首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline‐sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non‐defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non‐defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na+ concentration in shoots of non‐defoliated and moderately defoliated plants was similar. Non‐defoliated and moderately defoliated plants prevented increases of Na+ concentration in shoots through both reducing Na+ uptake and Na+ transport to shoots by accumulating Na+ in roots. At high defoliation, the salinity tolerance mechanism is altered and Na+ concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil.  相似文献   

2.
Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil   总被引:3,自引:0,他引:3  
García IV  Mendoza RE 《Mycorrhiza》2007,17(3):167-174
The seasonality of arbuscular mycorrhizal (AM) fungi–plant symbiosis in Lotus glaber Mill. and Stenotaphrum secundatum (Walt.) O.K. and the association with phosphorus (P) plant nutrition were studied in a saline-sodic soil at the four seasons during a year. Plant roots of both species were densely colonized by AM fungi (90 and 73%, respectively in L. glaber and S. secundatum) at high values of soil pH (9.2) and exchangeable sodium percentage (65%). The percentage of colonized root length differed between species and showed seasonality. The morphology of root colonization had a similar pattern in both species. The arbuscular colonization fraction increased at the beginning of the growing season and was positively associated with increased P concentration in both shoot and root tissue. The vesicular colonization fraction was high in summer when plants suffer from stress imposed by high temperatures and drought periods, and negatively associated with P in plant tissue. Spore and hyphal densities in soil were not associated with AM root colonization and did not show seasonality. Our results suggest that AM fungi can survive and colonize L. glaber and S. secundatum roots adapted to extreme saline-sodic soil condition. The symbiosis responds to seasonality and P uptake by the host altering the morphology of root colonization.  相似文献   

3.
 The effect of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal (AM) fungi in symbiosis with cucumber plants was studied in compartmentalised growth systems. Hyphae of Glomus intraradices Schenck & Smith (BEG87) or G. caledonium (Nicol. & Gerd.) Trappe & Gerdeman (BEG15) grew into lateral root-free compartments. Non-mycorrhizal plants served as control. The soil in half of the growth units of each mycorrhizal treatment was inoculated with P. fluorescens DF57. P. fluorescens DF57 enhanced hyphal length density of one of the AM fungi, G. caledonium, but this was not reflected in a higher hyphal transport of P from the root-free soil to the plant. The total P content was higher in plants grown in symbiosis with G. intraradices than in plants in the other treatments. G. caledonium and P. fluorescens DF57 had a synergistic effect in that total P content in plants inoculated with G. caledonium was higher in the presence than in the absence of P. fluorescens DF57. Accepted: 7 January 1999  相似文献   

4.
Gazey C  Abbott LK  Robson AD 《Mycorrhiza》2004,14(6):355-362
Arbuscular mycorrhizal (AM) fungi occur in all agricultural soils but it is not easy to assess the contribution they make to plant growth under field conditions. Several approaches have been used to investigate this, including the comparison of plant growth in the presence or absence of naturally occurring AM fungi following soil fumigation or application of fungicides. However, treatments such as these may change soil characteristics other than factors directly involving AM fungi and lead to difficulties in identifying the reason for changes in plant growth. In a glasshouse experiment, we assessed the contribution of indigenous AM fungi to growth of subterranean clover in undisturbed cores of soil from two agricultural field sites (a cropped agricultural field at South Carrabin and a low input pasture at Westdale). We used the approach of estimating the benefit of AM fungi by comparing the curvature coefficients ( C) of the Mitscherlich equation for subterranean clover grown in untreated field soil, in field soil into which inoculum of Glomus invermaium was added and in soil fumigated with methyl bromide. It was only possible to estimate the benefit of mycorrhizas using this approach for one soil (Westdale) because it was the only soil for which a Mitscherlich response to the application of a range of P levels was obtained. The mycorrhizal benefit ( C of mycorrhizal vs. non-mycorrhizal plants or C of inoculated vs. uninoculated plants) of the indigenous fungi corresponded with a requirement for phosphate by plants that were colonised by AM fungi already present in the soil equivalent to half that required by non-mycorrhizal plants. This benefit was independent of the plant-available P in the soil. There was no additional benefit of inoculation on plant growth other than that due to increased P uptake. Indigenous AM fungi were present in both soils and colonised a high proportion of roots in both soils. There was a higher diversity of morphotypes of mycorrhizal fungi in roots of plants grown in the Westdale soil than in the South Carrabin soil that had a history of high phosphate fertilizer use in the field. Inoculation with G. invermaium did not increase the level of colonisation of roots by mycorrhizal fungi in either soil, but it replaced approximately 20% of the root length colonised by the indigenous fungi in Westdale soil at all levels of applied P. The proportion of colonised root length replaced by G. invermaium in South Carrabin soil varied with the level of application of P to the soil; it was higher at intermediate levels of recently added soil P.  相似文献   

5.
Bacterial strains from mycorrhizal roots (three belonging to Comamonadaceae and one to Oxalobacteraceae) and from non-mycorrhizal roots (two belonging to Comamonadaceae) of Medicago truncatula and two reference strains (Collimonas fungivorans Ter331 and Pseudomonas fluorescens C7R12) were tested for their effect on the in vitro saprophytic growth of Glomus mosseae BEG12 and on its colonization of M. truncatula roots. Only the Oxalobacteraceae strain, isolated from barrel medic mycorrhizal roots, and the reference strain P. fluorescens C7R12 promoted both the saprophytic growth and root colonization of G. mosseae BEG12, indicating that they acted as mycorrhiza helper bacteria. Greatest effects were achieved by P. fluorescens C7R12 and its influence on the saprophytic growth of G. mosseae was compared to that on Gigaspora rosea BEG9 to determine if the bacterial stimulation was fungal specific. This fungal specificity, together with plant specificity, was finally evaluated by comparing bacterial effects on arbuscular mycorrhizal symbiosis when each of the fungal species was inoculated to two different plant species (M. truncatula and Lycopersicon esculentum). The results obtained showed that promotion of saprophytic growth by P. fluorescens C7R12 was expressed in vitro towards G. mosseae but not towards G. rosea. Bacterial promotion of mycorhization was also expressed towards G. mosseae, but not G. rosea, in roots of M. truncatula and L. esculentum. Taken together, results indicated that enhancement of arbuscular mycorrhiza development was only induced by a limited number of bacteria, promotion by the most efficient bacterial strain being fungal and not plant specific.  相似文献   

6.
Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.  相似文献   

7.
贺超  陈伟燕  贺学礼  姜桥  赵丽莉 《生态学报》2016,36(10):2798-2806
利用盆栽接种试验,探讨不同水肥条件下AM真菌双网无梗囊霉Acaulospora bireticulata对黄芩生长、养分含量和次生代谢产物的影响,为黄芩水肥合理施用提供理论依据。结果表明,不同水肥条件下,AM真菌能与黄芩根系形成良好共生关系,接种AM真菌能显著提高黄芩根系菌根侵染率和生物量,水分和施肥处理对菌根侵染率和黄芩生长具有显著交互作用。不同水肥条件下,接种AM真菌提高了植株保护酶活性和叶片渗透调节物质含量,降低了脯氨酸和丙二醛含量;显著增加了黄芩苷和N、P、K、Ca、Mg、Fe和Zn含量,降低了Mn和Cu含量。N和P含量随施肥量增加而提高,其余矿质元素在施肥量N 0.383 g、P 0.564 g、K 0.251 g时含量最高,说明AM真菌能够促进宿主植物根系对水分和矿质元素的吸收和利用,提高水分和肥料利用率,具有明显的节水节肥作用,其中50%相对含水量,施肥量N 0.383 g、P 0.564 g、K 0.251 g时,接种AM真菌的促生效应最佳。  相似文献   

8.
The aim of this research was to investigate the effect of arbuscular mycorrhizal (AM) colonisation on root morphology and nitrogen uptake capacity of carob ( Ceratonia siliqua L.) under high and low nutrient conditions. The experimental design was a factorial arrangement of presence/absence of mycorrhizal fungus inoculation ( Glomus intraradices) and high/low nutrient status. Percent AM colonisation, nitrate and ammonium uptake capacity, and nitrogen and phosphorus contents were determined in 3-month-old seedlings. Grayscale and colour images were used to study root morphology and topology, and to assess the relation between root pigmentation and physiological activities. AM colonisation lead to a higher allocation of biomass to white and yellow parts of the root. Inorganic nitrogen uptake capacity per unit root length and nitrogen content were greatest in AM colonised plants grown under low nutrient conditions. A better match was found between plant nitrogen content and biomass accumulation, than between plant phosphorus content and biomass accumulation. It is suggested that the increase in nutrient uptake capacity of AM colonised roots is dependent both on changes in root morphology and physiological uptake potential. This study contributes to an understanding of the role of AM fungi and root morphology in plant nutrient uptake and shows that AM colonisation improves the nitrogen nutrition of plants, mainly when growing at low levels of nutrients.  相似文献   

9.
Fusconi A  Lingua G  Trotta A  Berta G 《Mycorrhiza》2005,15(5):313-321
Arbuscular mycorrhizal (AM) colonization can strongly affect the plant cell nucleus, causing displacement from the periphery to the center of the cell, hypertrophy and polyploidization. The hypertrophy response has been shown in a variety of AM plants whilst polyploidization has been reported only in Lycopersicon esculentum, a multiploid species with a small genome. In order to determine whether polyploidization is a general plant response to AM colonization, analyses were performed on Allium porrum, a plant with a large genome, which is much less subject to polyploidization than L. esculentum. The ploidy status of leaves, complete root systems and four zones of the adventitious roots was investigated in relation to phosphorus content, AM colonization and root differentiation in A. porrum plants grown under two different regimes of phosphate nutrition in order to distinguish direct effects of the fungus from those of improved nutrition. Results showed the presence of two nuclear populations (2C and 4C) in all treatments and samples. Linear regression analyses suggested a general negative correlation between phosphorus content and the proportion of 2C nuclei. The percentage of 2C nuclei (and consequently that of 4C nuclei), was also influenced by AM colonization, differentiation and ageing of the root cells, which resulted in earlier occurrence, in time and space, of polyploid nuclei.  相似文献   

10.
This study was conducted to investigate the influence of soil water potential, depth of N placement, timing, and cultivar on uptake of a small dose of labeled N applied after anthesis by wheat (Triticum aestivum L.) Understanding postanthesis N accumulation should allow better control of grain protein concentration through proper manipulation of inputs. Two hard, red spring-wheat cultivars were planted in early and late fall each yr of a 2-yr field experiment. Less than 1 kg N ha–1 as K 15NO3 was injected into the soil at two depths: shallow (0.05 to 0.08 m) and deep (0.15 to 0.18 m). In both years an irrigation was applied at anthesis, and injections of labeled N were timed 4, 12, and 20 days after anthesis (DAA). Soil water potential was estimated at the time of injection. Mean recovery of 15N in grain and straw was 57% of the 15N applied. Recovery did not differ between the high-protein (Yecora Rojo) and the low-protein (Anza or Yolo) cultivars. Mean recovery from deep placement was 60% versus only 54% from shallow placement (p < 0.01). Delaying the time of injection decreased mean recovery significantly from 58% at 4 DAA to 54% at 20 DAA. This decrease was most pronounced in the shallow placement, where soil drying was most severe. Regressions of recovery on soil water potential of individual cultivar x yr x planting x depth treatments were significant only under the driest conditions. Stepwise regression of 15N recovery on soil water potential and yield parameters using data from all treatments of both years resulted in an equation including soil water potential and N yield, with a multiple correlation coefficient of 0.64. The translocation of 15N to grain was higher (0.89) than the nitrogen harvest index (0.69), and showed a highly significant increase with increase in DAA. This experiment indicates that the N uptake capacity of wheat remains reasonably constant between 4 and 20 DAA unless soil drying is severe.  相似文献   

11.
The interaction between native and introduced fungi and their effect on plant growth and mineral uptake were studied. The host plants wereLygeum spartum andAnthyllis cytisoides, the introduced fungus wasGlomus fasciculatum. The four soils used were selected from disturbed and contaminated by mining activities areas. Inoculated and uninoculated plants were grown in the unsterilized and sterilized soils (with and withouth native microflora, respectively). Plants inoculated withG. fasciculatum were higher and had higher tissue P concentration than uninoculated plants, especially inA. cytisoides. However, this inoculation was not effective in unsterilized substrates, suggesting a competition between introduced and native fungi. Concentration of mineral elements other than P varied depending on the host plant and soil. Decrease in Fe, Cu, Mn, Zn and Pb was observed in mycorrhizalA. cytiosides plants and a slight increase in Zn concentration was noted in mycorrhizalL. spartum plants. The study showed that the type of soil and their populations of native endophytes have a considerable effect on plant response to mycorrhizal symbiosis, especially in disturbed soils.  相似文献   

12.
A culture experiment was conducted to examine the effects of arbuscular mycorrhizal (AM) fungi on the growth and reproduction ofKummerowia striata, a common annual legume of river floodplains of Japan. The plants were grown from seeds in pots with nutrient-poor sandy soil collected from a fluvial bar. Arbuscular mycorrhizal infection increased the aboveground biomass, nodule weight, leaf nitrogen concentration and seed production. However, flowering occurred earlier in plants without AM fungi. These effects of AM fungi were insignificant in plants supplied with phosphate. These results suggest that AM fungi may influence the establishment ofK. striata in nutrient-poor, disturbed habitats.  相似文献   

13.
The ability of fluorescent pseudomonads and arbuscular mycorrhizal fungi (AMF) to promote plant growth is well documented but knowledge of the impact of pseudomonad-mycorrhiza mixed inocula on root architecture is scanty. In the present work, growth and root architecture of tomato plants (Lycopersicon esculentum Mill. cv. Guadalete), inoculated or not with Pseudomonas fluorescens 92rk and P190r and/or the AMF Glomus mosseae BEG12, were evaluated by measuring shoot and root fresh weight and by analysing morphometric parameters of the root system. The influence of the microorganisms on phosphorus (P) acquisition was assayed as total P accumulated in leaves of plants inoculated or not with the three microorganisms. The two bacterial strains and the AMF, alone or in combination, promoted plant growth. P. fluorescens 92rk and G. mosseae BEG12 when co-inoculated had a synergistic effect on root fresh weight. Moreover, co-inoculation of the three microorganisms synergistically increased plant growth compared with singly inoculated plants. Both the fluorescent pseudomonads and the myco-symbiont, depending on the inoculum combination, strongly affected root architecture. P. fluorescens 92rk increased mycorrhizal colonization, suggesting that this strain is a mycorrhization helper bacterium. Finally, the bacterial strains and the AMF, alone or in combination, improved plant mineral nutrition by increasing leaf P content. These results support the potential use of fluorescent pseudomonads and AMF as mixed inoculants for tomato and suggest that improved tomato growth could be related to the increase in P acquisition.  相似文献   

14.
The effects of the soil yeasts Rhodotorula mucilaginosa, Cryptococcus laurentii and Saccharomyces kunashirensis on the arbuscular mycorrhizal (AM) fungus Glomus mosseae (BEG 12) was studied in vitro and in greenhouse trials. The presence of yeasts or their soluble and volatile exudates stimulated the percentage spore germination and hyphal growth of G. mosseae. Percentage root length colonized by G. mosseae and plant dry matter of soybean (Glycine max L. Merill) were increased only when the soil yeasts were inoculated prior to the AM fungus. Higher beneficial effects on AM colonization and plant dry matter were found when the soil yeasts were inoculated as an aqueous solution rather than as a thin agar slice. Although soluble and volatile exudates of yeasts benefited the AM symbiosis, their modes of action were different.This revised version was published online in May 2004 with corrections to the section of the article.  相似文献   

15.
Drew  E.A.  Murray  R.S.  Smith  S.E.  Jakobsen  I. 《Plant and Soil》2003,251(1):105-114
Research on nutrient acquisition by symbiotic arbuscular mycorrhizal (AM) fungi has mainly focused on the root–fungus interface and less attention has been given to the growth and functioning of external hyphae in the bulk soil. The growth and function of external hyphae may be affected by unfavourable soil environments, such as compacted soils in which pores may be narrow. The effects of pore size on the growth of two AM fungi (Glomus intraradices and G. mosseae) and their ability to transport 33P from the bulk soil to the host were investigated. Trifolium subterraneum L. plants were grown individually in `single arm cross-pots' with and without AM fungi. The side arm was separated from the main compartment by nylon mesh to prevent root penetration. It contained three zones: 5 mm of soil:sand mix (HC1); 25 mm of media treatment (HC2); and 20 mm of 33P-labelled soil (HC3). There were four media treatments; soil and three types of quartz sand with most common continuous pore diameters of 100, 38 and 26 m. AM plants had similar growth and total P uptake in all treatments. However, plants grown with G. intraradices contained almost three times more 33P than those grown with G. mosseae, indicating G. intraradices obtained a greater proportion of P at a distance from the host roots. Differences in P acquisition were not correlated with production of external hyphae in the four media zones and changes in sand pore size did not affect the ability of the fungi studied to acquire P at a distance from the host roots. Production of external hyphae in HC2 was influenced by fungal species and media treatment. Both fungi produced maximum amounts of external hyphae in the soil medium. Sand pore size affected growth of G. intraradices (but not G. mosseae) and hyphal diameter distributions of both fungi. The results suggest that not only are G. mosseae and G. intraradices functionally complementary in terms of spatial phosphorus acquisition, they are also capable of altering their morphology in response to the soil environment.  相似文献   

16.
The influence of soil application of carbofuran on the growth response of groundnut, and both mycorrhizal colonization and sporulation of Glomus clarum was studied in a pot culture experiment. Carbofuran application with or without mycorrhizal inoculation increased the height of the potted plants measured 8 weeks after sowing. Mycorrhizal plants were significantly taller than nonmycorrhizal plants at the final harvest time (14 weeks). Carbofuran, at the recommmended field dose of up to 2 kg/ha, greatly increased shoot dry matter and pod yield in mycorrhizal groundnut. Colonization and sporulation by this VAM fungus were also enhanced significantly at these dose levels. The application of carbofuran at 5 kg/ha inhibited both growth and mycorrhizal status of groundnut.  相似文献   

17.
Measurements of multiplication in liquid culture indicated that fast-growing Lotus rhizobia (Rhizobium loti) were tolerant of acidity and aluminium (at least 50 μM A1 at pH 4.5). Slow-growing Lotus rhizobia (Bradyrhizobium sp. (Lotus)) were less tolerant of acidity but equally tolerant of A1. Both genera were able to nodulateLotus pedunculatus in an acid soil (pH 4.1 in 0.01M CaCl2) and the slow-growing strains were more effective than the fast-growing strains in this soil over 30 days.  相似文献   

18.
Anni Jensen 《Plant and Soil》1983,70(2):155-163
Summary To investigate the effect of indigenous VAM fungi and of increasing the amount of natural inoculum barley was grown in containers buried in the field with uninoculated and inoculated irradiated soil and with uninoculated and inoculated untreated soil from two locations, one low and one high in available P. The experiment was set up with 3 P fertilizer applications (0, 15, 30 kg P/ha). Growth and uptake of P was measured. The inocula were prepared from natural VAM populations. VAM fungal infection was established in the irradiated soil at a lower level than in the untreated soil. VAM fungal infection was decreased by increasing P fertilizer application. In the soil low in available P VAM increased concentration of P and total uptake of P. VAM did not cause an increased growth. The reason for this may be the low establishment of VAM in the irradiated soil and/or because the indigenous VAM species were not efficient. It is also possible that a pronounced growth increase due to irradiation the soil may have masked a smaller effect of the indigenous VAM fungi. Increasing the amount of natural inoculum in the untreated soil influenced neither VAM frequency nor growth.  相似文献   

19.
Maize (Zea mays L. cv. Alize) plants were grown in a calcareous soil in pots divided by 30-m nylon nets into three compartments, the central one for root growth and the outer ones for hyphal growth. Sterle soil was inoculated with either (1) rhizosphere microorganisms other than vesicular-arbuscular mycorrhizal (VAM) fungi, (2) rhizosphere microorganisms together with a VAM fungus [Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappel], or (3) with a gamma-irradiated inoculum as control. Plants were grown under controlled-climate conditions and harvested after 3 or 6 weeks. VAM plants had higher shootroot ratios than non-VAM plants. After 6 weeks, the concentrations of P, Zn and Cu in roots and shoots had significantly increased with VAM colonization, whereas Mn concentrations had significantly decreased. Root exudates were collected on agar sheets placed on the interface between root and hyphal compartments. Six-week-old VAM and non-VAM plants had similar root exudate compositions of 72–73% reducing sugars, 17–18% phenolics, 7% organic acids and 3% amino acids. In another experiment in which root exudates were collected on agar sheets with or without antibiotics, the amounts of amino acids and carbohydrates recovered were similar in VAM and non-VAM plants. However, threeto sixfold higher amounts of carbohydrates, amino acids and phenolics were recovered when antibiotics were added to the agar sheets. Thus, the high microbial activity in the rhizosphere and on the rhizoplane limits the exudates recovered from roots.  相似文献   

20.
We studied the role of modification in root exudation induced by colonization with Glomus intraradices and Glomus mosseae in the growth of Phytophthora nicotianae in tomato roots. Plants were grown in a compartmentalized plant growth system and were either inoculated with the AM fungi or received exudates from mycorrhizal plants, with the corresponding controls. Three weeks after planting, the plants were inoculated or not with P. nicotianae growing from an adjacent compartment. At harvest, P. nicotianae biomass was significantly reduced in roots colonized with G. intraradices or G. mosseae in comparison to non-colonized roots. Conversely, pathogen biomass was similar in non-colonized roots supplied with exudates collected from mycorrhizal or non-mycorrhizal roots, or with water. We cannot rule out that a mycorrhiza-mediated modification in root exudation may take place, but our results did not support that a change in pathogen chemotactic responses to host root exudates may be involved in the inhibition of P. nicotianae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号