首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

DsRed the red fluorescent protein (RFP) isolated from Discosoma sp. coral holds much promise as a genetically and spectrally distinct alternative to green fluorescent protein (GFP) for application in mice. Widespread use of DsRed has been hampered by several issues resulting in the inability to establish and maintain lines of red fluorescent protein expressing embryonic stem cells and mice. This has been attributed to the non-viability, or toxicity, of the protein, probably as a result of its obligate tetramerization. A mutagenesis approach directing the stepwise evolution of DsRed has produced mRFP1, the first true monomer. mRFP1 currently represents an attractive autofluorescent reporter for use in heterologous systems.  相似文献   

2.
In this study, we report that the partitioning between mitochondria and cytoplasm of two variants, mCherry and DsRed Express (DRE), of the red fluorescent protein, DsRed, fused to one of the six matrix targeting sequences (MTSs) can be affected by both MTS and amino acid substitutions in DsRed. Of the six MTSs tested, MTSs from superoxide dismutase and DNA polymerase gamma failed to direct mCherry, but not DRE to mitochondria. By evaluating a series of chimeras between mCherry and DRE fused to the MTS of superoxide dismutase, we attribute the differences in the mitochondrial partitioning to differences in the primary amino acid sequence of the passenger polypeptide. The impairment of mitochondrial partitioning closely parallels the number of mCherry-specific mutations, and is not specific to mutations located in any particular region of the polypeptide. These observations suggest that both MTS and the passenger polypeptide affect the efficiency of mitochondrial import and provide a rationale for the observed diversity in the primary amino acid sequences of natural MTSs.  相似文献   

3.
The stability of fluorescent proteins (FPs) is of great importance for their use as reporters in studies of gene expression, protein dynamics and localization in cell. A comparative analysis of conformational stability of fluorescent proteins, having different association state was done. The list of studied proteins includes EGFP (monomer of green fluorescent protein, GFP), zFP506 (tetramer GFP), mRFP1 and "dimer2" (monomer and dimmer of red fluorescent protein), DsRed1 (red tetramer). The character of fluorescence intensity changes induced by guanidine hydrochloride (GdnHCl) of these proteins differs significantly. Green tetramer zFP506 has been shown to be more stable than green monomer EGFP, red dimmer "dimer2" has been shown to be less stable than red tetramer DsRed1, while red monomer mRFP1 has been shown to be practically as stable as tetramer DsRedl. It is concluded that the quaternary structure, being an important stabilizing factor, does not represent the only circumstance dictating the dramatic variations between fluorescent proteins in their conformational stability.  相似文献   

4.
To obtain more information about the structural properties and conformational stabilities of GFP-like fluorescent proteins, we have undertaken a systematic analysis of series of green and red fluorescent proteins with different association states. The list of studied proteins includes EGFP (green monomer), zFP506 (green tetramer), mRFP1 (red monomer), "dimer2" (red dimer), and DsRed1 (red tetramer). Fluorescent and absorbance parameters, near-UV and visible CD spectra, the accessibility of the chromophores and tryptophans to acrylamide quenching, and the resistance of these proteins to the guanidine hydrochloride unfolding and kinetics of the approaching of the unfolding equilibrium have been compared. Tetrameric zFP506 was shown to be dramatically more stable than the EGFP monomer, assuming that association might contribute to the protein conformational stability. This assumption is most likely valid even though the sequences OF GFP and zPF506 are only approximately 25% identical. Interestingly, red FPs possessed comparable conformational stabilities, where monomeric mRFP1 was the most stable species under the equilibrium conditions, whereas the tetrameric DsRed1 possessed the slowest unfolding kinetics. Furthermore, EGFP is shown to be considerably less stable than mRFP1, whereas tetrameric zFP506 is the most stable species analyzed in this study. This means that the quaternary structure, being an important stabilizing factor, does not represent the only circumstance dictating the dramatic variations between fluorescent proteins in their conformational stabilities.  相似文献   

5.
Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed).   总被引:19,自引:0,他引:19  
The red fluorescent protein DsRed has spectral properties that are ideal for dual-color experiments with green fluorescent protein (GFP). But wild-type DsRed has several drawbacks, including slow chromophore maturation and poor solubility. To overcome the slow maturation, we used random and directed mutagenesis to create DsRed variants that mature 10-15 times faster than the wild-type protein. An asparagine-to-glutamine substitution at position 42 greatly accelerates the maturation of DsRed, but also increases the level of green emission. Additional amino acid substitutions suppress this green emission while further accelerating the maturation. To enhance the solubility of DsRed, we reduced the net charge near the N terminus of the protein. The optimized DsRed variants yield bright fluorescence even in rapidly growing organisms such as yeast.  相似文献   

6.
Mizuno H  Sawano A  Eli P  Hama H  Miyawaki A 《Biochemistry》2001,40(8):2502-2510
The biochemical and biophysical properties of a red fluorescent protein from a Discosoma species (DsRed) were investigated. The recombinant DsRed expressed in E. coli showed a complex absorption spectrum that peaked at 277, 335, 487, 530, and 558 nm. Excitation at each of the absorption peaks produced a main emission peak at 583 nm, whereas a subsidiary emission peak at 500 nm appeared with excitation only at 277 or 487 nm. Incubation of E. coli or the protein at 37 degrees C facilitated the maturation of DsRed, resulting in the loss of the 500-nm peak and the enhancement of the 583-nm peak. In contrast, the 500-nm peak predominated in a mutant DsRed containing two amino acid substitutions (Y120H/K168R). Light-scattering analysis revealed that DsRed proteins expressed in E. coli and HeLa cells form a stable tetramer complex. DsRed in HeLa cells grown at 37 degrees C emitted predominantly at 583 nm. The red fluorescence was imaged using a two-photon laser (Nd:YLF, 1047 nm) as well as a one-photon laser (He:Ne, 543.5 nm). When fused to calmodulin, the red fluorescence produced an aggregation pattern only in the cytosol, which does not reflect the distribution of calmodulin. Despite the above spectral and structural complexity, fluorescence resonance energy transfer (FRET) between Aequorea green fluorescent protein (GFP) variants and DsRed was achieved. Dynamic changes in cytosolic free Ca2+ concentrations were observed with red cameleons containing yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), or Sapphire as the donor and RFP as the acceptor, using conventional microscopy and one- or two-photon excitation laser scanning microscopy. Particularly, the use of the Sapphire-DsRed pair rendered the red cameleon tolerant of acidosis occurring in hippocampal neurons, because both Sapphire and DsRed are extremely pH-resistant.  相似文献   

7.
Fluorescent proteins have proven to be excellent tools for live-cell imaging studies. In addition to green fluorescent protein (GFP) and its variants, recent progress was achieved in the development of monomeric red fluorescent proteins (mRFPs) that show improved properties in respect to maturation and intracellular fluorescence. mRFPmars, a red fluorescent protein designed especially for the use in Dictyostelium, has been employed to tag different proteins for live-cell investigations in Dictyostelium. mRFPruby, which differs in sequence from mRFPmars in four amino acids, has a codon usage optimised for the application in mammalian cells. Here, we show that both mRFP variants can also be applied for localisation studies in other organisms. mRFPmars was expressed in Hydra and fused to the Bcl-2 family protein Bax. mRFPruby in combination with histone 2B was expressed in Drosophila S2 cells to monitor mitosis. Using mouse cell lines, mRFPruby fused to beta-actin was assayed with high spatial resolution to study details of actin cytoskeleton dynamics. In addition, we demonstrate that both mRFP variants are also suitable for dual-colour microscopy in the different species.  相似文献   

8.
The use of the green fluorescent protein (GFP) to label specific cell types and track gene expression in animal models, such as mice, has evolved to become an essential tool in biological research. Transgenic animals expressing genes of interest linked to GFP, either as a fusion protein or transcribed from an internal ribosomal entry site (IRES) are widely used. Enhanced GFP (eGFP) is the most common form of GFP used for such applications. However, a red fluorescent protein (RFP) would be highly desirable for use in dual‐labeling applications with GFP derived fluorescent proteins, and for deep in vivo imaging of tissues. Recently, a new generation of monomeric (m)RFPs, such as monomeric (m)Cherry, has been developed that are potentially useful experimentally. mCherry exhibits brighter fluorescence, matures more rapidly, has a higher tolerance for N‐terminal fusion proteins, and is more photostable compared with its predecessor mRFP1. mRFP1 itself was the first true monomer derived from its ancestor DsRed, an obligate tetramer in vivo. Here, we report the successful generation of a transgenic mouse line expressing mCherry as a fluorescent marker, driven by the ubiquitin‐C promoter. mCherry is expressed in almost all tissues analyzed including pre‐ and post‐implantation stage embryos, and white blood cells. No expression was detected in erythrocytes and thrombocytes. Importantly, we did not encounter any changes in normal development, general physiology, or reproduction. mCherry is spectrally and genetically distinct from eGFP and, therefore, serves as an excellent red fluorescent marker alone or in combination with eGFP for labelling transgenic animals. genesis 48:723–729, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Fluorescent proteins are genetically encoded, easily imaged reporters crucial in biology and biotechnology. When a protein is tagged by fusion to a fluorescent protein, interactions between fluorescent proteins can undesirably disturb targeting or function. Unfortunately, all wild-type yellow-to-red fluorescent proteins reported so far are obligately tetrameric and often toxic or disruptive. The first true monomer was mRFP1, derived from the Discosoma sp. fluorescent protein "DsRed" by directed evolution first to increase the speed of maturation, then to break each subunit interface while restoring fluorescence, which cumulatively required 33 substitutions. Although mRFP1 has already proven widely useful, several properties could bear improvement and more colors would be welcome. We report the next generation of monomers. The latest red version matures more completely, is more tolerant of N-terminal fusions and is over tenfold more photostable than mRFP1. Three monomers with distinguishable hues from yellow-orange to red-orange have higher quantum efficiencies.  相似文献   

10.
The transsynaptic retrograde transport of the pseudorabies virus Bartha (PRV-Bartha) strain has become an important neuroanatomical tract-tracing technique. Recently, dual viral transneuronal labeling has been introduced by employing recombinant strains of PRV-Bartha engineered to express different reporter proteins. Dual viral transsynaptic tracing has the potential of becoming an extremely powerful method for defining connections of single neurons to multiple neural circuits in the brain. However, the present use of recombinant strains of PRV expressing different reporters that are driven by different promoters, inserted in different regions of the viral genome, and detected by different methods limits the potential of these recombinant virus strains as useful reagents. We previously constructed and characterized PRV152, a PRV-Bartha derivative that expresses the enhanced green fluorescent protein. The development of a strain isogenic to PRV152 and differing only in the fluorescent reporter would have great utility for dual transsynaptic tracing. In this report, we describe the construction, characterization, and application of strain PRV614, a PRV-Bartha derivative expressing a novel monomeric red fluorescent protein, mRFP1. In contrast to viruses expressing DsRed and DsRed2, PRV614 displayed robust fluorescence both in cell culture and in vivo following transsynaptic transport through autonomic circuits afferent to the eye. Transneuronal retrograde dual PRV labeling has the potential to be a powerful addition to the neuroanatomical tools for investigation of neuronal circuits; the use of strain PRV614 in combination with strain PRV152 will eliminate many of the pitfalls associated with the presently used pairs of PRV recombinants.  相似文献   

11.
Vogel M  Vorreiter J  Nassal M 《Proteins》2005,58(2):478-488
Self-organizing assemblies such as viral capsids may be used as symmetrical molecular platforms for the display of heterologous sequences, with applications ranging from vaccines to structural studies. The 183-amino-acid hepatitis B virus (HBV) core protein assembles spontaneously into icosahedral capsid-like particles (CLPs). The most exposed, and most immunogenic, substructure on the CLPs is a small loop that connects two long antiparallel alpha-helices which act as dimerization interface. Ninety (90) or 120 dimers multimerize into the capsid; the four-helix bundles formed by the dimers protrude as spikes from the surface. We recently demonstrated that the entire enhanced green fluorescent protein (eGFP) can be inserted into this loop, yielding CLPs that natively displayed eGFP on their surface. The central location of the insertion site requires that any insert be fixed to the carrier via both termini, with corresponding restrictions regarding insert size and structure. eGFP obviously satisfied these criteria but, surprisingly, all attempts to produce CLPs with the isostructural red fluorescent proteins DsRed1, DsRed2, and HcRed failed. Suspecting their oligomerization tendency to be responsible, we generated fusions containing instead monomeric yellow, cyan, and red fluorescent proteins (mYFP, mCFP and mRFP1). This strongly increased the yields of YFP and CFP-CLPs, and it allowed for the first time to efficiently generate red fluorescent CLPs. Hence insert quaternary structure is a highly critical factor for CLP assembly. These data have important implications for the rational design of self-assembling fusion proteins.  相似文献   

12.
The genetically encoded FRET-pair was developed on the basis of terbium-binding peptide and red fluorescent protein DsRed2. To study fluorescence resonance energy transfer within the FRET-pair, the engineered construction was obtained, where sequences of terbium-binding peptide and red fluorescent protein DsRed2 were fused in single reading frame. The expression of this construction in strain E. coli BL21(DE3) was studied and conditions of synthesis, isolation, and purification of recombinant protein were optimized. The hydrodynamic radius of hybrid protein was determined by the method of dynamic diffusion. Energy transfer between sensitized terbium and red fluorescent protein was confirmed by the methods of fluorescence spectroscopy. The obtained FRET-pair may be used both for studies in vitro and as reporters in living cells.  相似文献   

13.
Genetically altered or tagged Vibrio fischeri strains can be observed in association with their mutualistic host Euprymna scolopes, providing powerful experimental approaches for studying this symbiosis. Two limitations to such in situ analyses are the lack of suitably stable plasmids and the need for a fluorescent tag that can be used in tandem with green fluorescent protein (GFP). Vectors previously used in V. fischeri contain the p15A replication origin; however, we found that this replicon is not stable during growth in the host and is retained by fewer than 20% of symbionts within a day after infection. In contrast, derivatives of V. fischeri plasmid pES213 were retained by approximately 99% of symbionts even 3 days after infection. We therefore constructed pES213-derived shuttle vectors with a variety of selectable and visual markers. To include a visual tag that can be used in conjunction with GFP, we compared seven variants of the DsRed2 red fluorescent protein (RFP): mRFP1, tdimer2(12), DsRed.T3, DsRed.T4, DsRed.M1, DsRed.T3_S4T, and DsRed.T3(DNT). The last variant was brightest, displaying >20-fold more fluorescence than DsRed2 in V. fischeri. RFP expression did not detectably affect the fitness of V. fischeri, and cells were readily visualized in combination with GFP-expressing cells in mixed infections. Interestingly, even when inocula were dense enough that most E. scolopes hatchlings were infected by two strains, there was little mixing of the strains in the light organ crypts. We also used constitutive RFP in combination with the luxICDABEG promoter driving expression of GFP to visualize the spatial and temporal induction of this bioluminescence operon during symbiotic infection. Our results demonstrate the utility of pES213-based vectors and RFP for in situ experimental approaches in studies of the V. fischeri-E. scolopes symbiosis.  相似文献   

14.
The tetrameric red fluorescent protein, DsRed, undergoes a rapid red to green color change evoked by short wavelength (lambda < 760 nm) femtosecond irradiation--a phenomenon that underpins the application of DsRed as an "optical highlighter" probe for tracking live cells, organelles, and fusion proteins. This color change results from selective bleaching of the "mature" red-emitting species of DsRed and an enhancement of emission from the "immature" green species, likely caused by dequenching of fluorescence resonance energy transfer occurring within the protein tetramer. Here, we have examined the role of residues known to influence the rate and completeness of chromophore maturation on the cellular and biophysical properties of DsRed mutants. Surprisingly, a single amino acid mutation (N42Q) with increased basal green emission yet rapid chromophore maturation displayed a multiphoton-evoked color change that was brighter, more consistent, more vivid, and easier to evoke than DsRed, despite the larger proportion of green chromophores. Rapidly maturing mutants with more complete chromophore maturation, exhibited little color change and increased resistance to multiphoton bleaching. We describe improved optical and cell biological properties for two DsRed-derived variants which we showcase in photolabeling studies, and discuss these data in terms of implications for fluorescence resonance energy transfer-based probes.  相似文献   

15.
Protease specificity determination is an important first step when characterizing novel proteases. Given the large number of proteases that are known to exist from genomic sequencing efforts, we reason that sensitive, reliable, and high-throughput methods to determine protease specificity must be developed. This study describes the construction and initial characterization of a protein based FRET library using the fluorescent proteins GFP and DsRed for such a purpose. Using a DNA "cassette" that allowed for directional insertion of annealed oligonucleotides between the genes encoding the GFP and DsRed proteins, we constructed a library using a mixture of standard nucleotide bases at 27 positions in the center of the oligonucleotide cassette. This resulted in a randomized linker region between these fluorescent donor-acceptor pairs to produce substrates with varied amino acids located between the proteins. Kinetic assays were then performed and monitored using the increase in GFP fluorescence to arrive at relative reaction velocities for a set of enzymes. These results demonstrated the ability of the enzymes tested to discriminate between different substrates and the resistance of GFP and DsRed to proteolysis. Colony screening, using color development and restriction enzyme digests, were shown to help eliminate DNA samples in the library that contained stop codons and/or deletions and a flow plan for the efficient use of the library is presented.  相似文献   

16.
Genetically altered or tagged Vibrio fischeri strains can be observed in association with their mutualistic host Euprymna scolopes, providing powerful experimental approaches for studying this symbiosis. Two limitations to such in situ analyses are the lack of suitably stable plasmids and the need for a fluorescent tag that can be used in tandem with green fluorescent protein (GFP). Vectors previously used in V. fischeri contain the p15A replication origin; however, we found that this replicon is not stable during growth in the host and is retained by fewer than 20% of symbionts within a day after infection. In contrast, derivatives of V. fischeri plasmid pES213 were retained by ~99% of symbionts even 3 days after infection. We therefore constructed pES213-derived shuttle vectors with a variety of selectable and visual markers. To include a visual tag that can be used in conjunction with GFP, we compared seven variants of the DsRed2 red fluorescent protein (RFP): mRFP1, tdimer2(12), DsRed.T3, DsRed.T4, DsRed.M1, DsRed.T3_S4T, and DsRed.T3(DNT). The last variant was brightest, displaying >20-fold more fluorescence than DsRed2 in V. fischeri. RFP expression did not detectably affect the fitness of V. fischeri, and cells were readily visualized in combination with GFP-expressing cells in mixed infections. Interestingly, even when inocula were dense enough that most E. scolopes hatchlings were infected by two strains, there was little mixing of the strains in the light organ crypts. We also used constitutive RFP in combination with the luxICDABEG promoter driving expression of GFP to visualize the spatial and temporal induction of this bioluminescence operon during symbiotic infection. Our results demonstrate the utility of pES213-based vectors and RFP for in situ experimental approaches in studies of the V. fischeri-E. scolopes symbiosis.  相似文献   

17.
18.
Dietrich C  Maiss E 《BioTechniques》2002,32(2):286, 288-90, 292-3
GFP from Aequorea victoria is a standard genetic marker widely used to visualize cellular events in a noninvasive manner. For simultaneous imaging of different processes, in vivo mutants of GFP with shifted wavelength spectra (e.g., blue fluorescent protein) are conventionally used. The recently reported red fluorescent protein from Discosoma sp., DsRed, represents a new marker that can be used together with GFP variants for multicolor imaging. DsRed is an interesting marker protein for use in plants because of its red-shifted wavelength spectrum that will avoid damaging cells and tissues by excitation light. In this report, we show that DsRed is an excellent marker in higher plants in spite of the interfering red autofluorescence of chlorophyll, which can be eliminated by using the appropriate filter sets. Transient expression of DsRed1-C1 and a soluble-modified, red-shifted GFP variant has been carried out both individually and jointly in the epidermal cells of three different Nicotiana species and Chenopodium quinoa, which gives rise to dual labeling in plants. For this purpose, a human codon-optimized variant of DsRed has been adopted for expression in plants. Moreover, the DsRed reporter gene was expressed by using a labeled plant viral vector derived from an infectious full-length clone of potato virus X.  相似文献   

19.
Earlier mutagenesis of the red fluorescent protein drFP583, also called DsRed, resulted in a mutant named Fluorescent Timer (Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A. V., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I., and Siebert, P. (2000) Science 290, 1585--1588). Further mutagenesis generated variants with novel and improved fluorescent properties. The mutant called AG4 exhibits only green fluorescence. The mutant, called E5up (V105A), shows complete fluorophore maturation, eventually eliminating residual green fluorescence present in DsRed. Finally, the mutant, called E57 (V105A, I161T, S197A), matures faster than DsRed as demonstrated in vitro with purified protein and in vivo with recombinant protein expressed in Escherichia coli and Xenopus leavis. Comparative analysis of the mutants in the context of the crystal structure of DsRed suggests that mutants with free space around the fluorophore mature faster and more completely.  相似文献   

20.
We demonstrate that a mutation-prone virus engineered to express a foreign gene is an expedient means for generating novel mutant nonviral proteins in mammalian cells. Using vesicular stomatitis virus to express a gene coding for a fluorescent DsRed protein, a number of green mutant variants including a new variant not previously described were rapidly isolated from infected cells, sequenced, and cloned. Similar methods may be useful in the development of physiologically sensitive fluorescent reporter proteins and directed evolution or mutagenesis of proteins in general.Directed protein evolution often employs random mutagenesis to generate mutant sequences of genes of interest that can be expressed and screened to identify new proteins with altered characteristics. Early random mutagenesis strategies using radiation and chemical mutagens such as ethyl methanesulfonate have today been replaced by the use of error-prone DNA polymerases (17). The development of new fluorescent proteins (20) has made use of error-prone PCR (4) to generate mutant variants that can be screened by examining plates of Escherichia coli colonies under fluorescent illumination (3, 16) or by fluorescence-activated cell sorting (2, 18). Whereas these procedures have proven effective, they can also be labor-intensive, with plate-based screening at times requiring the examination of hundreds of plates and over 100,000 E. coli colonies for the identification of a single fluorescently novel variant (3). An additional drawback is that bacterium-based screening of mutants is of limited use in the development of fluorescent reporter proteins that alter their fluorescence in response to changing physiological conditions within a cell. For these, a mammalian cell-based method to screen for fluorescent mutants would be beneficial. Here we report the use of a recombinant vesicular stomatitis virus (VSV) to generate mutated nonviral genes coding for new proteins. We focused on a gene coding for wild-type DsRed that, due to spontaneous viral mutations, generated mutant green fluorescent variants that were easily visualized and isolated from infected cultures of mammalian cells.Unlike most eukaryotic and prokaryotic cells, which have very low mutation rates, some viruses, particularly RNA viruses, have high mutation rates due to a lack of proofreading activity of the RNA polymerase. One such virus is VSV, a single-stranded, negative-sense RNA virus of the Rhabdoviridae family with a wild-type genome approximately 11.2 kb in length that can be engineered to accept an additional 4.5-kb gene insert (21). Genomic replication of VSV is error prone, with approximately 1 nucleotide mutation per viral genome per replication cycle (7). Using recombinant versions of VSV with a gene insert coding for a fluorescent protein, one can perform a plaque assay to examine fluorescent plaques formed by VSV-1′DsRed (21; also called VSV-p1-RFP [24]), a recombinant VSV that expresses a codon-optimized DsRed gene (DsRed1) inserted at the first position (1′) of the viral genome (Fig. (Fig.1A1A).Open in a separate windowFIG. 1.VSV mutagenesis of DsRed1. (A) Diagram of the recombinant VSV-1′DsRed RNA genome showing position of the DsRed1 gene (DR) and N, P, M, G, and L viral genes. (B) Example of mutant green fluorescent VSV-1′DsRed plaque amid a field of red fluorescent plaques grown on BHK-21 cells. Bar, 200 μm. (C) A 35-mm culture well of BHK-21 cells inoculated with 100,000 PFU of VSV-1′DsRed. Arrows highlight the green fluorescent plaques that were still identifiable despite the high number of PFU used to inoculate the culture. Inset is magnification of plaque (white arrow). (D) A mixture of red and green fluorescent plaques that developed from an agarose punch extract of a single green plaque that arose in a culture infected with 25,000 PFU. Bar, 500 μm (C and D). (E) A U-373 human glioblastoma cell transfected with green mutant variant gene DsRed-F91L. Bar, 25 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号