首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ‘mid‐domain effect’ (MDE) has received much attention recently as a candidate explanation for patterns in species richness over large geographic areas. Mid‐domain models generate a central peak in richness when species ranges are randomly placed within a bounded geographic area (i.e. the domain). The most common terrestrial mid‐domain models published to date have been 1‐D latitude or elevation models and 2‐D latitude‐longitude models. Here, we test 1‐D, 2‐D and 3‐D mid‐domain models incorporating latitude, longitude and elevation, and assess independent and concurrent effects of geometric constraints and climatic variables on species richness of North American trees. We use both the traditional ‘global’ regression models as well as geographically weighted regressions (‘local’ models) to examine local variation in the contribution of MDE and climatic variables to species richness across the domain. Our results show that in some dimensions the contribution of MDE to patterns of species richness can be quite substantial, and we show that in most cases a combination of MDE and climate predicted empirical species richness best in both local and global models. For the North American domain, MDE in the elevation dimension is clearly important in describing patterns of empirical species richness. We also show that the assumption of stationarity in global models is not met in the North American domain and that results of these models mask complex patterns in both the effect of MDE on richness and the response of species richness to climate. In particular we show the increased explanatory role of MDE in predicting species richness as domain edges are approached. Our results support the hypothesis that geometric constraints contribute to species richness patterns and we suggest the mid‐domain effect should be considered alongside more traditional environmental correlates in understanding patterns of species diversity.  相似文献   

2.
Woody and herbaceous plants are differentially influenced by the environment, with non‐random association with the evolutionary history of these taxa and their traits. In general, woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. Here, we explored and mapped how the patterns of species richness, phylogenetic diversity, and structures of total, woody, and herbaceous plants vary across the geographical regions and with respect to 12 environmental variables across Ethiopia and Eritrea, in the horn of Africa. Our result showed that both richness and phylogenetic diversity had almost the same tendency in total woody and herbaceous plants, in which they showed positive relationships with annual precipitation, precipitation annual range of climate, all the three variables of topography, and total nitrogen and total extractable phosphorus of soil, and negative relations with mean annual temperature. Compared with the total and herbaceous plants, the environmental variables explained greater variance both in the standardized effect size phylogenetic diversity and net relatedness index for woody plants. Our results highlight that, on the large spatial scales, the environmental filtering process has played a greater role in structuring species into local communities for woody plants than for herbaceous plants.  相似文献   

3.
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.  相似文献   

4.
We studied the altitudinal patterns of plant species richness and examined the effects of geometric constraints, area, and climatic factors on the observed richness patterns along the ridge of the Baekdudaegan Mountains, South Korea. Rapoport’s altitudinal rule was evaluated by examining the relationship between altitudinal range size and midpoint. We also examined the latitudinal effect on species richness. Plant data were collected from 1,100 plots along a 200–1,900 m altitudinal gradient along the ridge of the Baekdudaegan. A total of 802 plant species from 97 families and 342 genera were found. The altitudinal patterns of plant species richness along the ridge of the Baekdudaegan depicted distinctly hump-shaped patterns, although the absolute altitudes of the richness peaks vary somewhat among plant groups. While the mid-domain effect (MDE) was the most powerful explanatory variable in simple regression models, species richness was also associated with climatic factors, especially mean annual precipitation (MAP) and temperature (MAT) in multiple regression models. The relative importance of the MDE and climatic factors were different among plant groups. The MDE was more important for woody plants and for large-ranged species, whereas climatic factors were better predictors for total and herbaceous plants and for small-ranged species. Rapoport’s altitudinal rule and a latitudinal effect on species richness were not supported. Our study suggests that a combined interaction of the MDE and climatic factors influences species richness patterns along the altitudinal gradient of the Baekdudaegan Mountains, South Korea.  相似文献   

5.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

6.
北半球高山和极地虎耳草属物种丰富度的地理格局:温度和生境异质性的作用 现代气候、生境异质性和长期气候变化对森林生态系统中分布的木本植物的物种丰富度格局的影响在以往研究中受到广泛关注,但对高寒-极地生态系统中的草本植物物种丰富度格局及其影响因素的研究仍较少。本研究旨在检验以往研究中基于物种丰富度和环境因子关系提出的假说是否能够解释高寒-极地地区典型草本植物-虎耳草属(Saxifraga)的物种丰富度格局。本研究利用全球437种虎耳草属物种分布数据,探讨了全部物种、广域和狭域物种丰富度格局的影响因素。采用广义线性模型和空间自回归模型,评估了现代气候、生境异质性和历史气候对虎耳草属物种丰富度格局的影响。采用偏回归分析了不同变量对物种丰富度的独立解释率和共同解释率,并检验了4种广泛使用的物种丰富度与环境关系模型对物种丰富度格局的解释能力。研究结果表明,温度与虎耳草属所有物种和广域物种的物种丰富度格局呈显著负相关关系,是影响物种丰富度格局最重要的环境因子,这可能反映了虎耳草属对其祖先温带生态位的保守性。生境异质性和末次冰期以来的气候变化是虎耳草属狭域物种丰富度空间变异的最佳预测因子。总体而言,包含5个预测变量的组合模型可以解释大约40%–50%的虎耳草属物种丰富度的空间变异。此外,进化和生物地理过程在虎耳草属物种丰富度格局形成方面可能发挥了重要作用,这有待进一步研究。  相似文献   

7.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

8.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

9.
Aim To evaluate the relative importance of climate, productivity, environmental heterogeneity, biotic associations and habitat use by cattle to account for the species richness of trees, shrubs and herbs across the Subantarctic–Patagonian transition. Location An area of c. 150 × 150 km, within the transition zone between the Subantarctic and Patagonian subregions on the eastern slope of the Andes (c. 39–42° S, 70–72° W). Methods All vascular plants found at each one of 50 (10 × 10 m) sampling plots were counted to estimate the local tree, shrub and herb species richness. Path analysis was used to evaluate the relationship between the richness of the three life‐forms and plant cover, dried litter biomass, mean annual temperature, annual precipitation, daily temperature range, substrate heterogeneity and number of faecal pats. Principal coordinates of neighbour matrices was used to model the spatial autocorrelation of the data. Results Total plant species richness showed a unimodal pattern of spatial variation across the transition. Richness responded positively to indirect effects of precipitation mediated through plant cover, but there was a negative overall effect of precipitation on richness towards the west of the transition, most strongly for trees. An increase in substrate heterogeneity promoted a local increase in herb and shrub richness; the richness of trees increased in sites with steeper slopes. Canopy closure had a direct negative impact on herb richness; it also increased the local accumulation of litter, which negatively affected shrub and herb richness. The impact of habitat use by cattle negatively affected herb richness in areas to the east of the biogeographical transition. Main conclusions We suggest that the importance of indirect climatic effects mediated by vegetation cover can account for species richness patterns across this transition, most strongly for woody species, which supports the productivity hypothesis. The southern temperate forests towards the west may represent a deviation from the predictions of the water–energy dynamics hypothesis. Dissimilar spatial patterns of variation in the richness of woody and herbaceous species, and their different responses to climatic and heterogeneity variables across the transition, suggest that plant life‐form influences the plant species richness–environment relationships.  相似文献   

10.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

11.
Although elevational patterns of species richness have been well documented, how the drivers of richness gradients vary across ecological guilds has rarely been reported. Here, we examined the effects of spatial factors (area and mid‐domain effect; MDE) and environmental factors, including metrics of climate, productivity, and plant species richness on the richness of breeding birds across different ecological guilds defined by diet and foraging strategy. We surveyed 12 elevation bands at intervals of 300 m between 1,800 and 5,400 m a.s.l using line‐transect methods throughout the wet season in the central Himalaya, China. Multiple regression models and hierarchical partitioning were used to assess the relative importance of spatial and environmental factors on overall bird richness and guild richness (i.e., the richness of species within each guild). Our results showed that richness for all birds and most guilds displayed hump‐shaped elevational trends, which peaked at an elevation of 3,300–3,600 m, although richness of ground‐feeding birds peaked at a higher elevation band (4,200–4,500 m). The Normalized Difference Vegetation Index (NDVI)—an index of primary productivity—and habitat heterogeneity were important factors in explaining overall bird richness as well as that of insectivores and omnivores, with geometric constraints (i.e., the MDE) of secondary importance. Granivore richness was not related to primary production but rather to open habitats (granivores were negatively influenced by habitat heterogeneity), where seeds might be abundant. Our findings provide direct evidence that the richness–environment relationship is often guild‐specific. Taken together, our study highlights the importance of considering how the effects of environmental and spatial factors on patterns of species richness may differ across ecological guilds, potentially leading to a deeper understanding of elevational diversity gradients and their implications for biodiversity conservation.  相似文献   

12.
Aim In simulation exercises, mid‐domain peaks in species richness arise as a result of the random placement of modelled species ranges within simulated geometric constraints. This has been called the mid‐domain effect (MDE). Where close correspondence is found between such simulations and empirical data, it is not possible to reject the hypothesis that empirical species richness patterns result from the MDE rather than being the outcome (wholly or largely) of other factors. To separate the influence of the MDE from other factors we therefore need to evaluate variables other than species richness. The distribution of range sizes gives different predictions between models including the MDE or not. Here, we produce predictions for species richness and distribution of range sizes from one model without the MDE and from two MDE models: a classical MDE model encompassing only species with their entire range within the domain (range‐restricted MDE), and a model encompassing all species with the theoretical midpoint within the domain (midpoint‐restricted MDE). These predictions are compared with observations from the elevational pattern of range‐size distributions and species richness of vascular plants. Location Mount Kinabalu, Borneo. Methods The data set analysed comprises more than 28,000 plant specimens with information on elevation. Species ranges are simulated with various assumptions for the three models, and the species simulated are subsequently subjected to a sampling that simulates the actual collection of species on Mount Kinabalu. The resulting pattern of species richness and species range‐size distributions are compared with the observed pattern. Results The comparison of simulated and observed patterns indicates that an underlying monotonically decreasing trend in species richness with elevation is essential to explain fully the observed pattern of richness and range size. When the underlying trend is accounted for, the MDE model that restricts the distributions of theoretical midpoints performs better than both the classical MDE model and the model that does not incorporate geometric constraints. Main conclusions Of the three models evaluated here, the midpoint‐restricted MDE model is found to be the best for explaining species richness and species range‐size distributions on Mount Kinabalu.  相似文献   

13.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

14.
Fire suppression and climate change are leading to habitat fragmentation in temperate montane meadows across the globe, raising concerns about biodiversity loss. Restoration strategies may depend on the rate and nature of species response to habitat loss. We examined the effects of habitat loss and fragmentation on plants and nocturnal moths in natural montane meadows in the western Cascades, Oregon, USA, using generalized additive mixed models, non-metric multidimensional scaling, and multiple response permutation procedure. Historic (1949) rather than current (2005) meadow size explained species richness of herbaceous plants and herb-feeding moths and meadow plant community structure, indicating that loss of meadow species may be delayed by many decades following loss of meadow habitat, resulting in an extinction debt. In contrast, abundance of herb-feeding moths and species richness and abundance of woody plant-feeding moths were related to recent meadow configuration: as meadows are invaded by woody plants, abundance of meadow species declines, and woody plants and associated moths increase. Despite decades of fire suppression and climate change, montane meadows in many temperate mountain landscapes may still be amenable to restoration.  相似文献   

15.
Aim To explore the variation in species richness along a subtropical elevation gradient, and evaluate how climatic variables explain the richness of the different life forms such as trees, shrubs, climbers, herbs and ferns. Location The study was made in a subtropical to warm temperate region in the south‐eastern part of Nepal, between 100 and 1500 m above sea level (a.s.l.). Methods The number of species was counted in six plots (50 × 20 m) in each of the 15 100 m elevation bands covering the main physiognomic structures along an imaginary transect. Each species recorded was assigned to a life form. Potential evapotranspiration (PET, i.e. energy), mean annual rainfall (MAR), and their ratio (MI = moisture index) were evaluated as explanatory variables by means of generalized linear models (GLM). Each variable was tested individually, and in addition MAR and PET were used to test the water‐energy dynamics model for each life form. Results The richness of herbaceous species, including herbaceous climbers, was unrelated to any of the climate variables. PET was strongly negatively correlated with elevation, and the following relationships were found between increasing PET and richness: (i) shrubs, trees and total species (sum of all life forms) showed unimodal responses (ii) ferns decreased monotonically, and (iii) woody climbers increased monotonically. Richness of all woody groups increased monotonically with MAR and MI. The water‐energy dynamics model explained 63% of the variation in shrubs, 67% for trees and 70% for woody species combined. Main conclusions For the various herbaceous life forms (forbs, grasses, and herbaceous climbers) we found no significant statistical trends, whereas for woody life forms (trees, shrubs, and woody climbers) significant relationships were found with climate. E.M. O’Brien's macro‐scale model based on water‐energy dynamics was found to explain woody species richness at a finer scale along this elevational‐climatic gradient.  相似文献   

16.
Aim Elevational gradients offer an outstanding opportunity to assess factors determining patterns of species richness, but along single transects potential explanatory factors often covary, making it difficult to distinguish between competing hypotheses. Many previous studies on plants have interpreted their results as supporting the mid‐domain effect (MDE) as a major determinant of species richness, even when climatic factors showed similarly high explanatory power. We compared fern species richness along 20 elevational transects to quantify the relative contribution of climate and MDE as drivers of elevational richness patterns. Location Twenty transects world‐wide. Methods Ferns were sampled in 1039 plots of 400–2500 m2 each. Mean annual precipitation and temperature, epiphytic bryophyte cover (as a proxy for air humidity) and MDE predictions were included as independent variables. For each transect, we calculated multiple linear models and partitioned the variance to assess the relative contribution of the independent variables, selecting the most parsimonious models based on Akaike weights and multi‐model inference. Results Along most individual gradients, nearly all variance of fern species richness that could be attributed to either space or MDEs was collinear with climatic factors. Yet, the comparison across transects showed that elevational richness patterns are most parsimoniously accounted for by climatic conditions, especially by low water availability at low elevations and in dry regions in general, and by low temperatures at high elevations and in extra‐tropical regions. Main conclusions Fern species richness is most closely related to climatic factors, and while MDE, surface area and metapopulation processes may somewhat modify the patterns, their importance has been overstated in the past. Future research challenges include determining whether the richness–climate relationship reflects: (1) a direct relationship through the physiological tolerance of the plants, (2) an indirect influence of climate on ecosystem productivity, or (3) an evolutionary legacy of longer or faster diversification processes under certain climatic conditions.  相似文献   

17.
What environmental variables determine riparian vegetation patterns? Are there differences between woody and herbaceous species? To answer these questions, we first explored the composition and richness patterns of both riparian woody and herbaceous species in a semi-arid mediterranean basin. Then, we assessed the environmental factors (climate, geology, topography, hydrogeomorphology and land use) that best explain these patterns. We used the following methodological approaches: clustering analyses, distance-based linear models, generalised linear models and hierarchical partitioning procedures. Valley shape, drought duration, river habitat heterogeneity, water conductivity and agricultural land use were the most important variables explaining variation in species composition for both groups. Woody riparian richness was mainly influenced by flow conditions and valley shape, whereas herbaceous one was more dependent on substrate features. Thus, although some differences in the importance of individual variables were observed, we found a notable congruence in the composition and species richness of both groups and also in the main types of variables explaining these patterns (hydrogeomorphology and land use, especially agriculture). Our results show that both communities could be treated in a holistic way, since they respond similarly to the strong natural and anthropogenic environmental gradients present in mediterranean basins.  相似文献   

18.
物种多样性海拔分布格局及其形成机制的研究是生物地理学和宏观生态学的重要议题之一。本文利用西双版纳植物专著资料, 结合高分辨率的地形和气候等数据, 探讨了面积、边界限制和现代气候对西双版纳野生种子植物物种丰富度及物种密度海拔分布格局的影响。结果表明: (1)物种丰富度呈单峰分布格局, 面积(81.9%)、边界限制(17.5%)和气候(60.0-69.3%)都不同程度地解释了物种丰富度的单峰格局; (2)利用幂函数种-面积关系计算的物种密度沿海拔大致呈减小的分布趋势, 气候的解释率降低为32.6-40.6%, 与边界限制无显著相关关系; (3)利用等面积高度带划分得到的物种密度沿海拔呈单峰变化趋势, 物种密度与边界限制无显著相关性, 但气候对物种密度的解释率为81.6-89.9%。研究结果有助于准确全面地理解物种多样性的海拔分布格局及其成因机制, 为西双版纳生物多样性保护提供理论支撑和实践指导。  相似文献   

19.
Macroecological patterns are likely the result of both stochastically neutral mechanisms and deterministic differences between species. In Madagascar, the simplest stochastically neutral hypothesis – the mid‐domain effects (MDE) hypothesis – has already been rejected. However, rejecting the MDE hypothesis does not necessarily refute the existence of all other neutral mechanisms. Here, we test whether adding complexity to a basic neutral model improves predictions of biodiversity patterns. The simplest MDE model assumes that: (1) species' ranges are continuous and unfragmented, (2) are randomly located throughout the landscape, and (3) can be stacked independently and indefinitely. We designed a simulation based on neutral theory that allowed us to weaken each of these assumptions incrementally by adjusting the habitat capacity as well as the likelihood of short‐ and long‐distance dispersal. Simulated outputs were compared to four empirical patterns of bird diversity: the frequency distributions of species richness and range size, the within‐island latitudinal diversity gradient, and the distance‐decay of species compositional similarity. Neutral models emulated empirical diversity patterns for Madagascan birds accurately. The frequency distribution of range size, latitudinal diversity gradient, and the distance‐decay of species compositional similarity could be attributed to stochastic long‐distance migration events and zero‐sum population dynamics. However, heterogenous environmental gradients improved predictions of the frequency distribution of species richness. Patterns of bird diversity in Madagascar can broadly be attributed to stochastic long‐distance migration events and zero‐sum population dynamics. This implies that rejecting simple hypotheses, such as MDE, does not serve as evidence against stochastic processes in general. However, environmental gradients were necessary to explain patterns of species richness and deterministic differences between species are probably important for explaining the distributions of narrow‐range and endemic species.  相似文献   

20.
Herbivores are major drivers of ecosystem structure, diversity, and function. Resilient ecosystems therefore require viable herbivore populations in a sustainable balance with environmental resource availability. This balance is becoming harder to achieve, with increasingly threatened species reliant on small protected areas in increasingly harsh and unpredictable environments. Arid environments in North Africa exemplify this situation, featuring a biologically distinct species assemblage exposed to extreme and volatile conditions, including habitat loss and climate change‐associated threats. Here, we implement an integrated likelihood approach to relate scimitar‐horned oryx (Oryx dammah) and dorcas gazelle (Gazella dorcas) density, via dung distance sampling, to habitat, predator, and geographic correlates in Dghoumes National Park, Tunisia. We show how two threatened sympatric ungulates partition resources on the habitat axis, exhibiting nonuniform responses to the same vegetation gradient. Scimitar‐horned oryx were positively associated with plant species richness, selecting for vegetated ephemeral watercourses (wadis) dominated by herbaceous cover. Conversely, dorcas gazelle were negatively associated with vegetation density (herbaceous height, litter cover, and herbaceous cover), selecting instead for rocky plains with sparse vegetation. We suggest that adequate plant species richness should be a prerequisite for areas proposed for future ungulate reintroductions in arid and semi‐arid environments. This evidence will inform adaptive management of reintroduced ungulates in protected environments, helping managers and planners design sustainable ecosystems and effective conservation programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号