首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effects of Na+ and ATP on the K+ binding to Na+, K+-ATPase were investigated by the centrifugation method with radioactive K+ in the absence of Mg2+. In the presence of 10 microM 43KCl, 0.6 and 10 mM Na+ decreased the amount of bound K+ to one-half and zero, respectively. On the other hand, 10 microM and 10 mM ATP decreased the amount of K+ to 60 and 25-40%, respectively. When the combined effect of ATP and Na+ was tested, 10 microM ATP decreased the Na+ concentration giving half-maximal inhibition of the K+ binding to one-third, showing synergistic inhibition by both ligands, though increase in ATP concentration seemed to depress the inhibitory effect of Na+. The synergistic inhibition by ATP and Na+ suggests that the release of K+ from E2K is not completed by the binding of ATP alone but is completed by the binding of Na+ in addition to ATP during the cycle of Na+, K+-dependent ATP-hydrolysis as well as ion-transport.  相似文献   

2.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

3.
The effect of a transmembrane pH gradient on the ouabain, bumetanide, and phloretin resistant H+ efflux was studied in rabbit erythrocytes. Proton equilibration was reduced by the use of DIDS (125 microM) and acetazolamide (1 mM). H+ efflux from acid loaded erythrocytes (pHi = 6.1) was measured in a K+ (145 mM) medium, pH0 = 8.0, in the presence and absence of 60 microM 5,N,N-dimethyl-amiloride (DMA). The H+ efflux rate in a K+-containing medium was 116.38 +/- 4.5 mmol/l cell X hr. Substitution of Nao+ for Ko+ strongly stimulated H+ efflux to 177.89 +/- 7.9 mmol/l cell X hr. The transtimulation of H+ efflux by Nao+ was completely abolished by DMA falling to values not different from controls with an ID50 of about 8.6 X 10(-7) M. The sequence of substrate selectivities for the external transport site were Na greater than greater than greater than Li greater than choline, Cs, K, and Glucamine. The transport system has no specific anion requirement, but is inhibited by NO3-. The DMA sensitive H+ efflux was a saturable function of [Na+]o, with an apparent Km and Vmax of about 14.75 +/- 1.99 mM and 85.37 +/- 7.68 mmol/l cell X hr, respectively. However, the Nao+-dependent and DMA-sensitive H+ efflux was sigmoidally activated by [H+]i, suggesting that Hi+ interacts at both transport and modifier sites. An outwardly directed H+ gradient (pHi 6.1, pH = 8.0) also promoted DMA sensitive Na+ entry (61.2 +/- 3.0 mmol/l cell X hr) which was abolished when pHo was reduced to 6.0. The data is therefore consistent with the presence of a Na+/H+ exchange system in rabbit erythrocytes.  相似文献   

4.
Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.  相似文献   

5.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

6.
Effects of various cations on the dephosphorylation of (Na+ + K+)-ATPase, phosphorylated by ATP in 50 mM imidazole buffer (pH 7.0) at 22 degrees C without added Na+, have been studied. The dephosphorylation in imidazole buffer without added K+ is extremely sensitive to K+-activation (Km K+ = 1 microM), less sensitive to Mg2+-activation (Km Mg2+ = 0.1 mM) and Na+-activation (Km Na+ = 63 mM). Imidazole and Na+ effectively inhibit K+-activated dephosphorylation in linear competitive fashion (Ki imidazole 7.5 mM, Ki Na+ 4.6 mM). The Ki for Na+ is independent of the imidazole concentration, indicating different and non-interacting inhibitory sites for Na+ and imidazole. Imidazole inhibits Mg2+-activated dephosphorylation just as effective as K+-activated dephosphorylation, as judged from the Ki values for imidazole in the two processes. Tris buffer and choline chloride, like imidazole, inhibit dephosphorylation in the presence of residual K+ (less than 1 microM), but less effectively in terms of I50 values and extent of inhibition. Tris inhibits to the same extent as choline. This indicates different inhibitory sites for Tris or choline and for imidazole. These findings indicate that high steady-state phosphorylation levels in Na+-free imidazole buffer are due to the induction of a phosphorylating enzyme conformation and to the inhibition of (K+ + Mg2+)-stimulated dephosphorylation.  相似文献   

7.
We studied the interactions of Na+, Li+, and amiloride on the Na+/H+ antiporter in brush-border membrane vesicles from rabbit renal cortex. Cation-mediated collapse of an outwardly directed proton gradient (pHin = 6.0; pHout = 7.5) was monitored with the fluorescent amine, acridine orange. Proton efflux resulting from external addition of Na+ or Li+ exhibited simple saturation kinetics with Hill coefficients of 1.0. However, kinetic parameters for Na+ and Li+ differed (Km for Li+ = 1.2 +/- 0.1 mM; Km for Na+ = 14.3 +/- 0.8 mM; Vmax for Li+ = 2.40 +/- 0.07 fluorescence units/s/mg of protein; Vmax for Na+ = 7.10 +/- 0.24 fluorescence units/s/mg of protein). Inhibition of Na+/H+ exchange by Li+ and amiloride was also studied. Li+ inhibited the Na+/H+ antiporter by two mechanisms. Na+ and Li+ competed with each other at the cation transport site. However, when [Na+] was markedly higher than [Li+], [( Na+] = 90 mM; [Li+] less than 1 mM), we observed noncompetitive inhibition (Vmax for Na+/H+ exchange reduced by 25%). The apparent Ki for this noncompetitive inhibition was congruent to 50 microM. In addition, 2-30 mM intravesicular Li+, but not Na+, resulted in trans inhibition of Na+/H+ exchange. Amiloride was a mixed inhibitor of Na+/H+ exchange (Ki = 30 microM, Ki' = 90 microM) but was only a simple competitive inhibitor of Li+/H+ exchange (Ki = 10 microM). At [Li] = 1 mM and [amiloride] less than 100 microM, inhibition of Na+/H+ exchange by a combination of the two inhibitors was always less than additive. These results suggest the presence of a cation-binding site (separate from the cation-transport site) which could be a modifier site of the Na+/H+ antiporter.  相似文献   

8.
In our routine screening of chemicals that would inhibit cardiac sarcolemmal Na+/H+ antiporter, we discovered that some of the opioids produced inhibition of cardiac sarcolemmal Na+/H+ antiporter in micromolar concentrations. Using U-50,488H, a selective kappa-opioid agonist, we characterized the nature of interaction between opioids and the Na+/H+ antiporter. The inhibitory effect of U-50,488H on Na+/H+ antiporter was immediate and reversible, and was not mediated through the interaction with the opioid receptors but due to the direct interaction of U-50,488H with the Na+/H+ antiporter. The kinetic data show that in the presence of U-50,488H the Km for Na+ was increased from 2.5 +/- 0.2 to 5.0 +/- 0.3 mM, while the Vmax (52.0 +/- 5.0 nmol.mg-1.min-1) remained the same. These results suggest that U-50,488H and Na+ compete for the same site on the antiporter. When testing the effect of U-50,488H on other transport systems of cardiac sarcolemma, we found that U-50,488H also inhibited Na+/Ca2+ antiporter and Na+/K+ pump but at much higher concentrations suggesting that U-50,488H shows some degree of selectivity for cardiac sarcolemmal Na+/H+ antiporter. When we compared the inhibitory potency of U-50,488H with amiloride and its analog, namely 5-(N,N-hexamethylene)amiloride, we found that U-50,488H (IC50 = 100 +/- 15 microM) was threefold more potent than amiloride (IC50 = 300 +/- 20 microM) but it was three-fold less potent than the amiloride analog (IC50 = 30 +/- 10 microM) in inhibiting cardiac sarcolemmal Na+/H+ antiporter. These results show that although U-50,488H is more potent than amiloride, the inhibitory characteristics of U-50,488H on cardiac sarcolemmal Na+/H+ antiporter are similar to amiloride.  相似文献   

9.
The effects of Li+ on Na-Ca exchange in bovine cardiac sarcolemmal vesicles were examined. The initial rate of Na(+)-dependent Ca2+ uptake and efflux was inhibited by Li+ in a dose dependent manner. The initial rate of Na(+)-dependent Ca2+ uptake was inhibited 49.8 +/- 2.9% (S.E.) (n = 6) in the presence of Li+ compared to activity in external K+ or choline+. Kinetic analysis indicated that Li+ increased the Km for Ca2+ (96.3 microM) compared to K+ and choline+ (25.5 and 22.9 microM respectively) while Vmax (1.4, 1.2 and 1.1 nmol Ca2+/mg protein/sec respectively) remained unchanged. Li+ did not alter the experimentally derived stoichiometry of the exchange reaction of 3 Na+ for 1 Ca2+.  相似文献   

10.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

11.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

12.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

13.
Purified (Na+ + K+)-ATPase from pig kidney was attached to black lipid membranes and ATP-induced electric currents were measured as described previously by Fendler et al. ((1985) EMBO J. 4, 3079-3085). An ATP concentration jump was produced by an ultraviolet-light flash converting non-hydrolysable caged ATP to ATP. In the presence of Na+ and Mg2+ this resulted in a transient current signal. The pump current was not only ATP dependent, but also was influenced by the ATP/caged ATP ratio. It was concluded that caged ATP binds to the enzyme (and hence inhibits the signal) with a Ki of approx. 30 microM, which was confirmed by enzymatic activity studies. An ATP affinity of approx. 2 microM was determined. The addition of the protonophore 1799 and the Me+/H+ exchanger monensin made the bilayer conductive leading to a stationary pump current. The stationary current was strongly increased by the addition of K+ with a K0.5 of 700 microM. Even in the absence of K+ a stationary current could be measured, which showed two Na+-affinities: a high-affinity (K0.5 less than or equal to 1 mM) and a low-affinity (K0.5 greater than or equal to 0.2 M). In order to explain the sustained electrogenic Na+ transport during the Na+-ATPase activity, it is proposed, that Na+ can replace K+ in dephosphorylating the enzyme, but binds about 1000-times weaker than K+. The ATP requirement of the Na+-ATPase was the same (K0.5 = 2 microM) with regard to the peak currents and the stationary currents. However, for the (Na+ + K+)-ATPase the stationary currents required more ATP. The results are discussed on the basis of the Albers-Post scheme.  相似文献   

14.
The Kd for ouabain-sensitive K+ or Rb+ binding to Na+,K(+)-ATPase was determined by the centrifugation method with radioactive K+ and Rb+ in the presence of various combinations of Na+, ATP, adenylylimidodiphosphate (AMPPNP), adenylyl-(beta,gamma-methylene)diphosphonate (AMPPCP), Pi, and Mg2+. From the results of the K+ binding experiments, Kd for Na+ was estimated by using an equation describing the competitive inhibition between the K+ and Na+ binding. 1) The Kd for K+ binding was 1.9 microM when no ligand was present. Addition of 2 mM Mg2+ increased the Kd to 15-17 microM. In the presence of 2 mM Mg2+, addition of 3 mM AMPPCP with or without 3 mM Na+ increased the Kd to 1,000 or 26 microM, respectively. These Kds correspond to those for K+ of Na.E1.AMPPCPMg or E1.AMPPCPMg, respectively. 2) Addition of 4 mM ATP with or without 3 mM Na+ decreased the Kd from 15-17 microM to 5 or 0.8 microM, respectively. Because the phosphorylated intermediate was observed but ATPase activity was scarcely observed in the K+ binding medium containing 3 mM ATP and 2 mM Mg2+ in the absence of Na+ as well as in the presence of Na+ at 0 degrees C, it is suggested that K+ binds to E2-P.Mg under these ligand conditions. 3) The Kd for Na+ of the enzyme in the presence of 3 mM AMPPCP or 4 mM ATP with Mg2+ was estimated to be 80 or 570 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In general, increasing K+ on the nutrient side decreases the transmucosal PD (nutrient becomes more negative) but after bathing the mucosa in zero K+ media for about 30 min, or longer, elevation of K+ on the nutrient side increases the PD, an anomalous effect. In Cl- media, increasing nutrient K+ from zero to 4 mM produces an increase in PD (an anomalous response) of 3.1 and 5.3 mV in 2 and 5 min, respectively. Ouabain (10(-3) M) to the nutrient side abolished the anomalous response as did removal of Na+ (choline for Na+) from bathing media. In SO4(2-) media (SO4(2-) for Cl-), a significant anomalous PD response was observed when K+ on the nutrient side was increased from zero to 1, 2 or 3 mM but not to higher K+ concentrations. In this case, ouabain also abolished the anomalous response. It is postulated, on the basis of the effects of ouabain and the use of choline media, that an electrogenic (Na+ + K+)-ATPase pump is present on the nutrient-facing membrane in which more Na+ than K+ are transported per cycle.  相似文献   

16.
In whole-cell patch clamp recordings from chick dorsal root ganglion neurons, removal of intracellular K+ resulted in the appearance of a large, voltage-dependent inward tail current (Icat). Icat was not Ca2+ dependent and was not blocked by Cd2+, but was blocked by Ba2+. The reversal potential for Icat shifted with the Nernst potential for [Na+]. The channel responsible for Icat had a cation permeability sequence of Na+ >> Li+ >> TMA+ > NMG+ (PX/PNa = 1:0.33:0.1:0) and was impermeable to Cl-. Addition of high intracellular concentrations of K+, Cs+, or Rb+ prevented the occurrence of Icat. Inhibition of Icat by intracellular K+ was voltage dependent, with an IC50 that ranged from 3.0-8.9 mM at membrane potentials between -50 and -110 mV. This voltage- dependent shift in IC50 (e-fold per 52 mV) is consistent with a single cation binding site approximately 50% of the distance into the membrane field. Icat displayed anomolous mole fraction behavior with respect to Na+ and K+; Icat was inhibited by 5 mM extracellular K+ in the presence of 160 mM Na+ and potentiated by equimolar substitution of 80 mM K+ for Na+. The percent inhibition produced by both extracellular and intracellular K+ at 5 mM was identical. Reversal potential measurements revealed that K+ was 65-105 times more permeant than Na+ through the Icat channel. Icat exhibited the same voltage and time dependence of inactivation, the same voltage dependence of activation, and the same macroscopic conductance as the delayed rectifier K+ current in these neurons. We conclude that Icat is a Na+ current that passes through a delayed rectifier K+ channel when intracellular K+ is reduced to below 30 mM. At intracellular K+ concentrations between 1 and 30 mM, PK/PNa remained constant while the conductance at -50 mV varied from 80 to 0% of maximum. These data suggest that the high selectivity of these channels for K+ over Na+ is due to the inability of Na+ to compete with K+ for an intracellular binding site, rather than a barrier that excludes Na+ from entry into the channel or a barrier such as a selectivity filter that prevents Na+ ions from passing through the channel.  相似文献   

17.
ATP and GTP have been compared as substrates for (Na+ + K+)-ATPase in Na+-activated hydrolysis, Na+-activated phosphorylation, and the E2K----E1K transition. Without added K+ the optimal Na+-activated hydrolysis rates in imidazole-HCl (pH 7.2) are equal, but are reached at different Na+ concentrations: 80 mM Na+ for GTP, 300 mM Na+ for ATP. The affinities of the substrates for the enzyme are widely different: Km for ATP 0.6 microM, for GTP 147 microM. The Mg-complexed nucleotides antagonize activation as well as inhibition by Na+, depending on the affinity and concentration of the substrate. The optimal 3-s phosphorylation levels in imidazole-HCl (pH 7.0) are equally high for the two substrates (3.6 nmol/mg protein). The Km value for ATP is 0.1-0.2 microM and for GTP it ranges from 50 to 170 microM, depending on the Na+ concentration. The affinity of Na+ for the enzyme in phosphorylation is lower with the lower affinity substrate: Km (Na+) is 1.1 mM with ATP and 3.6 mM with GTP. The GTP-phosphorylated intermediate exists, like the ATP-phosphorylated intermediate, in the E2P conformation. Addition of K+ increases the optimal hydrolytic activity 30-fold for ATP (at 100 mM Na+ + 10 mM K+) and 2-fold for GTP (at 100 mM Na+ + 0.16 mM K+). K+ greatly increases the Km values for both substrates (to 430 microM for ATP and 320 microM for GTP). Above 0.16 mM K+ inhibits GTP hydrolysis. GTP does not reverse the quenching effect of K+ on the fluorescence of the 5-iodoacetamidofluorescein-labeled enzyme. ATP fully reverses this effect, which represents the transition from E1K to E2K. Hence GTP is unable to drive the E2K----E1K transition.  相似文献   

18.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

19.
Na+ and K+ are the major extra- and intracellular cations, respectively. We have thus studied the role of these ions on human basophil histamine release by modifying their transmembrane gradients or by increasing membrane ion fluxes using ionophores. 1) When external Na+ (reduced to 4 mM) was replaced by the nonpermeating Na+ substitute N-methyl-D-glucamine, the release of histamine was enhanced in 2 mM Ca2+ (from 37.5 +/- 8.0% in 140 mM Na+ to 68.5 +/- 9.1% in low Na+) and became possible in the presence of low Ca2+ (at 1 microM Ca2+: from 0.6 +/- 0.7% in 140 mM Na+ to 36.2 +/- 8.0% in low Na+); moreover, in low Na+, the release of histamine became partly independent on Ca2+ influx. 2) Increasing the Na+ influx with the cation channel-forming gramicidin D inhibited the release of histamine by 33.2 +/- 13.6% (n = 6) in an external Na(+)-dependent manner. 3) Decreasing K+ efflux using K+ channel blockers (4-aminopyridine, quinine, sparteine) inhibited histamine release in a dose-response manner. 4) The K+ ionophore valinomycin, which increases K+ efflux, slightly enhanced IgE-mediated histamine release when used alone, whereas it potentiated the release of histamine from leukocytes previously treated with 4-aminopyridine by 57.0 +/- 18.6% (n = 7). 5) Decreasing K+ efflux by increasing external K+ inhibited IgE-mediated release in a similar manner as Na+ did. The inhibitory effects of Na+ and high K+ were not additive, thus suggesting that both cations inhibited the release by a common mechanism. In conclusion 1) our data evidence that histamine release from human basophils is inhibited by Na+ influx and potentiated by K+ efflux; 2) they suggest that K+ channels are present on the basophil membrane and that Na+ and K+ fluxes act on histamine release most probably via modulation of membrane potential.  相似文献   

20.
In red cells of several species, the sulfhydryl reagent N-ethylmaleimide activates a Cl- -dependent, ouabain-resistant K+ transport pathway. Here we report our attempts to demonstrate ouabain-resistant Cl- -dependent K+ fluxes stimulated by N-ethylmaleimide in resealed human red cell ghosts using Rb+ as a K+ analogue. In contrast to intact cells, the rate constants of the base level Rb+ efflux in ghosts were similar in NaNO3 and NaCl (okRb = 0.535 +/- 0.079 h-1 and 0.534 +/- 0.085 h-1, respectively), while 1 mM N-ethylmaleimide stimulated Rb+ efflux strongly in NaNO3 (okRb = 14.26 +/- 1.32 h-1) and moderately in NaCl (okRb = 2.73 +/- 0.54 h-1). This effect was dependent on the presence of internal ATP. Stimulation of Rb+ efflux was observed in the presence of greater than or equal to 0.2 mM N-ethylmaleimide and increased at pH values approaching 8.0, consistent with titration of SH groups. N-Ethylmaleimide-stimulated Rb+ efflux was approx. 50% inhibited by 100 microM quinine sulfate whereas 1 microM bumetanide had no effect. In NaCl the N-ethylmaleimide-stimulated efflux saturated with initial internal ghost Rb+ concentration, but rates increased linearly in NaNO3. Replacement of external Na+ with glucamine or choline decreased the N-ethylmaleimide-stimulated Rb+ efflux, suggesting a role for external Na+. N-Ethylmaleimide-stimulated Rb+ efflux was greater in buffers with lipophilic anions such as SCN- or NO3- than in solutions with Cl- or acetate. However, the cation selectivity of the pathway studied was low, as Li+ efflux was also stimulated by N-ethylmaleimide. We conclude that the effect of N-ethylmaleimide on ouabain-resistant cation effluxes of human red cell ghosts is very different from the selective action of N-ethylmaleimide on Rb+ influxes in intact red cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号