首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We used species‐area relationships (SARs) to investigate the effects of habitat loss on lemur biogeography. We measured species richness via visual surveys on line transects within 42 fragments of dry deciduous forest at the Ambanjabe field site in Ankarafantsika National Park, Madagascar. We measured human disturbance and habitat characteristics within 38 of the 42 fragments. We measured the distance between each fragment and the nearest settlement, continuous forest, and nearest neighboring fragment. We fit 10 candidate SAR models to the data using nonlinear least squares regression and compared them using Akaike's Information Criterion (AIC). To determine how habitat characteristics, as well as area, influenced species richness, we ran a hierarchical partitioning procedure to select which variables to include in generalized additive models (GAMs) and compared them using AIC. Contrary to expectations, we found that lemurs form convex SARs, without a “small island effect”, and with the power model being the most likely SAR model. Although we found that four variables (area, survey effort, and total human disturbance, and mean tree height) independently contributed greater than 10% of the variation in lemur species richness, only area was included in the most likely model. We suggest that the power model was the most likely SAR model and our inability to detect a “small island effect” are the result of Microcebus spp. being edge tolerant and capable of dispersing through matrix, scale issues in the study design, and low γ‐diversity in the landscape. However, more study is needed to determine what role human disturbance plays in influencing species richness in lemurs.  相似文献   

2.
Aim To investigate how plant diversity of whole islands (‘gamma’) is related to alpha and beta diversity patterns among sampling plots within each island, thus exploring aspects of diversity patterns across scales. Location Nineteen islands of the Aegean Sea, Greece. Methods Plant species were recorded at both the whole‐island scale and in small 100 m2 plots on each island. Mean plot species richness was considered as a measure of alpha diversity, and six indices of the ‘variation’‐type beta diversity were also applied. In addition, we partitioned beta diversity into a ‘nestedness’ and a ‘replacement’ component, using the total species richness recorded in all plots of each island as a measure of ‘gamma’ diversity. We also applied 10 species–area models to predict the total observed richness of each island from accumulated plot species richness. Results Mean alpha diversity was not significantly correlated with the overall island species richness or island area. The range of plot species richness for each island was significantly correlated with both overall species richness and area. Alpha diversity was not correlated with most indices of beta diversity. The majority of beta diversity indices were correlated with whole‐island species richness, and this was also true for the ‘replacement’ component of beta diversity. The rational function model provided the best prediction of observed island species richness, with Monod’s and the exponential models following closely. Inaccuracy of predictions was positively correlated with the number of plots and with most indices of beta diversity. Main conclusions Diversity at the broader scale (whole islands) is shaped mainly by variation among small local samples (beta diversity), while local alpha diversity is not a good predictor of species diversity at broader scales. In this system, all results support the crucial role of habitat diversity in determining the species–area relationship.  相似文献   

3.
Aim We conducted a meta‐analysis of species–area relationships (SARs) by combining several data sets and important covariates such as types of islands, taxonomic groups, latitude and spatial extent, in a hierarchical model framework to study global pattern and local variation in SARs and its consequences for prediction. Location One thousand nine hundred and eighteen islands from 94 SAR studies from around the world. Methods We developed a generalization of the power‐law SAR model, the HSARX model, which allows: (1) the inclusion of multiple focal parameters (intercept, slope, within‐study variance), (2) use of multiple effect modifiers based on a collection of SAR studies, and (3) modelling of the between‐ and within‐study variability. Results The global pattern in the SAR was the average of local SARs and had wide confidence intervals. The global SAR slope was 0.228 with 90% confidence limits of 0.059 and 0.412. The intercept, slope and within‐study variability of local SARs showed great heterogeneity as a result of the interaction of modifying covariates. Confidence intervals for these SAR parameters were narrower when other covariates in addition to area were accounted for, thus increasing the accuracy of the predictions for species richness. The significant effect of latitude and the interaction of latitude, taxa and island type on the SAR slope indicated that the ‘typical’ latitudinal diversity gradient can be reversed in isolated systems. Main conclusions The power‐law relationship underlying the HSARX model provides a good fit for non‐nested SARs across vastly different spatial scales by taking into account other covariates. The HSARX framework allows researchers to explore the complex interactions among SAR parameters and modifying variables, to explicitly study the scale dependence, and to make robust predictions on multiple levels (island, study, global) with associated prediction intervals. From a prediction perspective, it is not the global pattern but the local variation that matters.  相似文献   

4.
The relationship between sampled area and the number of species within that area, the species–area relationship (SAR), is a major biodiversity pattern and one of a few law‐like regularities in ecology. While the SAR for isolated units (islands or continents) is assumed to result from the dynamics of species colonization, speciation and extinction, the SAR for contiguous areas in which smaller plots are nested within larger sample areas can be attributed to spatial patterns in the distribution of individuals. The nested SAR is typically triphasic in logarithmic space, so that it increases steeply at smaller scales, decelerates at intermediate scales and increases steeply again at continental scales. I will review current theory for this pattern, showing that all three phases of the SAR can be derived from simple geometric considerations. The increase of species richness with area in logarithmic space is generally determined by overall species rarity, so that the rarer the species are on average, the higher is the local slope z. Rarity is scale‐dependent: species occupy only a minor proportion of area at broad spatial scales, leading to upward accelerating shape of the SAR at continental scales. Similarly, species are represented by only a few individuals at fine spatial scales, leading to high SAR slope also at small areas. Geometric considerations reveal links of the SAR to other macroecological patterns, namely patterns of β‐diversity, the species–abundance distribution, and the relationship between energy availability (or productivity) and species richness. Knowledge of the regularities concerning nested SARs may be used for standardizing unequal areas, upscaling species richness and estimating species loss due to area loss, but all these applications have their limits, which also follow from the geometric considerations.  相似文献   

5.
Aim To investigate the species–area relationship (SAR) of plants on very small islands, to examine the effect of other factors on species richness, and to check for a possible Small Island Effect (SIE). Location The study used data on the floral composition of 86 very small islands (all < 0.050 km2) of the Aegean archipelago (Greece). Methods We used standard techniques for linear and nonlinear regression in order to check several models of the SAR, and stepwise multiple regression to check for the effects of factors other than area on species richness (‘habitat diversity’, elevation, and distance from nearest large island), as well as the performance of the Choros model. We also checked for the SAR of certain taxonomic and ecological plant groups that are of special importance in eastern Mediterranean islands, such as halophytes, therophytes, Leguminosae and Gramineae. We used one‐way anova to check for differences in richness between grazed and non‐grazed islands, and we explored possible effects of nesting seabirds on the islands’ flora. Results Area explained a small percentage of total species richness variance in all cases. The linearized power model of the SAR provided the best fit for the total species list and several subgroups of species, while the semi‐log model provided better fits for grazed islands, grasses and therophytes. None of the nonlinear models explained more variance. The slope of the SAR was very high, mainly due to the contribution of non‐grazed islands. No significant SIE could be detected. The Choros model explained more variance than all SARs, although a large amount of variance of species richness still remained unexplained. Elevation was found to be the only important factor, other than area, to influence species richness. Habitat diversity did not seem important, although there were serious methodological problems in properly defining it, especially for plants. Grazing was an important factor influencing the flora of small islands. Grazed islands were richer than non‐grazed, but the response of their species richness to area was particularly low, indicating decreased floral heterogeneity among islands. We did not detect any important effects of the presence of nesting seabird colonies. Main conclusions Species richness on small islands may behave idiosyncratically, but this does not always lead to a typical SIE. Plants of Aegean islets conform to the classical Arrhenius model of the SAR, a result mainly due to the contribution of non‐grazed islands. At the same time, the factors examined explain a small portion of total variance in species richness, indicating the possible contribution of other, non‐standard factors, or even of stochastic effects. The proper definition of habitat diversity as pertaining to the taxon examined in each case is a recurrent problem in such studies. Nevertheless, the combined effect of area and a proxy for environmental heterogeneity is once again superior to area alone in explaining species richness.  相似文献   

6.
The island species–area relationship (ISAR) describes how the number of species increases with increasing size of an island (or island‐like habitat), and is of fundamental importance in island biogeography and conservation. Here, we use a framework based on individual‐based rarefaction to infer whether ISARs result from passive sampling, or whether some processes are acting beyond sampling (e.g., disproportionate effects and/or habitat heterogeneity). Using data on total and relative abundances of four taxa (birds, butterflies, amphibians, and reptiles) from multiple islands in the Andaman and Nicobar archipelago, we examine how different metrics of biodiversity (total species richness, rarefied species richness, and abundance‐weighted effective numbers of species emphasizing common species) vary with island area. Total species richness increased for all taxa, as did rarefied species richness controlling for a given sampling effort. This indicates that the ISAR did not result because of passive sampling, but that instead, some species were disproportionately favored on larger islands. For birds, frogs, and lizards, this disproportionate effect was only associated with species that were rarer in the samples, but for butterflies, both more common and rarer species were affected. Furthermore, for the two taxa for which we had plot‐level data (reptiles and amphibians), within‐island β‐diversity did not increase with island size, suggesting that within‐island compositional effects were unlikely to be driving these ISARs. Overall, our results indicate that the ISARs of these taxa are most likely driven by disproportionate effects, that is, where larger islands are important sources of biodiversity beyond a simple sampling expectation, especially through their influence on rarer species, thus emphasizing their role in the preservation and conservation of species.  相似文献   

7.
Aim Working within a system of high structural contrast between fragments and the surrounding matrix, we assessed patterns of species loss and changes in species composition of phyllostomid bats on artificial land‐bridge islands relative to mainland assemblages, and evaluated the responses of bats to forest edges. We further examined the relative influence of local‐scale characteristics (e.g. vegetation structure, island area) versus landscape attributes (e.g. forest cover, patch density) and the importance of spatial scale in determining phyllostomid species richness and composition on islands. Location Islands in Gatún Lake and adjacent mainland peninsulas in the Barro Colorado Nature Monument, Panama. Methods Bats were sampled over a 2‐year period on 11 islands as well as at forest‐edge and interior sites on adjacent mainland, resulting in > 8400 captures. Results The islands harboured a less diverse and structurally simplified phyllostomid bat fauna. Islands far from the mainland were especially species‐poor. This decline in species richness was associated with compositional shifts towards assemblages strongly dominated by frugivores with good dispersal abilities. Members of other ensembles, most importantly gleaning animalivores, were much less common or absent. Although overall species composition was not significantly altered, species richness at continuous forest‐edge sites was significantly lower compared with that at interior sites. Distance from the mainland and amount of forest cover in the landscape were the best predictors of species richness and assemblage composition. Responses were scale‐dependent. At the local scale, species richness was independent of island area but was correlated positively with distance from the mainland. In contrast, area effects became more important at larger spatial scales, suggesting that many species use multiple fragments. Main conclusions Our results underline the conservation value of small habitat remnants, which, even when embedded in a hostile matrix, can support a relatively diverse bat fauna, provided that there is a low degree of patch isolation and spatial proximity to larger tracts of continuous forest. Although the results at the assemblage level were inconclusive, we demonstrate that certain bat species and ensembles, particularly gleaning animalivores, exhibit high edge‐sensitivity. Our results point to habitat loss rather than changes in landscape configuration as the main process after isolation underlying phyllostomid bat responses, suggesting that conservation efforts should focus on habitat preservation instead of trying to minimize fragmentation per se at the expense of habitat amount.  相似文献   

8.
Species numbers tend to increase with both the area surveyed (species–area relationship, SAR) and the number of samples taken (species–sampling effort relationship, SSER). These two relationships differ in their nature and underlying mechanisms but are not clearly distinguished in field studies. To discriminate the effects of area (spatial extent) and sampling effort (SE) on species richness, several models explicitly involving both variables were proposed and tested against 13 datasets from marine micro‐, meio‐ and macrobenthos. A combination of power SSER and piecewise power SAR terms was found to have the best fit. The effects of area and SE were both significant, but the former one was noticeably weaker. The SSERs were roughly linear in log‐log space, whereas the SARs demonstrated scale‐dependent behavior with a noticeable threshold (slope breakpoint). Species richness was almost area‐independent below this threshold (the “small area effect”, SAE) but followed typical power‐law SAR beyond the threshold. This effect was similar to the “small island effect” but occurred for arbitrarily delineated areas within continuous habitats. Parameters of the SAR curves depended on organism size. The upper limit of the SAE increased from microorganisms to meiofauna to macrofauna. Also, SAR curves for unicellular groups had significantly lower slopes. SAE is supposed to indicate a spatial range of statistical homogeneity in species composition. Its upper limit corresponds to the characteristic size of a local community (a single habitat occupied by a common species pool). Interpretations of SAR and SSER parameters in terms of α‐ and β‐diversity are proposed. Both SAR and SSER slopes obtained from univariate regressions are overestimated. This upward bias depends on sampling design, decreasing for SAR but increasing for SSER with more unequally spaced samples. Both spatial extent and sampling effort should be taken into account to disentangle properly their effects on diversity.  相似文献   

9.
Aim This study investigates the species–area relationship (SAR) for oribatid mite communities of isolated suspended soil habitats, and compares the shape and slope of the SAR with a nested data set collected over three spatial scales (core, patch and tree level). We investigate whether scale dependence is exhibited in the nested sampling design, use multivariate regression models to elucidate factors affecting richness and abundance patterns, and ask whether the community composition of oribatid mites changes in suspended soil patches of different sizes. Location Walbran Valley, Vancouver Island, Canada. Methods A total of 216 core samples were collected from 72 small, medium and large isolated suspended soil habitats in six western redcedar trees in June 2005. The relationship between oribatid species richness and habitat volume was modelled for suspended soil habitat isolates (type 3) and a nested sampling design (type 1) over multiple spatial scales. Nonlinear estimation parameterized linear, power and Weibull function regression models for both SAR designs, and these were assessed for best fit using R2 and Akaike's information criteria (ΔAIC) values. Factors affecting oribatid mite species richness and standardized abundance (number per g dry weight) were analysed by anova and linear regression models. Results Sixty‐seven species of oribatid mites were identified from 9064 adult specimens. Surface area and moisture content of suspended soils contributed to the variation in species richness, while overall oribatid mite abundance was explained by moisture and depth. A power‐law function best described the isolate SAR (S = 3.97 × A0.12, R2 = 0.247, F1,70 = 22.450, P < 0.001), although linear and Weibull functions were also valid models. Oribatid mite species richness in nested samples closely fitted a power‐law model (S = 1.96 × A0.39, R2 = 0.854, F1,18 = 2693.6, P < 0.001). The nested SAR constructed over spatial scales of core, patch and tree levels proved to be scale‐independent. Main conclusions Unique microhabitats provided by well developed suspended soil accumulations are a habitat template responsible for the diversity of canopy oribatid mites. Species–area relationships of isolate vs. nested species richness data differed in the rate of accumulation of species with increased area. We suggest that colonization history, stability of suspended soil environments, and structural habitat complexity at local and regional scales are major determinants of arboreal oribatid mite species richness.  相似文献   

10.
修建大坝形成水库蓄水是造成景观破碎化的原因和形式之一.本研究选取了浙江千岛湖库区景观破碎化的典型区域小金山林场,调查了74个大小不一的岛屿,研究了面积对植物物种分布的影响,并比较了使物种多样性最大化的几种植物物种保护方案:小岛组合、中岛组合、大岛组合、大中小组合岛.调查共记录到乔木物种56种,灌木物种79种.将岛屿按照面积由大到小排序,将相对应分布的乔木、灌木绘制成植物物种分布表.结果显示:乔木中分布不受面积影响的物种有15种,受面积影响的有11种,介于两者之间的有30种;灌木物种中不受面积影响的有24种,受面积影响的有16种,介于两者之间的有39种.将乔木、灌木和总物种数分别累加,同时将相对应的岛屿面积按不同组合累加,绘制累加物种和面积关系图,发现在特定的相同累加面积下,组合岛的累加乔木、灌木、总物种数最多,小岛组合次之,大岛组合最少.因此,建立相同面积的保护区时,组合岛有利于保护更多的物种.  相似文献   

11.
Parrotfishes are considered to have a major influence on coral reef ecosystems through grazing the benthic biota and are also primary fishery targets in the Indo‐Pacific. Consequently, the impact of human exploitation on parrotfish communities is of prime interest. As anthropogenic and environmental factors interact across spatial scales, sampling programs designed to disentangle these are required by both ecologists and resource managers. We present a multi‐scale examination of patterns in parrotfish assemblage structure, size distribution and diversity across eight oceanic islands of Micronesia. Results indicate that correlates of assemblage structure are scale‐dependent; biogeographic distributions of species and island geomorphology hierarchically influenced community patterns across islands whereas biophysical features and anthropogenic pressure influenced community assemblage structure at the within‐island scale. Species richness and phylogenetic diversity increased with greater broad‐scale habitat diversity associated with different island geomorphologies. However, within‐island patterns of abundance and biomass varied in response to biophysical factors and levels of human influence unique to particular islands. While the effect of fishing activities on community composition and phylogenetic diversity was obscured across island types, fishing pressure was the primary correlate of mean parrotfish length at all spatial scales. Despite widespread fishery‐induced pressure on Pacific coral reefs, the structuring of parrotfish communities at broad spatial scales remains a story largely dependent on habitat. Thus, we propose better incorporation of scale‐dependent habitat effects in future assessments of overexploitation on reef fish assemblages. However, strong community‐level responses within islands necessitate an improved understanding of the phylogenetic and functional consequences of altering community structure.  相似文献   

12.
Aim To investigate the formation of nestedness and species co‐occurrence patterns at the local (sampling station), the intermediate (island group), and the archipelago scale. Location The study used data on the distribution of terrestrial isopods on 20 islands of the central Aegean (Greece). These islands are assigned to two distinct subgroups (Kyklades and Eastern islands). Methods The Nestedness Temperature Calculator was used to obtain nestedness values and maximally nested matrices, the EcoSim7 software and a modified version of Sanderson (2000 ) method were used for the analysis of species co‐occurrences. Idiosyncratic temperatures of species and the order of species placement in the maximally nested matrices were used for further comparisons among spatial scales. The relationships of nestedness values with beta‐diversity, habitat diversity and a number of ecological factors recorded for each sampling station were also investigated. Results Significant nestedness was found at all spatial scales. Levels of nestedness were not related to beta‐diversity or habitat diversity. Nestedness values were similar among spatial scales, but they were affected by matrix size. The species that contributed most to the nested patterns within single islands were not the same as those that produce nestedness at the archipelago scale. There was significant variation in the frequency of species occurrence among islands and among spatial scales. There was no direct effect of ecological factors on the shaping of patterns of nestedness within individual islands, but habitat heterogeneity was crucial for the existence of such patterns. Positive associations among species prevailed at all scales when species per station were considered, while negative associations prevailed in the species per island matrices. All associations resulted from the habitat structure of sampling stations and from particularities of geographical distributions. Conclusions There was no clear‐cut distinction between nestedness patterns among spatial scales, even though different species, and partially different factors, contributed to the formation of these patterns in each case. There was a core of species that contributed to the formation of nested patterns at all spatial scales, while the patterns of species associations suggested that biotic interactions are not an important causal factor. The results of this study suggest that locally rare species cannot be widespread at a higher spatial scale, while locally common species can have a restricted distribution.  相似文献   

13.
Large hydroelectric dams are one of the current drivers of habitat loss across Amazonian forests. We investigated how the primate community at a hydroelectric dam in Brazilian Amazonia responded to changes in the landscape and local habitat structure of land‐bridge islands after 21 yr of post‐isolation history. The Balbina Dam, constructed in 1986, inundated 3129 km2 of primary forests and created more than 3500 variable‐sized islands. We conducted primate and habitat structure surveys on 20 islands from 5 to 1815 ha, and extracted forest patch and landscape metrics for each island. The number of primate species per island varied between 0 and 7 species. Primate composition varied substantially according to both island area and forest cover remaining within the landscape, whereas island area alone was the most significant predictor of richness. Locally, tree density and vertical stratification were the most significant explanatory variables of primate composition and richness. A model containing area effects had the most explanatory power regarding site occupancy for most species. Individually, each species responded differently, with howler and brown capuchin monkeys showing greater tolerance to cope with habitat changes. Body size was also an important predictor of primate occupancy. We recommend protecting large fragments and enhancing the suitability of surrounding habitats to ensure primate conservation in most Neotropical fragmented landscapes. Given the flat topography of hydroelectric reservoirs, which mainly favors the formation of small islands, and the escalating hydropower development plans in Amazonia, our findings provide evidence for pervasive detrimental impacts of dams on primate communities.  相似文献   

14.
Species–area relationships (SARs) are a key tool for understanding patterns of species diversity. A framework for the interpretation of SARs and their prediction under different landscape configurations remains elusive, however. This article addresses one of these configurations: how species' minimum-area requirements affect the shape of island or other isolate Species–area curves. We distinguish between two classes of SARs: sample-area curves, compiled entirely within larger contiguous areas, and isolate curves, compiled between isolated areas. We develop this conceptual and graphic model in order to illuminate landscape-scale diversity patterns, to discuss how various landscape and species characteristics affect outcomes, and to investigate the dynamics of local extinction under conditions of habitat fragmentation. Minimum-area effects on actual islands and other isolates predictably cause Species–area curves either to be sigmoid in arithmetic space or to be lowered for smaller areas. In order to illustrate the inherent shape of isolate curves, this study fits convex and sigmoid regression models to empirical isolate (island) data sets that cover the small scales expected to include inflection points.  相似文献   

15.
Disentangling the multiple factors controlling species diversity is a major challenge in ecology. Island biogeography and environmental filtering are two influential theories emphasizing respectively island size and isolation, and the abiotic environment, as key drivers of species richness. However, few attempts have been made to quantify their relative importance and investigate their mechanistic basis. Here, we applied structural equation modelling, a powerful method allowing test of complex hypotheses involving multiple and indirect effects, on an island‐like system of 22 French Guianan neotropical inselbergs covered with rock‐savanna. We separated the effects of size (rock‐savanna area), isolation (density of surrounding inselbergs), environmental filtering (rainfall, altitude) and dispersal filtering (forest‐matrix openness) on the species richness of all plants and of various ecological groups (terrestrial versus epiphytic, small‐scale versus large‐scale dispersal species). We showed that the species richness of all plants and terrestrial species was mainly explained by the size of rock‐savanna vegetation patches, with increasing richness associated with higher rock‐savanna area, while inselberg isolation and forest‐matrix openness had no measurable effect. This size effect was mediated by an increase in terrestrial‐habitat diversity, even after accounting for increased sampling effort. The richness of epiphytic species was mainly explained by environmental filtering, with a positive effect of rainfall and altitude, but also by a positive size effect mediated by enhanced woody‐plant species richness. Inselberg size and environmental filtering both explained the richness of small‐scale and large‐scale dispersal species, but these ecological groups responded in opposite directions to altitude and rainfall, that is positively for large‐scale and negatively for small‐scale dispersal species. Our study revealed both habitat diversity associated with island size and environmental filtering as major drivers of neotropical inselberg plant diversity and showed the importance of plant species growth form and dispersal ability to explain the relative importance of each driver.  相似文献   

16.
Aim Understanding complex ecological phenomena, such as the determinants of species richness, is best achieved by investigating their properties at different spatial scales. Factors significantly affecting the number of species occurring at one scale may not impact on richness at other scales. While this scale dependence has become increasingly recognized, there still remains a need to elucidate exactly how richness is structured across scales, and which mechanisms are influential for determining this important community property. This study explores how woody plant species richness varies in a fragmented system at multiple scales, and which factors are primarily responsible for these patterns. Location The study area is located in the Sonoran Desert within the bounds of metropolitan Phoenix, Arizona, which is the locus of the Central Arizona–Phoenix Long‐Term Ecological Research (CAP‐LTER) site. Methods Estimates of local and fragment plant species richness were generated from field data collected from 22 sites. Independent variables describing fragment sites were also calculated, including area, habitat heterogeneity, density of individuals, mean elevation, and extent of isolation. Structural equation modelling, multiple regression, and analysis of covariance were used to assess the contribution of independent variables to richness at the fragment and local scales. Results Fragment species richness was significantly influenced by area, though not isolation, habitat heterogeneity, mean elevation, or density of individuals. Local richness was not significantly related to fragment area, but was positively related to fragment richness, plant density, and elevation. Main conclusions The fragment species–area effect resulted from larger remnants supporting higher numbers of individuals at comparable densities, increasing richness through either passive sampling of progressively less common species and/or lower extinction rates among larger populations. Without using multi‐temporal data it is not possible to disentangle these mechanisms. We found that patterns evident at one scale are not necessarily apparent at other scales, as elevation and density of individuals significantly affected richness at the local scale but not at the fragment scale. These results lend support to the concept that mechanisms influencing the species richness of natural communities may be operable only within certain domains and that relevant scales should be specified.  相似文献   

17.
Aim Anolis lizard invasions are a serious threat world‐wide, and information about how this invasive predator affects the diversity of prey assemblages is important for many strategic conservation goals. It is hypothesized that these predators reduce the slope of species–area relationships (SARs) of their prey assemblages. The effects of island area and predation by anolis lizards on the species richness of insular insect assemblages were investigated. Location Twenty‐four isles around Staniel Cay, Exuma Cays, Bahamas. Methods Flying insects were sampled using half‐sized Malaise traps for three consecutive days on each island in May 2007. First, the effect of island area on the probability of lizard presence was evaluated. Then, the effects of the presence–absence of predatory lizards on SARs were analysed for the overall insect assemblage and for the assemblages of five dominant insect orders. Results Our results indicated that anolis lizards occurred primarily on larger islands. The species richness of the overall insect assemblage and five dominant insect orders significantly increased with island area. The interaction between island area and predator presence–absence significantly affected the overall insect assemblage and Diptera and Hymenoptera assemblages (but not Coleoptera, Hemiptera and Lepidoptera assemblages). The presence of predators caused decreases in the slope of the SARs. Main conclusions The presence of predatory lizards strongly affects species richness of insular insect assemblages with the island area being a crucial determinant of the species richness. Therefore, the slope of the SAR can serve as a measure of the consequence of invasive predatory species on native insect assemblages.  相似文献   

18.
Aim This study addresses how species resolve environmental differences into biological habitats at multiple, interacting spatial scales. How do patterns of local habitat use change along an elevation gradient? How do patterns of local habitat partitioning interact with partitioning at a landscape scale? Location Northern and southern Lesser Antilles islands, West Indies. Methods We document how Anolis Daudin, 1802 lizards partition habitat locally at sites along a landscape‐scale elevation gradient. We examine habitat partitioning both with and without interspecific interactions in the predominately flat northern Lesser Antilles islands and in the more mountainous southern islands. Results Anoles partition local habitat along perch‐height and microclimate axes. Northern‐group sympatric anoles partition local habitat by perch height and have overlapping distributions at the landscape scale. Southern‐group sympatric anoles partition local habitat by microclimate and specialize in particular habitats at the landscape scale. In both the northern and southern groups, species use different perch heights and microclimates only in areas of species overlap along the elevation gradient. Main conclusions We demonstrate the interaction between local‐ and landscape‐scale habitat partitioning. In the case of microclimate partitioning, the interaction results from the use of thermal physiology to partition habitat at multiple scales. This interaction prompts the question of whether habitat partitioning developed ‘local‐out’ or ‘landscape‐in’. We pose this dichotomy and present a framework for its resolution.  相似文献   

19.
Up‐scaling species richness from local to continental scales is an unsolved problem of macroecology. Macroecologists hope that proper up‐scaling can uncover the hidden rules that underlie spatial patterns in species richness, but a machinery to up‐scale species richness also has a purely practical side at the scales and for the habitats where direct observations cannot be performed. The species–area relationship (SAR) could provide a tool for up‐scaling, but no valid method has yet been put forward. Such a method would have resulted from Storch et al.'s (2012) suggestion that there is a universal curve to which each rescaled SAR collapses, if Lazarina et al. (2013) had not shown that it does not: both arguments were supported by data analyses. Here we present an analytical model for mainland SAR and argue in favour of the latter authors. We identify 1) the variation in mean species‐range size, 2) the variation in forces that drive SAR at various scales, and 3) the finite‐area effect, as the reasons for the absence of collapse. Finally, we suggest a rescaling that might fix the problem. We conclude, however, that ecologists are still far from finding a practical, robust and easy‐to‐use solution for up‐scaling species richness from SARs.  相似文献   

20.
Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat‐forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small‐bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta‐analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean‐Southwest Atlantic, Western Indian, Central Indo‐Pacific, and Southwest Pacific biogeographic regions. We used random‐effects meta‐analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove‐associated taxa. Global‐scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small‐bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号