首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the role of phytochelatins in short-time uptake of Cd(2+) into the cytosol of wheat protoplasts, a new method was applied, using fluorescence microscopy and the heavy metal-specific fluorescent dye, 5-nitrobenzothiazole coumarin, BTC-5N. The uptake of Cd(2+) into protoplasts from 5- to 7-day-old wheat seedlings (Triticum aestivum, L. cv. Kadett) was lower in protoplasts from seedlings raised in the presence of 1 microM CdCl(2), than in the absence. Presence of CdCl(2) in the cultivation medium increased the content of phytochelatins (PCs) in the protoplasts. When seedlings were raised in the presence of both Cd(2+) and buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, only little PC was found in the protoplasts. Pre-treatment with BSO alone did not affect the content of PC, but inhibited that of GSH. The inhibition of GSH was independent of pre-treatment with Cd(2+). Unidirectional flux analyses, using (109)Cd(2+), showed approximately the same uptake pattern of Cd(2+) as did the fluorescence experiments showing the cytosolic uptake of Cd(2+). Thus, the diminished uptake of Cd(2+) into protoplasts from cadmium-pre-treated plants was not depending on PCs. Instead, it is likely that pre-treatment with Cd(2+) causes a down-regulation of the short-term Cd(2+) uptake, or an up-regulation of the Cd(2+) extrusion. Moreover, since addition of Cd(2+) to protoplasts from control plants caused a cytosol acidification, it is likely that a Cd(2+/)H(+)-antiport mechanism is involved in the extrusion of Cd(2+) from these protoplasts.  相似文献   

2.
Photosynthetic CO2-fixation of mesophyll protoplasts of lambs lettuce [Valerianella locusta (L.) Betcke] was inhibited by short time exposure to Cd+. Inhibition was due to uptake of the metal ion into the protoplasts and increased with increasing Cd2+ concentrations and the time of preincubation. A 10 min pretreatment at 2 mM Cd2+ reduced CO2-fixation by 40–60%. Inhibition of photosynthesis was independent of the light intensity to which the protoplasts were exposed. Measurement of the lightinduced electrochromic pigment absorption change at 518nm and chlorophyll fluorescence studies revealed that primary photochemical reactions associated with the thylakoid membranes were not affected by the metal ion. Also, light activation of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) was not inhibited by Cd2+. Under rate-limiting CO2 concentrations, inhibition of CO2-fixation was smaller than at Vmax of CO2 reduction indicating that the carboxylation reaction of the Calvin cycle is not susceptible to Cd2+. Cd2+ treatment of protoplasts significantly extended the lagphase of CO2-supported O2-evolution and partly inhibited light activation of the glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) and the ribulose-5-phosphate kinase (EC 2.7.1.19). Measurement of relative concentrations of [14C]-labeled Calvin cycle intermediates showed that Cd2+ caused a decrease in the 3-phosphoglycerate/triose phosphate ratio and an increase in the triose phosphate/ribulose-1,5-bisphosphate ratio. It is concluded that in protoplasts Cd2+ affects photosynthesis mainly at the level of dark reactions and that the site of inhibition may be localized in the regenerative phase of the Calvin cycle.  相似文献   

3.
The effects of cadmium on the growth and respiration of two strains of Bacillus subtilis are compared to the accumulation of Cd by viable and cyanide-killed cells, protoplasts and cell fractions of the strains. Growth and respiration of strain 1A1 were significantly inhibited at 10g Cd2+/ml while the growth and respiration of strain 1A1R, a selected mutant of 1A1, were only slightly affected. Similarly, 1A1R protoplasts were more resistant to Cd than were 1A1 protoplasts. The differential resistance of the strains correlates with the accumulation of Cd by the two strains, with 1A1 accumulating approximately 10 times the level of Cd after a 4 h exposure to 1 g Cd2+/ml. The distributions of Cd throughout the cells, however, were similar between strains. Based on the accumulation of Cd by cyanide-killed protoplasts, uptake of Cd by 1A1 appears to be an active process, while for 1A1R, Cd accumulation is independent of protoplast viability.Non-standard abbreviations SMM Subtilis Minimal Medium - AAS Atomic Absorption Spectrophotometry - TSA Trypticase Soy Agar - PCA Plate Count Agar - INT 2-p-iodophenyl-3-p-nitrophenyl-5-phenyl-2H tetrazolium chloride - dd H2O double distilled demineralized water - OD Optical Density  相似文献   

4.
Soil contamination with heavy metals has become a worldwide problem, leading to losses in agricultural yield and hazardous human health effects as they enter the food chain. The present investigation was undertaken to examine the influence of cadmium (Cd2+) on the wheat (Triticum aestivum L.) plant. Cd2+ accumulation and distribution in 3-wk-old seedlings grown in nutrient medium containing varying concentrations of Cd2+ (control, 0.25, 0.50, 1.0, 2.5, and 5.0 mg/L) was monitored. The effect of varying Cd2+ concentrations up to 21 d on biomass productivity, plant growth, photosynthetic pigments, protein, amino acids, starch, soluble sugars, and essential nutrients uptake was studied in detail to explore the level up to which the plant can withstand the stress of heavy metal. Plants treated with 0.5, 1.0, 2.5, and 5.0 mg/L Cd2+ showed symptoms of heavy-metal toxicity as observed by various morphological parameters which were recorded with the growth of plants. The root, shoot-leaf length and the root, shoot-leaf biomass progressively decreased with increasing Cd2+ concentration in the nutrient medium. Cd2+ uptake and accumulation was found to be maximum during the initial growth period. Cd2+ also interfered with the nutrients uptake, especially calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe2+), zinc (Zn2+), and manganese (Mn2+) from the growth medium. Growth reduction and altered levels of major biochemical constituents such as chlorophyll, protein, free amino acids, starch, and soluble sugars that play a major role in plant metabolism were observed in response to varying concentrations of Cd2+ in the nutrient medium. In the present study, the effects of Cd2+ on growth, biomass productivity, mineral nutrients, chlorophyll biosynthesis, protein, free amino acid, starch, and soluble sugars in wheat plants was estimated to establish an overall picture of the Cd2+ toxicity at structural and functional levels.  相似文献   

5.
This study investigated cadmium (Cd) uptake in Elodea canadensis shoots under different photosynthetic conditions, and its effects on internal (cytosolic) and external pH. The plants were grown under photosynthetic (light) or non‐photosynthetic (dark or in the presence of a photosynthetic inhibitor) conditions in the presence or absence of CdCl2 (0.5 μm ) in a medium with a starting pH of 5.0. The pH‐sensitive dye BCECF‐AM was used to monitor cytosolic pH changes in the leaves. Cadmium uptake in protoplasts and leaves was detected with a Cd‐specific fluorescent dye, Leadmium Green AM, and with atomic absorption spectrophotometry. During cultivation for 3 days without Cd, shoots of E. canadensis increased the pH of the surrounding water, irrespective of the photosynthetic conditions. This medium alkalisation was higher in the presence of CdCl2. Moreover, the presence of Cd also increased the cation exchange capacity of the shoots. The total Cd uptake by E. canadensis shoots was independent of photosynthetic conditions. Protoplasts from plants exposed to 0.5 μm CdCl2 for 3 days did not exhibit significant change in cytosolic [Cd2+] or pH. However, exposure to CdCl2 for 7 days resulted in increased cytosolic [Cd2+] as well as pH. The results suggest that E. canadensis subjected to a low CdCl2 concentration initially sequesters Cd into the apoplasm, but under prolonged exposure, Cd is transported into the cytosol and subsequently alters cytosolic pH. In contrast, addition of 10–50 μm CdCl2 directly to protoplasts resulted in immediate uptake of Cd into the cytosol.  相似文献   

6.
Cations, including calcium, magnesium, potassium, sodium, copper, iron, nickel and zinc, inhibited (up to 40%) extracellular binding and intracellular uptake of cadmium by Lemna polyrhiza in solution culture. Test plants showed a high capacity of extracellular cadmium binding which was competitively inhibited by copper, nickel and zinc; however, calcium, magnesium and potassium caused non-competitive inhibition. Iron and sodium increased K m and decreased V max, thereby causing mixed inhibition of extracellular binding. Intracellular cadmium uptake displayed Michaelis-Menten kinetics. It was competitively inhibited by calcium, magnesium, iron, nickel and zinc. Monovalent cations (sodium and potassium) caused non-competitive and copper caused mixed inhibition of intracellular cadmium uptake. Thus, high levels of cations and metals in the external environment should be expected to lower the cadmium accumulation efficiency of L. polyrhiza.  相似文献   

7.
Summary 1. Voltage-activated ionic currents of three identified neurons ofLymnaea stagnalis L. were compared in control snails and in animals having been exposed to a cadmium- or lead-enriched environment for 2 weeks. We determined the presence, amplitude, and changes, if any, in the current-voltage characteristics of calcium and potassium currents in each of the three neurons from each of the three groups of animals. Finally, we have compared the effects of acute administration of Cd2+ or Pb2+ on neurons from control and chronically exposed animals.2. Chronic exposure to cadmium resulted in a near doubling of the high voltage-activated calcium current.3. No differences were found in the effects of acute application of Cd2+ or Pb2+ on neurons of pretreated and control animals. Cadmium was a potent blocker of the Ca current in either case, while lead caused only a 20% inhibition of the Ca current in neurons of both control and lead-exposed animals.4. Potassium currents were affected in both Cd2+- and Pb2+-exposed animals. While the sustained outward current was not influenced noticeably, the fast K current was affected in different ways in different neurons. Some did not show this current in the controls but expressed it in neurons from the exposed animals. Other neurons showed the current in the controls and its depression in exposed animals. Acute application of cadmium did not modulate the K current, but lead enhanced the peak amplitude of the transient K current in neurons of both exposed and control snails.  相似文献   

8.
The effects of cadmium on the growth rate, catalase activity, and peroxisome proliferation in yeast,Candida albicans, were evaluated. The yeast growth was markedly inhibited by 1 mM cadmium at the initial hours. The toxic effect of cadmium on the cell growth persisted. The catalase activity of the cells treated with 1 mM Cd2+ first decreased, and then rose at 24 h to about 2.6 times that of the controls. The average number of peroxisomes per cell in the yeast treated with 1 mM Cd2+ was about sixfold higher than the control groups. The proliferation of peroxisomes and the increase of catalase activity following cadmium toxicity gives credence to the hypothesis that cadmium toxicity is related to its potential to induce oxidative stress in cells.  相似文献   

9.
Despite intense research, the mechanism of Cd2+ toxicity on photosynthesis is still elusive because of the multiplicity of the inhibitory effects and different barriers in plants. The quick Cd2+ uptake in Synechocystis PCC 6803 permits the direct interaction of cadmium with the photosynthetic machinery and allows the distinction between primary and secondary effects. We show that the CO2‐dependent electron transport is rapidly inhibited upon exposing the cells to 40 µm Cd2+ (50% inhibition in ~15 min). However, during this time we observe only symptoms of photosystem I acceptor side limitation and a build of an excitation pressure on the reaction centres, as indicated by light‐induced P700 redox transients, O2 polarography and changes in chlorophyll a fluorescence parameters. Inhibitory effects on photosystem II electron transport and the degradation of the reaction centre protein D1 can only be observed after several hours, and only in the light, as revealed by chlorophyll a fluorescence transients, thermoluminescence and immunoblotting. Despite the marked differences in the manifestations of these short‐ and long‐term effects, they exhibit virtually the same Cd2+ concentration dependence. These data strongly suggest a cascade mechanism of the toxic effect, with a primary effect in the dark reactions.  相似文献   

10.
The effects of Cd2+ and NaCl, applied together or separately, on growth and uptake of Cd2+ were determined for the halophyte Sesuvium portulacastrum L. Seedlings were cultivated in the presence of 50 or 100 μmol L−1 Cd2+ alone or combined with 100 or 400 mmol L−1 NaCl. Data showed that alone, Cd2+ induced chlorosis, necrosis, and inhibited growth. Addition of NaCl to Cd2+-containing medium restored growth and alleviated the toxicity, however. NaCl also enhanced the amounts of Cd2+ accumulated in the shoots. All Cd2+ treatment reduced K+ and Ca2+ uptake and transport to the shoots. Accumulation of Na+ in the shoots was not affected by Cd2+, however. Thus S. portulacastrum maintained its halophytic characteristics in the presence of Cd2+. We suggest this halophyte could be used for phytoextraction of Cd2+ from salt-contaminated sites.  相似文献   

11.
The tolerance to Cd2+ and possible mechanisms of Cd2+ detoxification by 178 free-living bacteria isolated from sea water, associated with marine animals (a mussel Crenomytilus grayanus, a scallop Patinopecten yessoensis), and eelgrass Zostera marina collected in The Sea of Japan and The Sea of Okhotsk have been studied. The concentrations of 25 and 50 mg Cd2+/L were highly toxic and inhibited the growth from 54% to 78% of the total bacteria studied. The free-living bacteria isolated from seawater samples (up to 50%) were tolerant to high concentrations of cadmium. Marine gamma-proteobacteria tolerated Cd2+ by the activation of different detoxifying mechanisms. The strain Halomonas sp. KMM 734 isolated from seawater prevented the uptake of Cd2+ into bacterial cells. The chromosomal cadmium resistance system of Pseudoalteromonas citrea KMM 461 and Marinobacter sp. KMM 181 was found to be similar to class III metallothioneins (also known as phytochelatins). Received: 25 July 2001 / Accepted: 27 August 2001  相似文献   

12.
周丽娜  周静  李辉信  胡锋  徐莉 《生态学报》2017,37(19):6616-6623
通过外源添加不同浓度镉离子(Cd~(2+))来研究复合污染条件下镉(Cd)对苯并(a)芘(Ba P)在蚯蚓体内不同亚细胞组分(组分C:细胞溶质组分;组分D:固体颗粒组分;组分E:细胞碎片组分)中的分配积累情况,并探究其内在机制。结果表明,Ba P主要分布于蚯蚓的细胞碎片组分,其次为固体颗粒组分,在细胞溶质组分中的浓度最低。在Cd~(2+)添加处理下,随着Cd~(2+)浓度的增加,3个细胞组分中的Ba P浓度呈先降低后升高的趋势。随着Cd~(2+)浓度的增加,3个亚细胞组分中的蛋白含量与乙酰胆碱酯酶(ACh E)活性均呈先升高后下降的趋势;而蚯蚓细胞溶质和细胞碎片组分中的谷胱甘肽S-转移酶(GST)活性呈先下降后上升的趋势,但固体颗粒组分中逐渐增加。相关性分析表明,蚯蚓细胞溶质和细胞碎片组分中的蛋白含量与其对应组分中的Ba P浓度呈显著负相关;细胞溶质组分中的ACh E活性与该组分中的Ba P浓度呈显著负相关;而GST的活性与Ba P浓度没有显著相关性。综上所述,Ba P主要分配积累在细胞碎片组分中,Cd~(2+)可能通过影响蛋白含量及ACh E的活性,从而影响Ba P在细胞碎片和细胞溶质组分中的积累,使得Ba P的浓度随着Cd~(2+)浓度的增加呈现先降低后升高的趋势。  相似文献   

13.
Bacillus subtilis, which accumulates cadnium via the manganese transport system, may acquire cadmium resistance by chromosomal mutations that reduce Cd2+ uptake without affecting Mn2+ transport. A cadmium resistance mutation,cdr-1, maps at about 40° on theB. subtilis chromosome. The deduced map order wasarol-narB-mtlB-cdr-dal-purB. Thecdr mutations in four other, independently isolated Cd2+-resistant mutants demonstrating reduced Cd2+ uptake also mapped betweenaroI anddal.  相似文献   

14.
15.
Intracellular cadmium (Cd2+) ion accumulation and the ability to produce specific Cd2+ ion chelators was studied in the methylotrophic yeast Hansenula polymorpha. Only one type of Cd2+ intracellular chelators, glutathione (GSH), was identified, which suggests that sequestration of this heavy metal in H. polymorpha occurs similarly to that found in Saccharomyces cerevisiae, but different to Schizosaccharomys pombe and Candida glabrata which both synthesize phytochelatins. Cd2+ ion uptake in the H. polymorpha wild-type strains appeared to be an energy dependent process. It was found that Δgsh2 mutants, impaired in the first step of GSH biosynthesis, are characterized by increase in net Cd2+ ion uptake by the cells, whereas Δgsh1met1 and Δggt1 mutants impaired in sulfate assimilation and GSH catabolism, respectively, lost the ability to accumulate Cd2+ intracellularly. Apparently H. polymorpha, similarly to S. cerevisiae, forms a Cd-GSH complex in the cytoplasm, which in turn regulates Cd2+ uptake. Genes GSH1/MET1 and GGT1 are involved in maturation and metabolism of cellular Cd-GSH complex, respectively. Transport of [3H]N-ethylmaleimide-S-glutathione ([3H]NEM-SG) conjugate into crude membrane vesicules, purified from the wild-type cells of H. polymorpha appeared to be MgATP dependent, uncoupler insensitive and vanadate sensitive. We suggest that MgATP dependent transporter involved in Cd-GSH uptake in H. polymorpha, is similar to S. cerevisiae Ycf1-mediated vacuolar transporter responsible for accumulation of organic GS-conjugates and Cd-GSH complex.  相似文献   

16.
The bioaccumulation of cadmium by the white rot fungus Pleurotus sajor-caju onto dry biomass was investigated using aqueous media with concentrations in the range of 0.125 mM–1.0 mM The highest cadmium uptake (between 88.9 and 91.8%) was observed with aerobic fungal biomass from the exponential growth phase. Up to 1.0 mM cadmium gradually inhibited mycelium development, but never blocked it completely. Freeze-dried, oven-dried and non-metabolizing live Pleurotus sajor-caju biomass types were tested for their capacity to adsorb the test ion Cd2+ within the pH range of 4.5 to 6.0. Freeze–dried biomass proved to be the most efficient biomass type for Cd2+ metal adsorption. Therefore, Pleurotus sajor-caju may be used for heavy metal removal and bioremediation.  相似文献   

17.
The effect of calcium (Ca2+) on Trifolium repens L. seedlings subjected to cadmium (Cd2+) stress was studied by investigating plant growth and changes in activity of antioxidative enzymes. Physiological analysis was carried out on seedlings cultured for 2 weeks on half-strength Hoagland medium with Cd2+ concentrations of 0, 400 and 600 μM, and on corresponding medium supplied with CaCl2 (5 mM). Exposure to increasing Cd2+ reduced the fresh weight of the upper part (stems + leaves) of the seedlings more strongly than that of the root system. In both parts of T. repens seedlings H2O2 level and lipid peroxidation increased. In the upper part, Cd2+ exposure led to a significant decrease in the activity of superoxide dismutase, catalase and glutathione peroxidase and an increase in ascorbate peroxidase activity. In contrast, the roots showed an increase in the activity of antioxidative enzymes under Cd2+ stress. Ca2+ addition to medium reduced the Cd2+ accumulation, and considerably reversed the Cd2+-induced decrease in fresh mass as well as the changes in lipid peroxidation in the both parts of T. repens seedlings. Ca2+ application diminished the Cd2+ effect on the activity of antioxidative enzymes in the upper part, even though it did not significantly affect these enzymes in the roots. So the possible mechanisms for the action of Ca2+ in Cd2+ stress were considered to reduce Cd2+ accumulation, alleviate lipid peroxidation and promote activity of antioxidative enzymes.  相似文献   

18.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

19.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

20.
Scenedesmus obliquus was incubated with Cd2+ in the presence or absence of calcium at low (10°C) or high (40°C) temperature. The Cd2+ uptake was affected not only by Ca2+ but also by temperature. Growth rate was inhibited by Cd2+ especially at low temperature. In all Ca2+-containing cultures,S. obliquus exhibited higher rates of growth, dry matter and pigment fractions than in those containing Cd2+ alone. Proteins exhibited a similar response. Ca2+ in the presence of Cd2+ was most efficient where protein contents were mostly doubled. On the other hand Ca2+ reduced the solute leakage by the test alga at 10 and 40°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号