首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104–105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400–900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100–270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.  相似文献   

2.
Chlorosomes from green photosynthetic bacteria belong to the most effective light-harvesting antennas found in nature. Quinones incorporated in bacterichlorophyll (BChl) c aggregates inside chlorosomes play an important redox-dependent photo-protection role against oxidative damage of bacterial reaction centers. Artificial BChl c aggregates with and without quinones were prepared. We applied hole-burning spectroscopy and steady-state absorption and emission techniques at 1.9 K and two different redox potentials to investigate the role of quinones and redox potential on BChl c aggregates at low temperatures. We show that quinones quench the excitation energy in a similar manner as at room temperature, yet the quenching process is not as efficient as for chlorosomes. Interestingly, our data suggest that excitation quenching partially proceeds from higher excitonic states competing with ultrafast exciton relaxation. Moreover, we obtained structure-related parameters such as reorganization energies and inhomogeneous broadening of the lowest excited state, providing experimental ground for theoretical studies aiming at designing plausible large-scale model for BChl c aggregates including disorder.  相似文献   

3.
Room temperature absorption difference spectra were measured on the femtosecond through picosecond time scales for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus. Anomalously high values of photoinduced absorption changes were revealed in the BChl c Qy transition band. Photoinduced absorption changes at the bleaching peak in the BChl c band were found to be 7–8 times greater than those at the bleaching peak in the BChl a band of the chlorosome. This appears to be the first direct experimental proof of excitation delocalization over many BChl c antenna molecules in the chlorosome.  相似文献   

4.
Results of low temperature fluorescence and spectral hole burning experiments with whole cells and isolated chlorosomes of the green sulfur bacterium Chlorobium limicola containing BChl c are reported. At least two spectral forms of BChl c (short-wavelength and long-wavelength absorbing BChl c) were identified in the second derivative fluorescence spectra. The widths of persistent holes burned in the fluorescence spectrum of BChl c are determined by excited state lifetimes due to fast energy transfer. Different excited state lifetimes for both BChl c forms were observed. A site distribution function of the lowest excited state of chlorosomal BChl c was revealed. The excited state lifetimes are strongly influenced by redox conditions of the solution. At anaerobic conditions the lifetime of 5.3 ps corresponds to the rate of energy transfer between BChl c clusters. This time shortens to 2.6 ps at aerobic conditions. The shortening may be caused by introducing a quencher. Spectral bands observed in the fluorescence of isolated chlorosomes were attributed to monomeric and lower state aggregates of BChl c. These forms are not functionally connected with the chlorosome.Abbreviations BChl bacteriochlorophyll - EET electronic energy transfer - FWHM full width at half maximum - SDF site distribution function - RC reaction centre  相似文献   

5.
We have used measurements of fluorescence and circular dichroism (CD) to compare chlorosome-membrane preparations derived from the green filamentous bacterium Chloroflexus aurantiacus grown in continuous culture at two different light-intensities. The cells grown under low light (6 mol m–2 s–1) had a higher ratio of bacteriochlorophyll (BChl) c to BChl a than cells grown at a tenfold higher light intensity; the high-light-grown cells had much more carotenoid per bacteriochlorophyll.The anisotropy of the QY band of BChl c was calculated from steady-state fluorescence excitation and emission spectra with polarized light. The results showed that the BChl c in the chlorosomes derived from cells grown under high light has a higher structural order than BChl c in chlorosomes from low-light-grown cells. In the central part of the BChl c fluorescence emission band, the average angles between the transition dipole moments for BChl c molecules and the symmetry axis of the chlorosome rod element were estimated as 25° and 17° in chlorosomes obtained from the low- and high-light-grown cells, respectively.This difference in BChl organization was confirmed by the decay associated spectra of the two samples obtained using picosecond single-photon-counting experiments and global analysis of the fluorescence decays. The shortest decay component obtained, which probably represents energy-transfer from the chlorosome bacteriochlorophylls to the BChl a in the baseplate, was 15 ps in the chlorosomes from high-light-grown cell but only 7 ps in the preparation from low-light grown cells. The CD spectra of the two preparations were very different: chlorosomes from low-light-grown cells had a type II spectrum, while those from high-light-grown cells was of type I (Griebenow et al. (1991) Biochim Biophys Acta 1058: 194–202). The different shapes of the CD spectra confirm the existence of a qualitatively different organization of the BChl c in the two types of chlorosome.Abbreviations BChl bacteriochlorophyll - CD circular dichroism - DAS decay associated spectrum - PMSF phenylmethylsulfonyl fluoride  相似文献   

6.
Positive and negative bands in previously measured circular dichroism (CD) spectra of Chlorobium limicola chlorosomes appeared to be sign-reversed relative to those of Chloroflexus aurantiacus chlorosomes in the 740–750 nm spectral region where bacteriochlorophyll (BChl) c absorbs maximally. It was not clear, however, whether this difference was intrinsic to the chlorosomes or was due to differences in the procedures used to prepare them. We therefore repeated the CD measurements using chlorosomes isolated from both Cb. limicola f. thiosulfatophilum and Cf. aurantiacus using the method of Gerola and Olson (1986, Biochim. Biophys. Acta 848: 69–76). Contrary to the earlier results, both types of chlorosomes had very similar CD spectra, suggesting that both have similar arrangements of BChl c molecules. The previously reported difference between the CD spectra of Chlorobium and Chloroflexus chlorosomes is due to the instability of Chlorobium chlorosomes, which can undergo a hypsochromic shift in their near infrared absorption maximum accompanied by an apparent inversion in their near infrared CD spectrum during isolation. Treating isolated chlorosomes with the strong ionic detergent sodium dodecylsulfate, which removes BChl a, does not alter the arrangement of BChl c molecules in either Chloroflexus or Chlorobium chlorosomes, as indicated by the lack of an effect on their CD spectra.Abbreviations BChl bacteriochlorophyll - Cb. Chlorobium - CD circular dichroism - Cf. Chloroflexus - NIR near infrared  相似文献   

7.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   

8.
The role of carotenoids in chlorosomes of the green sulfur bacterium Chlorobium phaeobacteroides, containing bacteriochlorophyll (BChl) e and the carotenoid (Car) isorenieratene as main pigments, was studied by steady-state fluorescence excitation, picosecond single-photon timing and femtosecond transient absorption (TA) spectroscopy. In order to obtain information about energy transfer from Cars in this photosynthetic light-harvesting antenna with high spectral overlap between Cars and BChls, Car-depleted chlorosomes, obtained by inhibition of Car biosynthesis by 2-hydroxybiphenyl, were employed in a comparative study with control chlorosomes. Excitation spectra measured at room temperature give an efficiency of 60–70% for the excitation energy transfer from Cars to BChls in control chlorosomes. Femtosecond TA measurements enabled an identification of the excited state absorption band of Cars and the lifetime of their S1 state was determined to be 10 ps. Based on this lifetime, we concluded that the involvement of this state in energy transfer is unlikely. Furthermore, evidence was obtained for the presence of an ultrafast (>100 fs) energy transfer process from the S2 state of Cars to BChls in control chlorosomes. Using two time-resolved techniques, we further found that the absence of Cars leads to overall slower decay kinetics probed within the Qy band of BChl e aggregates, and that two time constants are generally required to describe energy transfer from aggregated BChl e to baseplate BChl a.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

9.
Chlorobaculum [Cba.] tepidum is known to grow optimally at 48–52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV–visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-173 versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-173 (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.  相似文献   

10.
The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed.Abbreviations A670 a component whose absorption maximum is located at 670 nm - (B)Chl (bacterio)chlorophyll - CD circular dichroism - F675 a component whose emission maximum is located at 675 nm - FMO protein Fenna-Mathews-Olson protein - LD linear dichroism - LH light-harvesting - McD magnetic circular dichroism - PS photosystem - RC reaction center  相似文献   

11.
Highly purified fractions of chlorosomes and cytoplasmic membranes were isolated from Chloroflexus aurantiacus Ok-70-fl and Chlorobium limicola 6230. These fractions were comparatively analyzed for their pigmentation, phospholipid, glycolipid, and cytochrome c content as well as for their specific activities of succinate dehydrogenase and NADH-oxidase. The data showed that there are some differences in pigmentation and phospholipid content between the isolated fractions of Chloroflexus and Chlorobium. Chlorosomes of Chloroflexus contained a specific BChl a-complex with a characteristic absorption maximum at about 790 nm. This BChl a-complex could not be detected in spectra of chlorosomes from Chlorobium. The near infrared region of the spectra of the isolated cytoplasmic membranes of both organisms revealed considerable differences: The BChl a-complexes of Chloroflexus membranes exhibited peaks at 806 and 868 nm whereas the membranes of Chlorobium had a single BChl a-peak at 710 nm. In contrast to the findings with Chlorobium the chlorosomes of Chloroflexus contained at least twice as much phospholipids as did the cytoplasmic membranes. In Chlorobium the phospholipid content of cytoplasmic membranes is three times that of their chlorosomes. The distribution of all other components (carotenoid composition, enzyme activities, cytochrome c content, and glycolipids) was about the same in both strains. From the data it was concluded that differences in the organization of the photosynthetic apparatus are mainly based on differences of the organization of the photosynthetic units in the cytoplasmic membrane and probably the kind of linkage of the light harvesting system in the chlorosomes with the reaction center in the cytoplasmic membranes.Abbreviations BChl c bacteriochlorophyll c - BChl a bacteriochlorophyll a - DSM Deutsche Sammlung von Mikrorganismen  相似文献   

12.
The circular dichroism (CD) spectrum of isolated chlorosomes fromChloroflexus aurantiacus showed a conservative, S-shaped signal with a negative maximum at 723 nm, a positive maximum at 750 nm and a zero-crossing at 740 nm. Proteolytic treatment of chlorosomes with trypsin at 37°C did not change the CD signal or the absorption spectrum in contrast to treatment with proteinase K, where a twofold increase in rotational strength and a slight decrease of the absorption band at 740 nm were observed. Treatment with saturating 1-hexanol concentrations resulted in a blue shift of the absorption band at 740 nm as well as in changes of the CD spectrum. These changes reversed when the sample was diluted to half the saturating 1-hexanol concentration. In contrast to that, we observed an irreversible formation of a giant CD signal using the combination of 1-hexanol and proteinase K treatment. Electron micrographs of chlorosomes treated with both 1-hexanol and proteinase K showed large aggregates of multiple chlorosome size. By comparison of proteinase K induced effects with trypsin effects it appeared that the 5.7 kDa polypeptide has a structural role in the organisation of BChlc in the chlorosome.  相似文献   

13.
Femtosecond absorption difference spectra were measured for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus at room temperature. Using the relative difference absorption of the oligomeric BChl c and monomeric BChl a bands, the size of a unit BChl c aggregate as well as the exciton coherence size were estimated for the chlorosomal BChl c antenna under study. A quantitative fit of the data was obtained within the framework of the exciton model proposed before [Fetisova et al. (1996) Biophys J 71: 995–1010]. The size of the antenna unit was found to be 24 exciton-coupled BChl c molecules. The anomalously high bleaching value of the oligomeric B740 band with respect to the monomeric B795 band provided the direct evidence for a high degree of exciton delocalization in the chlorosomal B740 BChl c antenna. The effective delocalization size of individual exciton wavefunctions (the thermally averaged inverse participation ratio) in the chlorosomal BChl c antenna is 9.5, whereas the steady-state wavepacket corresponds to the coherence size (the inverse participation ratio of the density matrix) of 7.4 at room temperature.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
Exciton calculations on tubular pigment aggregates similar to recently proposed models for BChl c/d/e antennae in light-harvesting chlorosomes from green photosynthetic bacteria yield electronic absorption spectra that are super-impositions of linear J-aggregate spectra. While the electronic spectroscopy of such antennae differs considerably from that of linear J-aggregates, tubular exciton models (which may be viewed as cross-coupled J-aggregates) may be constructed to yield spectra that resemble that of the BChl c antenna in the green bacterium Chloroflexus aurantiacus. Highly symmetric tubular models yield absorption spectra with dipole strength distributions essentially identical to that of a J-aggregate; strong symmetry-breaking is needed to simulate the absorption spectrum of the BChl c antenna.Abbreviations BChl bacteriochlorophyll - [E,M] BChl c S bacteriochlorophyll c with ethyl and methyl substituents in the 8- and 12-positions, and with stearol as the esterifying alcohol  相似文献   

15.
Candidatus Chlorothrix halophila” is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of “Ca. Chlorothrix halophila,” that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an ~6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of “Ca. Chlorothrix halophila” revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus.  相似文献   

16.
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.  相似文献   

17.
Isolated chlorosomes, treated with the detergent lithium dodecyl sulfate (LDS), can be separated into two green fractions by agarose gel electrophoresis. One fraction contains chlorosomes with a full complement of proteins and antenna BChl c absorbing at 740 nm, but with a more spherical form than the normal ellipsoid shape observed in control chlorosomes. The second fraction was completely devoid of proteins but had a similar absorption spectrum. Electron micrographs of the protein-free fraction indicated the presence of stain-excluding spheres with overall dimensions resembling those of intact chlorosomes (40–100 nm). These spheres are probably micelles of BChl c liberated from the chlorosomes during the detergent treatment, since similar structures could be produced when purified BChl c, dissolved in 1-hexanol, was dispersed in buffer, producing an aggregate absorbing at 742 nm. These results suggest that the chlorosome proteins are not required to produce an arrangement of BChl c chromophores which gives rise to a 740 nm absorption peak resembling that of intact chlorosomes. It seems probable, however, that proteins have a role in determining the overall shape of the chlorosome. Treatment with cross-linking reagents did not prevent the detergent-induced changes in chlorosome morphology.Abbreviations BChl bacteriochlorophyll - DSP dithiobis-succinimidyl-2-propionate - EM electron microscopy - LDS lithium dodecyl sulfate - MGDG monogalactosyl diacylglycerol - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

18.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

19.
Chlorosomes are the light-harvesting organelles in photosynthetic green bacteria and typically contain large amounts of bacteriochlorophyll (BChl) c in addition to smaller amounts of BChl a, carotenoids, and several protein species. We have isolated vestigial chlorosomes, denoted carotenosomes, from a BChl c-less, bchK mutant of the green sulfur bacterium Chlorobium tepidum. The physical shape of the carotenosomes (86 ± 17 nm × 66 ± 13 nm × 4.3 ± 0.8 nm on average) was reminiscent of a flattened chlorosome. The carotenosomes contained carotenoids, BChl a, and the proteins CsmA and CsmD in ratios to each other comparable to their ratios in wild-type chlorosomes, but all other chlorosome proteins normally found in wild-type chlorosomes were found only in trace amounts or were not detected. Similar to wild-type chlorosomes, the CsmA protein in the carotenosomes formed oligomers at least up to homo-octamers as shown by chemical cross-linking and immunoblotting. The absorption spectrum of BChl a in the carotenosomes was also indistinguishable from that in wild-type chlorosomes. Energy transfer from the bulk carotenoids to BChl a in carotenosomes was poor. The results indicate that the carotenosomes have an intact baseplate made of remarkably stable oligomeric CsmA–BChl a complexes but are flattened in structure due to the absence of BChl c. Carotenosomes thus provide a valuable material for studying the biogenesis, structure, and function of the photosynthetic antennae in green bacteria.  相似文献   

20.
The dependence of chlorosome development on bacteriochlorophyll (BChl)c synthesis was studied with the phototrophic green bacteriumChloroflexus aurantiacus. By selecting defined culture conditions, three possibilities could be identified. Upon addition of 5-aminolevulinic acid, cells of resting cultures increased their specific BChlc contents as well as the volumes of already existing chlorosomes. The number of chlorosomes, however, remained constant. Serine-limited chemostat cultures grown under steady state conditions exhibited constant rates of synthesis of both BChlc as well as of chlorosomes. The volume of the latter remained constant, as well. Upon addition of ALA to chemostat cultures, chlorosomes were synthesized at the same rate as before but their volumes increased as a consequence of increased BChlc incorporation. In chlorosomes isolated from resting cultures supplied with ALA the amounts of all of the polypeptides increased only slightly, if at all. Moreover, the ratio of all of the chlorosomal polypeptides remained largely constant. These results show that chlorosomes may incorporate newly synthesized BChlc without concomitant formation of chlorosomal polypeptides. This means that there was no obvious coordination of polypeptide and BChlc synthesis. On this basis, it appears unlikely that one of the chlorosomal polypeptides functions as an apoprotein of a presumed BChlc holochrome complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号