the northern Gulf of Mexico.  相似文献   

11.
Jaguars (Panthera onca) are opportunistic predators that prey on large profitable prey items, such as sea turtles at nesting beaches. Here, we use jaguar and sea turtle track-count surveys, combined with satellite telemetry of one jaguar, to evaluate whether jaguar hunting behavior and movements are influenced by seasonal sea turtle nesting in the Sector Santa Rosa of Área de Conservación Guanacaste in northwest Costa Rica. We used generalized linear models to evaluate the effect of moon phase and sea surface temperature on olive ridley (Lepidochelis olivacea) and green turtle (Chelonia mydas) nesting abundance, as well as the combination of these predictors on the frequency of jaguar predation activity (proximity to nesting beaches) and movements. For home-range size and location analyses, we calculated kernel density estimates for each season at three different temporal scales. Sea turtle nesting season influenced jaguar activity patterns, as well as sea turtle abundance was related to jaguar locations and predation events, but jaguar home-range size (88.8 km2 overall) did not differ between nesting seasons or among temporal scales. Environmental conditions influenced sea turtle nesting and, as a consequence, also influenced jaguar movements and foraging activity. Our study defined the home range of a female jaguar in the tropical dry forest and its relationship to seasonally abundant turtles. Additional information related to the effect of tourism on jaguar–sea turtle interactions would improve conservation of these species at unique nesting beaches in the area.  相似文献   

12.
Oceanic dispersal characterizes the early juvenile life-stages of numerous marine species of conservation concern. This early stage may be a ‘critical period’ for many species, playing an overriding role in population dynamics. Often, relatively little information is available on their distribution during this period, limiting the effectiveness of efforts to understand environmental and anthropogenic impacts on these species. Here we present a simple model to predict annual variation in the distribution and abundance of oceanic-stage juvenile sea turtles based on species’ reproductive output, movement and mortality. We simulated dispersal of 25 cohorts (1993–2017) of oceanic-stage juveniles by tracking the movements of virtual hatchling sea turtles released in a hindcast ocean circulation model. We then used estimates of annual hatchling production from Kemp's ridley Lepidochelys kempii (n = 3), green Chelonia mydas (n = 8) and loggerhead Caretta caretta (n = 5) nesting areas in the northwestern Atlantic (inclusive of the Gulf of Mexico, Caribbean Sea and eastern seaboard of the U.S.) and their stage-specific mortality rates to weight dispersal predictions. The model's predictions indicate spatial heterogeneity in turtle distribution across their marine range, identify locations of increasing turtle abundance (notably along the U.S. coast), and provide valuable context for temporal variation in the stranding of young sea turtles across the Gulf of Mexico. Further effort to collect demographic, distribution and behavioral data that refine, complement and extend the utility of this modeling approach for sea turtles and other dispersive marine taxa is warranted. Finally, generating these spatially-explicit predictions of turtle abundance required extensive international collaboration among scientists; our findings indicate that continued conservation of these sea turtle populations and the management of the numerous anthropogenic activities that operate in the northwestern Atlantic Ocean will require similar international coordination.  相似文献   

13.
Bahia state hosts over 90% of hawksbill (Eretmochelys imbricata) nests registered in the main nesting sites monitored by Projeto Tamar-IBAMA in Brazil. The genetic diversity of this hawksbill population (n=119) was assayed through the analyses of 752 bp of the mitochondrial DNA control region in nesting females. Seven distinct haplotypes, defined by 125 polymorphic sites, were found. Most of the individuals (n=67) display four typical hawksbill haplotypes, 50 individuals display two haplotypes characteristic of the loggerhead turtle (Caretta caretta) and two individuals had a haplotype affiliated with the olive ridley (Lepidochelys olivacea). These results demonstrate hybridization between the hawksbills and two species that nest along the Bahia coast. Of special interest is the high occurrence of loggerhead × hawksbill hybrids (42%), which display loggerhead mtDNA haplotypes but are characterized morphologically as hawksbills. The true hawksbill haplotypes present only three variable sites and low genetic diversity values (h=0.358±0.069; π=0.0005±0.0001). The occurrence of several nesting individuals with identical mtDNA from another species may also suggest a long history of introgression between species producing likely F2 or further generation hybrids. Marine turtle hybrids have been previously reported, but the high frequency observed in Bahia is unprecedented. Such introgression may influence evolutionary pathways for all three species, or may introduce novel morphotypes that develop apart from the parental species. The presence of a unique hybrid swarm has profound conservation implications and will significantly influence the development and implementation of appropriate management strategies for these species.  相似文献   

14.
To establish baseline data on the distribution, abundance and threats to marine turtles in Viet Nam we conducted surveys with local fishers, community members and provincial Ministry of Fisheries staff from 17 of Viet Nam’s 29 coastal provinces. These data indicate that five species of marine turtle reside in Viet Nam’s waters (loggerhead, olive ridley, leatherback, green and hawksbill turtles), and four species nest on Viet Nam’s beaches (all of the above except the loggerhead turtle). It is evident from these data that significant declines have occurred in both foraging and nesting populations of all five marine turtle species found in Viet Nam. The greatest current threats to marine turtle populations in Viet Nam are habitat degradation, the accidental and opportunistic of turtles capture by fishers and the direct take of nesting females and their eggs. Successful conservation efforts have been made in recent years through collaboration between international Non Government Organisations and several Vietnamese Government Ministries. Continued success of these projects and the development and implementation of marine conservation policy will depend upon building awareness among Government employees, fishers and the general public about marine turtle biology, ecology, and the need to protect them.  相似文献   

15.
In West Africa, the Gulf of Guinea islands are important nesting places for four sea turtle species. The Green turtle (Chelonia mydas), the Hawksbill (Eretmochelys imbricata), the Olive Ridley (Lepidochelys olivacea) and the Leatherback (Dermochelys coriacea) turtles nest on Bioko's southern beaches. The Green, Hawksbill and Leatherback turtles breed on Príncipe and São Tomé. The Leatherback turtle nests, at least, on Annobón. The Leatherback turtle is reported on the four islands for the first time, and the Olive Ridley turtle for Bioko. Bioko is probably the most important island in terms of number of species and nesting individuals; the Green turtle being the most abundant species. However, the nesting places are at present restricted to barely 20 km along the coastline. On Príncipe and São Tomé, the most common species is the Hawksbill turtle. Sea turtle nesting populations are being severely depleted on the four islands. The main causes of cverexploitation are the meat and egg trade on Bioko and the Hawksbill shell-craft trade on São Tomé and Príncipe.  相似文献   

16.
The Kemp's ridley sea turtle (Lepidochelys kempi) is restricted to the warm temperate zone of the North Atlantic Ocean, whereas the olive ridley turtle (L. olivacea) is globally distributed in warm-temperate and tropical seas, including nesting colonies in the North Atlantic that nearly overlap the range of L. kempi. To explain this lopsided distribution, Pritchard (1969) proposed a scenario in which an ancestral taxon was divided into Atlantic and Pacific forms (L. kempi and L. olivacea, respectively) by the Central American land bridge. According to this model, the olive ridley subsequently occupied the Pacific and Indian Oceans and recently colonized the Atlantic Ocean via southern Africa. To assess this biogeographic model, a 470 bp sequence of the mtDNA control region was compared among 89 ridley turtles, including the sole L. kempi nesting population and 7 nesting locations across the range of L. olivacea. These data confirm a fundamental partition between L. olivacea and L. kempi (p=0.052-0.069), shallow separations within L. olivacea (p=0.002-0.031), and strong geographic partitioning of mtDNA lineages. The most divergent L. olivacea haplotype is observed in the Indo-West Pacific region, as are the central haplotypes in a parsimony network, implicating this region as the source of the most recent radiation of olive ridley lineages. The most common olive ridley haplotype in Atlantic samples is distinguished from an Indo-West Pacific haplotype by a single nucleotide substitution, and East Pacific samples are distingushed from the same haplotype by two nucleotide substitutions. These shallow separations are consistent with the recent invasion of the Atlantic postulated by Pritchard (1969), and indicate that the East Pacific nesting colonies were also recently colonized from the Indo-West Pacific region. Molecular clock estimates place these invasions within the last 300,000 years. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Restriction-site analyses of mitochondrial DNA (mtDNA) from the loggerhead sea turtle (Caretta caretta) reveal substantial phylogeographic structure among major nesting populations in the Atlantic, Indian, and Pacific oceans and the Mediterranean sea. Based on 176 samples from eight nesting populations, most breeding colonies were distinguished from other assayed nesting locations by diagnostic and often fixed restriction-site differences, indicating a strong propensity for natal homing by nesting females. Phylogenetic analyses revealed two distinctive matrilines in the loggerhead turtle that differ by a mean estimated sequence divergence p = 0.009, a value similar in magnitude to the deepest intraspecific mtDNA node (p = 0.007) reported in a global survey of the green sea turtle Chelonia mydas. In contrast to the green turtle, where a fundamental phylogenetic split distinguished turtles in the Atlantic Ocean and the Mediterranean Sea from those in the Indian and Pacific oceans, genotypes representing the two primary loggerhead mtDNA lineages were observed in both Atlantic–Mediterranean and Indian-Pacific samples. We attribute this aspect of phylogeographic structure in Caretta caretta to recent interoceanic gene flow, probably mediated by the ability of this temperate-adapted species to utilize habitats around southern Africa. These results demonstrate how differences in the ecology and geographic ranges of marine turtle species can influence their comparative global population structures.  相似文献   

18.
Marine turtles are large reptiles that compensate for high juvenile mortality by producing hundreds of hatchlings during a long reproductive lifespan. Most hatchlings are taken by predators during their migration to, and while resident in, the open ocean. Their survival depends upon crypticity, minimizing movement to avoid detection, and foraging efficiently to grow to a size too difficult for predators to either handle or swallow. While these behavioral antipredator tactics are known, changes in morphology accompanying growth may also improve survival prospects. These have been only superficially described in the literature. Here, we compare the similarities and differences in presumed morphological defenses of growing loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) posthatchlings, related species that differ in growth rate, timing of habitat shift (the return from oceanic to neritic locations), and size at maturity. In both species, vertebral spination and carapace widening increase disproportionally as small turtles grow, but later in ontogeny, the spines regress, sooner in ridley than in loggerhead turtles. Carapace widening occurs in both species but loggerheads are always longer than they are wide whereas in Kemp's ridley turtles, the carapace becomes as wide as long. Our analysis indicates that these changes are unrelated to when each species shifts habitat but are related to turtle size. We hypothesize that the spines function in small turtles as an early defense against gape‐limited predators, but changes in body shape function throughout ontogeny—initially to make small turtles too wide to swallow and later by presenting an almost flat and hardened surface that large predators (such as a sharks) are unable to grasp. The extremely wide carapace of the Kemp's ridley may compensate for its smaller adult size (and presumed greater vulnerability) than the loggerhead. J. Morphol. 276:929–940, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Previous studies of the olive ridley Lepidochelys olivacea population structure in the tropical eastern Pacific have indicated the existence of a single panmictic population ranging from Costa Rica to Mexico. This information has been used to design specific management measures to conserve primary nesting beaches in Mexico. However, little is known about olive ridleys in the Baja California Peninsula, their northernmost reproductive limit, where recent observations have shown differences in nesting female behaviour and size of hatchlings relative to other continental rookeries. We used mtDNA control region sequences from 137 turtles from five continental and four peninsular nesting sites to determine whether such differences correspond to a genetic distinction of Baja California olive ridleys or to phenotypic plasticity associated with the extreme environmental nesting conditions of this region. We found that genetic diversity in peninsular turtles was significantly lower than in continental nesting colonies. Analysis of molecular variance revealed a significant population structure (Phi ST = 0.048, P = 0.006) with the inclusion of peninsular samples. Our results: (i) suggest that the observed phenotypic variation may be associated with genetic differentiation and reproductive isolation; (ii) support the recent colonization of the eastern Pacific by Lepidochelys; (iii) reveal genetic signatures of historical expansion and colonization events; and (iv) significantly challenge the notion of a single genetic and conservation unit of olive ridleys in the eastern Pacific. We conclude that conservation measures for olive ridleys in Mexico should be revised to grant peninsular beaches special attention.  相似文献   

20.
Surprisingly, a high frequency of interspecific sea turtle hybrids has been previously recorded in a nesting site along a short stretch of the Brazilian coast. Mitochondrial DNA data indicated that as much as 43% of the females identified as Eretmochelys imbricata are hybrids in this area (Bahia State of Brazil). It is a remarkable find, because most of the nesting sites surveyed worldwide, including some in northern Brazil, presents no hybrids, and rare Caribbean sites present no more than 2% of hybrids. Thus, a detailed understanding of the hybridization process is needed to evaluate natural or anthropogenic causes of this regional phenomenon in Brazil, which could be an important factor affecting the conservation of this population. We analysed a set of 12 nuclear markers to investigate the pattern of hybridization involving three species of sea turtles: hawksbill (E. imbricata), loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea). Our data indicate that most of the individuals in the crossings L. olivacea × E. imbricata and L. olivacea × C. caretta are F1 hybrids, whereas C. caretta × E. imbricata crossings present F1 and backcrosses with both parental species. In addition, the C. caretta × E. imbricata hybridization seems to be gender and species biased, and we also found one individual with evidence of multispecies hybridization among C. caretta × E. imbricata × Chelonia mydas. The overall results also indicate that hybridization in this area is a recent phenomenon, spanning at least two generations or ~40 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号