首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Bees are considered the most important plant pollinators in many ecosystems, yet little is known about pollination of native plants by bees in many Australian ecosystems including the alpine region. Here we consider bee pollination in this region by constructing a bee visitation network and investigating the degree of specialism and network ‘nestedness’, which are related to the robustness of the network to perturbations. Bees and flowers were collected and observed from 10 sites across the Bogong High Plains/Mt Hotham region in Victoria. Low nestedness and a low degree of specialism were detected, consistent with patterns in other alpine regions. Twenty‐one native and one non‐indigenous bee species were observed visiting 46 of the 67 flower species recorded. The introduced Apis mellifera had a large floral overlap with native bees, which may reduce fecundity of native bees through competition. The introduced plant, Hypochaeris radicata (Asteraceae), had the largest and most sustained coverage of any flower and had the most visitations and bee species of any flower. The network developed in this study is a first step in understanding pollination patterns in the alpine/subalpine region and serves as a baseline for future comparisons.  相似文献   

2.
    
Group living is favorable to pathogen spread due to the increased risk of disease transmission among individuals. Similar to individual immune defenses, social immunity, that is antiparasite defenses mounted for the benefit of individuals other than the actor, is predicted to be altered in social groups. The eusocial honey bee (Apis mellifera) secretes glucose oxidase (GOX), an antiseptic enzyme, throughout its colony, thereby providing immune protection to other individuals in the hive. We conducted a laboratory experiment to investigate the effects of group density on social immunity, specifically GOX activity, body mass and feeding behavior in caged honey bees. Individual honeybees caged in a low group density displayed increased GOX activity relative to those kept at a high group density. In addition, we provided evidence for a trade‐off between GOX activity and body mass: Individuals caged in the low group density had a lower body mass, despite consuming more food overall. Our results provide the first experimental evidence that group density affects a social immune response in a eusocial insect. Moreover, we showed that the previously reported trade‐off between immunity and body mass extends to social immunity. GOX production appears to be costly for individuals, and potentially the colony, given that low body mass is correlated with small foraging ranges in bees. At high group densities, individuals can invest less in social immunity than at low densities, while presumably gaining shared protection from infection. Thus, there is evidence that trade‐offs at the individual level (GOX vs. body mass) can affect colony‐level fitness.  相似文献   

3.
    
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] genetic diversity may be the key to responding to novel health challenges faced by this important pollinator. In this study, we first compared colonies of four honey bee races, A. m. anatoliaca, A. mcarnica, A. m. caucasica, and A. msyriaca from Turkey, with respect to honey storage, bee population size, and defenses against varroa. The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is an important pest of honey bee colonies. There are genetic correlates with two main defenses of bees against this parasite: hygienic behavior, or removing infested brood, and grooming, which involves shaking and swiping off mites and biting them. In the second part of this study, we examined the relationship of these two types of defenses, hygiene and grooming, and their correlation with infestation rates in 32 genetically diverse colonies in a ‘common garden’ apiary. Mite biting was found to be negatively correlated with mite infestation levels.  相似文献   

4.
    
European honey bees Apis mellifera are important commercial pollinators that have suffered greater than normal overwintering losses since 2007 in North America and Europe. Contributing factors likely include a combination of parasites, pesticides, and poor nutrition. We examined diet diversity, diet nutritional quality, and pesticides in honey bee‐collected pollen from commercial colonies in the Canadian Maritime Provinces in spring and summer 2011. We sampled pollen collected by honey bees at colonies in four site types: apple orchards, blueberry fields, cranberry bogs, and fallow fields. Proportion of honey bee‐collected pollen from crop versus noncrop flowers was high in apple, very low in blueberry, and low in cranberry sites. Pollen nutritional value tended to be relatively good from apple and cranberry sites and poor from blueberry and fallow sites. Floral surveys ranked, from highest to lowest in diversity, fallow, cranberry, apple, and blueberry sites. Pesticide diversity in honey bee‐collected pollen was high from apple and blueberry sites and low from cranberry and fallow sites. Four different neonicotinoid pesticides were detected, but neither these nor any other pesticides were at or above LD50 levels. Pollen hazard quotients were highest in apple and blueberry sites and lowest in fallow sites. Pollen hazard quotients were also negatively correlated with the number of flower taxa detected in surveys. Results reveal differences among site types in diet diversity, diet quality, and pesticide exposure that are informative for improving honey bee and land agro‐ecosystem management.  相似文献   

5.
    
A key feature of eusocial insects is their reproductive division of labour. The queen signals her fecundity to her potentially reproductive daughters via a pheromone, which renders them sterile. In contrast, solitary insects lack division in reproductive labour and there is no such social signalling or need for ovary‐regulating pheromones. Nonetheless, females from both non‐social and eusocial lineages are expected to regulate their ovaries to maximize inclusive lifetime reproductive success. It is not known, however, whether the underlying networks that regulate ovary activation are homologous between non‐social and eusocial taxa, especially when these taxa are phylogenetically distant. In this study, we provide evidence that solitary fruit flies may share a conserved ovary‐regulating pathway with a eusocial honey bee, Apis mellifera L. (Hymenoptera: Apidae). Specifically, we demonstrate that honey bee queen mandibular pheromone (QMP) inhibits fly ovaries in much the same way as it suppresses worker ovaries. Drosophila melanogaster Meigen (Diptera: Drosophilidae) exposed to sufficient doses of QMP showed a reduction in ovary size, produced fewer eggs, and generated fewer viable offspring, relative to unexposed controls. Drosophila melanogaster therefore responds to an interspecific social cue to which it would not normally be exposed. Although we cannot strictly rule out an incidental effect, this conspicuous response suggests that these two species may share an underlying mechanism for ovary regulation. Why a non‐social species of fly responds to a highly social bee's pheromone is not clear, but one possibility is that solitary and social insects share pathways associated with female reproduction, as predicted by the ‘groundplan’ hypothesis of social evolution.  相似文献   

6.
    
As the human population has increased, so too has the demand for biotically pollinated crops. Bees (Apoidea) are essential for pollen transfer and fruit production in many crops, and their visit patterns can be influenced by floral morphology. Here, we considered the role of floral morphology on visit rates and behaviour of managed honey bees (Apis mellifera) and wild bumble bees (genus Bombus), for four highbush blueberry cultivars (Vaccinium corymbosum L.). We measured five floral traits for each cultivar, finding significant variation among cultivars. Corolla throat diameter may be the main morphological determinant of visit rates of honey bees, which is significantly higher on the wider flowers of cv. ‘Duke’ than on ‘Bluecrop’ or ‘Draper’. Honey bees also visited cv. ‘Duke’ legitimately but were frequent nectar robbers on the long, narrow flowers of cv. ‘Bluecrop’. Bumble bees were infrequent (and absent on cv. ‘Draper’) but all observed visits were legitimate. Crop yield was highest for the cultivar with the highest combined (honey bee + bumble bee) visit rate, suggesting that aspects of floral morphology that affect pollinator visit patterns should be considered in crop breeding initiatives.  相似文献   

7.
    
The use of glyphosate‐based herbicides in agroecosystems has increased over the past few years because of the advent of genetically modified glyphosate‐resistant crops and resistant weeds. This is alarming because of potential damaging effects on non‐target organisms. In sub‐Saharan Africa, for example Ghana, many rural farmers have not received training in the use of glyphosate‐based herbicides, thus tend to apply higher than recommended concentrations on farms. Therefore, this study investigated the effect of glyphosate‐based herbicides on beneficial insects under laboratory conditions, using Apis mellifera L. (Hymenoptera: Apidae, Apini) and Hypotrigona ruspolii (Magretti) (Hymenoptera: Apidae, Meliponini) as models. The bees were put in contact for 24 h with the recommended concentration of Sunphosate 360 SL, a glyphosate‐based herbicide, 2× the recommended concentration, or distilled water as control. The effect of the herbicide on the bees was compared to the effect of a lambda‐cyhalothrin insecticide. Generally, more bees died after contact with plants freshly sprayed with the herbicide than on herbicide‐treated filter paper. In both cases, more bees died after contact with the higher concentration of the herbicide. These findings suggest that beneficial insects, specifically A. mellifera and H. ruspolii, may get killed if they are sprayed upon or come into contact with plants that have been freshly sprayed with (more than) the recommended concentration of glyphosate‐based herbicides. Therefore, it is important to restrict access and use of such herbicides to trained personnel who will comply with spraying guidelines, that is, recommended concentrations and timing of spray. Spraying at a time when insects are flying about may be detrimental to beneficial insects such as pollinator bees, parasitoids, and predators.  相似文献   

8.
    
Urban landscapes provide habitat for many species, including domesticated and feral honey bees, Apis mellifera L. (Hymenoptera: Apidae). With recent losses of managed honey bee colonies, there is increasing interest in feral honey bee colonies and their potential contribution to pollination services in agricultural, natural, and urban settings. However, in some regions the feral honey bee population consists primarily of Africanized honey bees. Africanized honey bees (AHB) are hybrids between European honey bees and the African honey bee, Apis mellifera scutellataLepeletier, and have generated economic, ecological, and human health concerns because of their aggressive behavior. In this study, we used two long‐term datasets (7–10 years) detailing the spatial and temporal distribution of AHB colonies in Tucson, AZ, USA, where feral colonies occupy a variety of cavities including water meter boxes. A stage‐structured matrix model was used to elucidate the implications of nest site selection and the effects of colony terminations on the structure and dynamics of the AHB population. Our results suggest that Tucson's AHB population is driven by a relatively small number of ‘source’ colonies that escape termination (ca. 0.165 colonies per km2 or 125 colonies in total), although immigrating swarms and absconding colonies from the surrounding area may have also contributed to the stability of the Tucson AHB population. Furthermore, the structure of the population has likely been impacted by the number and spatial distribution of water meter boxes across the city. The study provides an example of how urban wildlife populations are driven by interactions among landscape structure, human management, and behavioral traits conferred by an invasive genotype.  相似文献   

9.
    
We examined the influence of bromfenvinphos, a commonly used acaricide, on activities of many metabolic enzymes affecting the biochemical defences/physiology of the western honeybee, Apis mellifera L. (Hymenoptera: Apidae), as well as on some metabolic compound concentrations, percentage of global DNA methylation, and Nosema spp. infection levels. Bromfenvinphos‐treated workers had decreased haemolymph volumes and higher protein concentrations on their cuticle but lower protein concentrations in the haemolymph. They had higher global DNA methylation levels independent of the age‐related variants. Bromfenvinphos decreased the activities of antioxidant enzymes (SOD, GPx, CAT, GST), acidic, neutral, and alkaline protease inhibitors and enzymatic physiological markers (AST, ALT, ALP), and concentrations of urea, uric acid, creatinine, cholesterol, glucose, Mg2+, and Ca2+ in worker haemolymph, depending on the age of the bees. Protease activities were higher only in the haemolymph of young bromfenvinphos‐treated bees in comparison with untreated bees. This compound decreased the activities of alkaline proteases and neutral protease inhibitors on the cuticle. Unexpectedly, in the treated bees, the activities of acidic and neutral proteases, and acidic and alkaline protease inhibitors, were higher in the young bees and lower in the older workers in comparison to the untreated group. The bromfenvinphos‐treated workers were more heavily infested with Nosema spp. Thus, bromfenvinphos not only supressed many levels of biochemical defences, and therefore stress‐resistance‐related biochemical pathways but also visibly increased the Nosema spp. infection levels.  相似文献   

10.
Abstract.
  • 1 Honey bees foraging for nectar on lavender (Lavandula stoechas) chose inflorescences with more of their flowers open. The number of open flowers predicted whether an inflorescence was visited by bees, inspected but rejected, or ignored. Inflorescences chosen arbitrarily by observers had numbers of open flowers intermediate between those of visited and ignored inflorescences.
  • 2 Differences in morphological characters between types of inflorescence correlated with nectar volume and sugar weight per flower so that visited inflorescences had a disproportionately greater volume of nectar and weight of sugar per flower and greater variance in nectar volume.
  • 3 Although there were significant associations between nectar content and the morphological characters of inflorescences, discriminant function analysis revealed discrimination on the basis of morphology rather than nectar content.
  • 4 Visited inflorescences tended to have smaller than average flowers but bees tended to probe the largest flowers on visited inflorescences.
  • 5 Choice of flowers within inflorescences is explicable in terms of the relationship between flower size and nectar content.
  相似文献   

11.
    
In eastern North America, the field milkweed, Asclepias syriaca L. (Asclepiadaceae), is used in planting schemes to promote biodiversity conservation for numerous insects including the endangered monarch butterfly, Danaus plexippus (Linnaeus) (Nymphalidae). Less is known about its pollinators, and especially in urban habitats where it is planted often despite being under increasing pressure from invasive plant species, such as the related milkweed, the dog‐strangling vine (DSV), Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae). During the A. syriaca flowering period in July 2016, we surveyed bees in open habitats along a DSV invasion gradient and inspected 433 individuals of 25 bee species in 12 genera for pollinia: these were affixed to bees that visited A. syriaca for nectar and contain pollen packets that are vectored (e.g., transferred) between flowers. Of all bees sampled, pollinia were found only on the nonindigenous honeybee, Apis mellifera (43% of all bees identified), as well as one individual bumblebee, Bombus impatiens Cresson. Pollinia were recorded from 45.2% of all honeybees collected. We found no relationship between biomass of DSV and biomass of A. syriaca per site. There was a significant positive correlation between A. syriaca biomass and the number of pollinia, and the proportion vectored. No relationship with DSV biomass was detected for the number of pollinia collected by bees but the proportion of vectored pollinia declined with increasing DSV biomass. Although we find no evidence of DSV flowers attracting potential pollinators away from A. syriaca and other flowering plants, the impacts on native plant–pollinator mutualisms relate to its ability to outcompete native plants. As wild bees do not appear to visit DSV flowers, it could be altering the landscape to one which honeybees are more tolerant than native wild bees.  相似文献   

12.
    
The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a significant pest of managed honeybees in the USA and eastern Australia. The beetle damages hives by feeding on hive products and leaving behind fermented wastes. The beetle is consistently associated with the yeast Kodamaea ohmeri (Etchells & Bell) Yamada et al. (Saccharomycetales: Metschnikowiaceae), and this yeast is the presumed agent of the fermentation. Previous work has noted that the small hive beetle is attracted to volatiles from hive products and those of the yeast K. ohmeri. In this study, we investigated how the volatile compounds from the fermenting hive products change depending upon the source of the hive material and also how these volatiles change through time. We used gas chromatography–mass spectrometry and choice‐test behavioural assays to investigate these changes using products sampled from apiaries across the established range of the beetle in eastern Australia. The starting hive products significantly affected the volatile composition of fermenting hive products, and this composition varied throughout time. We found 61.7% dissimilarity between attractive and non‐attractive fermenting hive products, and identified individual compounds that characterise each of these groups. Eleven of these individual compounds were then assessed for attractiveness, as well as testing a synthetic blend in the laboratory. In the laboratory bioassay, 82.1 ± 0.02% of beetles were trapped in blend traps. These results have strong implications for the development of an out‐of‐hive attractant trap to assist in the management of this invasive pest.  相似文献   

13.
14.
    
The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a recent but significant pest of honeybee [Apis mellifera L. (Hymenoptera: Apidae)] hives in various regions throughout the world, including Eastern Australia. The larval stage of this beetle damages hives when they feed on brood, pollen, and honeycomb, leaving behind fermented wastes. In cases of extreme damage, hives collapse and are turned to an odorous mass of larvae in fermenting hive products. The yeast Kodamaea ohmeri (Etchells & Bell) Yamada et al. (Ascomycota) has been consistently isolated from the fermenting material as well as each life stage of this beetle. Various studies have noted that the small hive beetle is attracted to volatiles from hive products and those of the yeast Kohmeri, although earlier studies have not used naturally occurring hive products as their source of fermentation. This study investigated changes through time in the attractiveness of natural honeybee hive products to the small hive beetle as the hive products were altered by the action of beetle larvae and fermentation by K. ohmeri. We used gas chromatography‐mass spectrometry and choice‐test behavioural assays to investigate these changes using products sampled from three apiaries. Attractiveness of the fermenting hive products (‘slime’) increased as fermentation progressed, and volatile profiles became more complex. Fermenting hive products remained extremely attractive for more than 30 days, significantly longer than previous reports. These results have strong implications for the development of an external attractant trap to assist in the management of this invasive pest.  相似文献   

15.
    
The recent decline in managed honey bee populations, Apis mellifera L. (Hymenoptera: Apidae), has caused scientific, ecological, and economic concern. Research into the formation of reactive oxygen species (ROS), antioxidative defense mechanisms, and oxidative stress can contribute to our understanding of bee survival and conservation of this species. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S‐transferase (GST) enzymes together with levels of malondialdehyde (MDA) were measured in summer and winter honey bees sampled from three colonies. One colony was stationary (C1), entering the winter period having accumulated Robinia pseudoacacia L. (Fabaceae) honey, and two were migratory (C2 and C3), entering the winter period with mainly Tilia (Malvaceae) and Brassica (Brassicaceae) honey, respectively. Compared to summer workers, winter worker bees had decreased SOD and GST activity, and MDA level, whereas CAT activity increased in all three colonies. We also demonstrated that seasonality is the main factor responsible for changes in antioxidant enzymes and MDA levels in worker honey bees. Overall, our results indicate a difference between summer and winter worker bees, pointing at a reduced level of antioxidant enzyme defenses during overwintering which may be due to a decrease in production of ROS. The decreased levels of MDA measured in winter honey bees confirm this. As ROS are actively used by insects as a defense mechanism to fight pathogens, we suggest that reduced production of ROS contributes to higher susceptibility of winter honey bees to infections and reduced overwinter survival.  相似文献   

16.
The great diversity of flowers, their color, odor, taste, and shape, is mostly a result of the metabolic processes that occur in this reproductive organ when the flower and its tissues develop, grow, and finally die. Some of these metabolites serve to advertise flowers to animal pollinators, other confer protection towards abiotic stresses, and a large proportion of the molecules of the central metabolic pathways have bioenergetic and signaling functions that support growth and the transition to fruits and seeds. Although recent studies have advanced our general understanding of flower metabolism, several questions still await an answer. Here, we have compiled a list of open questions on flower metabolism encompassing molecular aspects, as well as topics of relevance for agriculture and the ecosystem. These questions include the study of flower metabolism through development, the biochemistry of nectar and its relevance to promoting plant‐pollinator interaction, recycling of metabolic resources after flowers whiter and die, as well as the manipulation of flower metabolism by pathogens. We hope with this review to stimulate discussion on the topic of flower metabolism and set a reference point to return to in the future when assessing progress in the field.  相似文献   

17.
    
Social bee colonies can allocate their foraging resources over a large spatial scale, but how they allocate foraging on a small scale near the colony is unclear and can have implications for understanding colony decision‐making and the pollination services provided. Using a mass‐foraging stingless bee, Scaptotrigona pectoralis (Dalla Torre) (Hymenoptera: Apidae: Meliponini), we show that colonies will forage near their nests and allocate their foraging labor on a very fine spatial scale at an array of food sources placed close to the colony. We counted the foragers that a colony allocated to each of nine feeders containing 1.0, 1.5, or 2.0 M sucrose solution [31, 43, and 55% sucrose (wt/wt), respectively] at distances of 10, 15, and 20 m from the nest. A significantly greater number of foragers (2.6–5.3 fold greater) visited feeders placed 10 vs. 20 m away from the colony. Foraging allocation also corresponded to food quality. At the 10‐m feeders, 4.9‐fold more foragers visited 2.0 M as compared to 1.0 M sucrose feeders. Colony forager allocation thus responded to both differences in food distance and quality even when the travel cost was negligible compared to normal colony foraging distances (10 m vs. an estimated 800–1 710 m). For a nearby floral patch, this could result in unequal floral visitation and pollination.  相似文献   

18.
    
  1. The Mojave Desert of the southwestern U.S. is home to two protected species of poppy in the genus Arctomecon Torr. & Frém. (Papaveraceae). A pollinator of these species is the specialist bee Perdita meconis Griswold (Andrenidae) a specialist on poppy pollen.
  2. Recently, the easternmost population of P. meconis, which was associated with A. humilis Coville in Utah, has become locally extinct, and other historically associated bee pollinators have become scarce. Implicated in the disruption of this pollination system is invasion by the Africanised honey bee.
  3. Here we report on the status of P. meconis in historic populations associated with congener A. californica Torr. & Frém., 100 km west in Clark Co., Nevada where the Africanised honey bee is also adventive.
  4. We surveyed flower visitors at eight A. californica populations in 2017, six of which had been surveyed in 1995. In general, we found no disruptions of the historic pollination system of A. californica despite the presence of abundant Africanised honey bees, which largely foraged at other flower species.
  5. The most likely cause of the disparate effects of the Africanised honey bee in Utah and Nevada is livestock grazing. Grazing in Utah has been continuous for over three decades and while cattle do not graze A. humilis, they graze its floral competitors, forcing honey bees to forage on poppy flowers. In Nevada, protections afforded to the desert tortoise halted grazing approximately when the Africanised honey bee invaded, making diverse floral forage available for honey bees.
  相似文献   

19.
    
Recent major losses of managed honeybee, Apis mellifera, colonies at a global scale have resulted in a multitude of research efforts to identify the underlying mechanisms. Numerous factors acting singly and/or in combination have been identified, ranging from pathogens, over nutrition to pesticides. However, the role of apiculture in limiting natural selection has largely been ignored. This is unfortunate, because honeybees are more exposed to environmental stressors compared to other livestock and management can severely compromise bee health. Here, we briefly review apicultural factors that influence bee health and focus on those most likely interfering with natural selection, which offers a broad range of evolutionary applications for field practice. Despite intense breeding over centuries, natural selection appears to be much more relevant for the health of managed A. mellifera colonies than previously thought. We conclude that sustainable solutions for the apicultural sector can only be achieved by taking advantage of natural selection and not by attempting to limit it.  相似文献   

20.
    
Climate change and biological invasions are two major global environmental challenges. Both may interact, e.g. via altered impact and distribution of invasive alien species. Even though invasive species play a key role for compromising the health of honey bees, the impact of climate change on the severity of such species is still unknown. The small hive beetle (SHB, Aethina tumida, Murray) is a parasite of honey bee colonies. It is endemic to sub‐Saharan Africa and has established populations on all continents except Antarctica. Since SHBs pupate in soil, pupation performance is governed foremost by two abiotic factors, soil temperature and moisture, which will be affected by climate change. Here, we investigated SHB invasion risk globally under current and future climate scenarios. We modelled survival and development time during pupation (=pupal performance) in response to soil temperature and soil moisture using published and novel experimental data. Presence data on SHB distribution were used for model validation. We then linked the model with global soil data in order to classify areas (resolution: 10 arcmin; i.e. 18.6 km at the equator) as unsuitable, marginal and suitable for SHB pupation performance. Under the current climate, the results show that many areas globally yet uninvaded are actually suitable, suggesting considerable SHB invasion risk. Future scenarios of global warming project a vehement increase in climatic suitability for SHB and corresponding potential for invasion, especially in the temperate regions of the Northern hemisphere, thereby creating demand for enhanced and adapted mitigation and management. Our analysis shows, for the first time, effects of global warming on a honey bee pest and will help areas at risk to prepare adequately. In conclusion, this is a clear case for global warming promoting biological invasion of a pest species with severe potential to harm important pollinator species globally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号