首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given their positioning and biological productivity, estuaries have long represented key providers of ecosystem services and consequently remain under remarkable pressure from numerous forms of anthropogenic impact. The monitoring of fish communities in space and time is one of the most widespread and established approaches to assess the ecological status of estuaries and other coastal habitats, but traditional fish surveys are invasive, costly, labour intensive and highly selective. Recently, the application of metabarcoding techniques, on either sediment or aqueous environmental DNA, has rapidly gained popularity. Here, we evaluate the application of a novel, high‐throughput DNA‐based monitoring tool to assess fish diversity, based on the analysis of the gut contents of a generalist predator/scavenger, the European brown shrimp, Crangon crangon. Sediment and shrimp samples were collected from eight European estuaries, and DNA metabarcoding (using both 12S and COI markers) was carried out to infer fish assemblage composition. We detected 32 teleost species (16 and 20, for 12S and COI, respectively). Twice as many species were recovered using metabarcoding than by traditional net surveys. By comparing and interweaving trophic, environmental DNA and traditional survey‐based techniques, we show that the DNA‐assisted gut content analysis of a ubiquitous, easily accessible, generalist species may serve as a powerful, rapid and cost‐effective tool for large‐scale, routine estuarine biodiversity monitoring.  相似文献   

2.
Salmonids were first introduced into the Chilean fresh waters in the 1880s, and c. 140 years later, they are ubiquitous across Chilean rivers, especially in the southern pristine fresh waters. This study examined the brown trout (Salmo trutta) and native taxa ecology in two adjacent but contrasting rivers of Chilean Patagonia. During spring 2016 and spring–fall 2017 we examined the variation in benthic macroinvertebrate and fish community composition and characterized fish size structure, stomach contents, and stable isotopes (δ13C and δ15N) to understand population structure, fish diet, and trophic interactions between S. trutta and native taxa. The native Galaxias maculatus (puye) dominated the fish community (74% of abundance). S. trutta was less abundant (16% of survey catch) but dominated the fish community (over 53%) in terms of biomass. S. trutta showed distinct diets (stomach content analysis) in the two rivers, and individuals from the larger river were notably more piscivorous, consuming native fish with a relatively small body size (<100-mm total length). Native fishes were isotopically distinct from S. trutta, which showed a wider isotopic niche in the smaller river, indicating that their trophic role was more variable than in the larger river (piscivorous). This study provides data from the unstudied pristine coastal rivers in Patagonia and reveals that interactions between native and introduced species can vary at very local spatial scales.  相似文献   

3.

This study provides information about the diet across geographic areas and throughout ontogeny and sex of two coastal and commercial batoid species in Peru (Chilean eagle ray Myliobatis chilensis and Pacific guitarfish Pseudobatos planiceps). Data was collected in the central coast (13°30′S to 14°30′S; Pisco district, Lima) and in the northern coast (13°12′S to 13°49′S; San Jose district, Lambayeque) off Peru during the second semester of the years 2015 and 2016 (i.e., winter and spring) in an El Niño event. A total of 357 stomach contents were analyzed in northern and central Peru with different oceanographic and ecological conditions. In the central coast, M. chilensis showed a high trophic position (tertiary consumer) due to its high consumption of Peruvian anchoveta (Engraulis ringens), while P. planiceps had a lower trophic position (secondary consumer) and a less specialized diet of benthic invertebrates (i.e., crustaceans and mollusks) and pelagic fish (e.g., E. ringens). In the northern coast, both species preyed mainly upon benthic invertebrates and to a lesser degree on fish; therefore, their trophic position was lower. Dietary variation was influenced by species, geographic location, and ontogeny. The diet variability between geographic locations shows insights of these batoids’ trophic plasticity and opportunistic feeding behavior in response to differences in the local prey availability, an effect that may be amplified during the El Niño–Southern Oscillation (ENSO). The spatial variation in this species diet may indicate that they play different ecological roles in distinct environments. This study contributes to the scarce literature about batoids’ ecology in the southeast Pacific Ocean and presents novel information on habitat-specific diet composition.

  相似文献   

4.
In this study, the results of conventional stomach‐content analysis are compared with the recent DNA metabarcoding approach on faeces to identify fish species consumed by non‐native European catfish Silurus glanis in the Garonne River (south‐western France), with a special emphasis on anadromous prey. Fourteen prey species were identified in the stomach contents or faeces, including four anadromous fish species. Despite higher intestine than stomach emptiness, more species were identified through faecal analysis (11 of 14) than through stomach‐content analysis (five of 14) suggesting that DNA metabarcoding on faeces is an efficient, non‐intrusive technique to study the diet of predatory fishes.  相似文献   

5.
Arachnids are the most abundant land predators. Despite the importance of their functional roles as predators and the necessity to understand their diet for conservation, the trophic ecology of many arachnid species has not been sufficiently studied. In the case of the wandering spider, Phoneutria boliviensis F. O. Pickard‐Cambridge, 1897, only field and laboratory observational studies on their diet exist. By using a DNA metabarcoding approach, we compared the prey found in the gut content of males and females from three distant Colombian populations of P. boliviensis. By DNA metabarcoding of the cytochrome c oxidase subunit I (COI), we detected and identified 234 prey items (individual captured by the spider) belonging to 96 operational taxonomic units (OTUs), as prey for this wandering predator. Our results broaden the known diet of P. boliviensis with at least 75 prey taxa not previously registered in fieldwork or laboratory experimental trials. These results suggest that P. boliviensis feeds predominantly on invertebrates (Diptera, Lepidoptera, Coleoptera, and Orthoptera) and opportunistically on small squamates. Intersex and interpopulation differences were also observed. Assuming that prey preference does not vary between populations, these differences are likely associated with a higher local prey availability. Finally, we suggest that DNA metabarcoding can be used for evaluating subtle differences in the diet of distinct populations of P. boliviensis, particularly when predation records in the field cannot be established or quantified using direct observation.  相似文献   

6.
Synopsis The feeding; habits of a group of tropical herbivorous rock-dwelling cichlid fishes from Lake Malawi, Africa, are investigated using stomach content analyses. The various species fed selectively on the periphyton of the rocky shores. Blue-green alga of the genus Calothrix was the most common item ingested by the group. Diatoms (Chrysophyta) also were abundant food items. Discriminant analysis showed that dietary items were good variables to identify species. Interspecific dietary differences showed a continuum from those species feeding primarily on Calothrix to those feeding primarily on diatoms. Algal resources exhibit distinct patterns of spatial variation. Diet was correlated with foraging behavior and trophic morphology. Interspecific differences in diet could possibly facilitate ecological coexistence among various species. Such coexistence would contribute to the maintenance of the high diversity fish faunas characteristic of the Great Rift Lakes of Africa.  相似文献   

7.
Oyster reefs are among the most threatened coastal habitat types, but still provide critical habitat and food resources for many estuarine species. The structure of oyster reef food webs is an important framework from which to examine the role of these reefs in supporting high densities of associated fishes. We identified major trophic pathways to two abundant consumers, gray snapper (Lutjanus griseus) and crested goby (Lophogobius cyprinoides), from a subtropical oyster reef using stomach content and stable isotope analysis. The diet of gray snapper was dominated by crabs, with shrimp and fishes also important. Juvenile gray snapper fed almost entirely on oyster reef-associated prey items, while subadults fed on both oyster reef- and mangrove-associated prey. Based on trophic guilds of the gray snapper prey, as well as relative δ13C values, microphytobenthos is the most likely basal resource pool supporting gray snapper production on oyster reefs. Crested goby had omnivorous diets dominated by bivalves, small crabs, detritus, and algae, and thus were able to take advantage of prey relying on production from sestonic, as well as microphytobenthos, source pools. In this way, crested goby represent a critical link of sestonic production to higher trophic levels. These results highlight major trophic pathways supporting secondary production in oyster reef habitat, thereby elucidating the feeding relationships that render oyster reef critical habitat for many ecologically and economically important fish species.  相似文献   

8.
Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA‐metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts. During the spring phytoplankton bloom, we found a dominance of diatom and dinoflagellate trophic links to copepods. During the summer period, zooplankton including cladocerans showed a more diverse diet dominated by cyanobacteria and heterotrophic prey. Our study suggests that copepods present trophic plasticity, changing their natural diet over seasons, and adapting their feeding strategies to the available prey spectrum, with some species being more selective. We did not find a large overlap of prey consumed by copepods and cladocerans, based on prey diversity found in their guts, suggesting that they occupy different roles in the trophic web. This study represents the first molecular approach to investigate several zooplankton–prey associations under seasonal variation, and highlights how, unlike other techniques, the diversity coverage is high when using DNA, allowing the possibility to detect a wide range of trophic interactions in plankton communities.  相似文献   

9.
10.
Understanding the ecological role of species with overlapping distributions is central to inform ecosystem management. Here we describe the diet, trophic level and habitat use of three sympatric stingrays, Hypanus guttatus, H. marianae and H. berthalutzae, through combined stomach content and stable isotope (δ13C and δ15N) analyses. Our integrated approach revealed that H. guttatus is a mesopredator that feeds on a diverse diet of benthic and epibenthic marine and estuarine organisms, principally bivalve molluscs, Alpheus shrimp and teleost fishes. Isotopic data supported movement of this species between marine and estuarine environments. H. berthalutzae is also a marine generalist feeder, but feeds primarily on teleost fishes and cephalopods, and consequently occupies a higher trophic level. In contrast, H. marianae is a mesopredator specialized on shrimps and polychaetas occurring only in the marine environment and occupying a low niche breadth. While niche overlap occurred, the three stingrays utilized the same prey resources at different rates and occupied distinct trophic niches, potentially limiting competition for resources and promoting coexistence. These combined data demonstrate that these three mesopredators perform different ecological roles in the ecosystems they occupy, limiting functional redundancy.  相似文献   

11.
Environmental conditions in the Chukchi Sea are changing rapidly and may alter the abundance and distribution of marine species and their benthic prey. We used a metabarcoding approach to identify potentially important prey taxa from Pacific walrus (Odobenus rosmarus divergens) fecal samples (n = 87). Bivalvia was the most dominant class of prey (66% of all normalized counts) and occurred in 98% of the samples. Polychaeta and Gastropoda occurred in 70% and 62% of the samples, respectively. The remaining nine invertebrate classes comprised <21% of all normalized counts. The common occurrence of these three prey classes is consistent with examinations of walrus stomach contents. Despite these consistencies, biases in the metabarcoding approach to determine diet from feces have been highlighted in other studies and require further study, in addition to biases that may have arisen from our opportunistic sampling. However, this noninvasive approach provides accurate identification of prey taxa from degraded samples and could yield much-needed information on shifts in walrus diet in a rapidly changing Arctic.  相似文献   

12.
In herbivores, survival and reproduction are influenced by quality and quantity of forage, and hence, diet and foraging behavior are the foundation of an herbivore's life history strategy. Given the importance of diet to most herbivores, it is imperative that we know the species of plants they prefer, especially for herbivorous species that are at risk for extinction. However, it is often difficult to identify the diet of small herbivores because: (a) They are difficult to observe, (b) collecting stomach contents requires sacrificing animals, and (c) microhistology requires accurately identifying taxa from partially digested plant fragments and likely overemphasizes less‐digestible taxa. The northern Idaho ground squirrel (Urocitellus brunneus) is federally threatened in the United States under the Endangered Species Act. We used DNA metabarcoding techniques to identify the diet of 188 squirrels at 11 study sites from fecal samples. We identified 42 families, 126 genera, and 120 species of plants in the squirrel's diet. Our use of three gene regions was beneficial because reliance on only one gene region (e.g., only trnL) would have caused us to miss >30% of the taxa in their diet. Northern Idaho ground squirrel diet differed between spring and summer, frequency of many plants in the diet differed from their frequency within their foraging areas (evidence of selective foraging), and several plant genera in their diet were associated with survival. Our results suggest that while these squirrels are generalists (they consume a wide variety of plant species), they are also selective and do not eat plants relative to availability. Consumption of particular genera such as Perideridia may be associated with higher overwinter survival.  相似文献   

13.
Hummingbirds (Family Trochilidae) are key pollinators in several biodiversity hotspots, including the California Floristic Province in North America. Relatively little is known about how hummingbird diets change throughout the year, especially with regard to how migratory hummingbirds affect resident hummingbirds at stopover sites. In this study, we examine how hummingbird species, migratory status, sex, geographic region and local plant diversity influence floral resource use before, during, and after an influx of migratory hummingbirds (primarily Rufous hummingbirds, Selasphorus rufus) across California. We expected distinct floral resource use based upon species’ migratory status (resident vs. migrant), sex, sampling period, and geographic region. We employed DNA metabarcoding to detect plant DNA in hummingbird fecal samples to analyze diet diversity, composition, overlap, and interaction networks. We found significant effects of sex, sampling period, and migratory status on the alpha and beta diversity of plant taxa present in fecal samples. Analyses of Anna's hummingbirds (Calypte anna) alone revealed that female fecal samples contained higher plant species richness. In addition to hummingbird-pollinated plants, fecal samples also contained non-ornithophilous plants and species of agricultural importance. Diet overlap and plant-pollinator network analyses revealed high overlap in plant taxa used between hummingbird species, and networks were more connected, less nested, and less specialized than null models. DNA metabarcoding is minimally invasive and provides a detailed view of hummingbird diet, permitting large-scale studies. Insights into hummingbird diets are especially valuable given the logistical difficulties of directly observing floral visitation and foraging across broad temporal and spatial scales.  相似文献   

14.
15.
Although separated by 7000-km,Gilia millefoliata, a rare annual plant from California and Oregon coastal dunes andG. valdiviensis, a rare Chilean coastal endemic are morphologically and ecologically quite similar. Their disjunct distribution was proposed to result from recent, birdmediated, intercontinental long-distance dispersal. Both species are morphologically similar to the abundant and ecologically diverse South American taxonG. laciniata. The relationship among these three taxa was investigated using DNA sequence from the nuclear ribosomal (ITS) and chloroplasttrnL regions, as well as isozyme and morphological variation to determine the roles of long-distance dispersal and ecological adaptation in the evolution of the group. These data suggest that aG. millefoliata-like ancestor underwent long-distance dispersal to South America, and there gave rise to the narrow endemicG. valdiviensis and the widespreadG. laciniata.  相似文献   

16.
The Peruvian sea represents one of the most productive ocean ecosystems and possesses one of the largest elasmobranch fisheries in the Pacific Ocean. Ecosystem-based management of these fisheries will require information on the trophic ecology of elasmobranchs. This study aimed to understand the diet, trophic interactions and the role of nine commercial elasmobranch species in northern Peru through the analysis of stomach contents. A total of 865 non-empty stomachs were analysed. Off northern Peru, elasmobranchs function as upper-trophic-level species consuming 78 prey items, predominantly teleosts and cephalopods. Two distinctive trophic assemblages were identified: (a) sharks (smooth hammerhead shark Sphyrna zygaena, thresher shark Alopias spp. and blue shark Prionace glauca) that feed mainly on cephalopods in the pelagic ecosystem; and (b) sharks and batoids (Chilean eagle ray Myliobatis chilensis, humpback smooth-hound Mustelus whitneyi, spotted houndshark Triakis maculata, Pacific guitarfish Pseudobatos planiceps, copper shark Carcharhinus brachyurus and school shark Galeorhinus galeus) that feed mainly on teleosts and invertebrates in the benthonic and pelagic coastal ecosystem. This study reveals for the first time the diet of T. maculata and the importance of elasmobranchs as predators of abundant and commercial species (i.e., jumbo squid Dosidicus gigas and Peruvian anchovy Engraulis ringens). The results of this study can assist in the design of an ecosystem-based management for the northern Peruvian sea and the conservation of these highly exploited, threatened or poorly understood group of predators in one of the most productive marine ecosystems.  相似文献   

17.
DNA条形码是利用标准的DNA片段对物种进行快速鉴定的技术,已在生物学各相关领域得到广泛应用。随着DNA条形码技术的不断发展和完善,已成功应用于生态学领域的相关研究中。本文综述了DNA条形码在物种快速鉴定和隐存种发现、群落系统发育重建和生态取证、群落内物种间相互关系研究等方面的应用,并介绍了DNAmetabarcoding技术和环境DNA条形码在生物多样性和生态学研究领域中的应用。最后,结合新的测序技术和未来大科学装置的发展,在相关数据库逐渐完善,新分析方法和计算模型不断开发使用的情景下,对DNA条形码在生态学相关领域的应用前景进行了展望。  相似文献   

18.
  1. DNA metabarcoding is an emerging tool used to quantify diet in environments and consumer groups where traditional approaches are unviable, including small‐bodied invertebrate taxa. However, metabarcoding of small taxa often requires DNA extraction from full body parts (without dissection), and it is unclear whether surface contamination from body parts alters presumed diet presence or diversity.
  2. We examined four different measures of diet (presence, rarefied read abundance, richness, and species composition) for a terrestrial invertebrate consumer (the spider Heteropoda venatoria) both collected in its natural environment and fed an offered diet item in contained feeding trials using DNA metabarcoding of full body parts (opisthosomas). We compared diet from consumer individuals surface sterilized to remove contaminants in 10% commercial bleach solution followed by deionized water with a set of unsterilized individuals.
  3. We found that surface sterilization did not significantly alter any measure of diet for consumers in either a natural environment or feeding trials. The best‐fitting model predicting diet detection in feeding trial consumers included surface sterilization, but this term was not statistically significant (β = −2.3, p‐value = .07).
  4. Our results suggest that surface contamination does not seem to be a significant concern in this DNA diet metabarcoding study for consumers in either a natural terrestrial environment or feeding trials. As the field of diet DNA metabarcoding continues to progress into new environmental contexts with various molecular approaches, we suggest ongoing context‐specific consideration of the possibility of surface contamination.
  相似文献   

19.
The spatial and temporal variability of metazooplankton communities in relation to environmental and trophic factors were studied in the Gulf of Gabes during three periods of increasing thermal stratification in June, July and September. Non-metric multi-dimensional scaling (NMDS) revealed the time and space succession of three zooplankton communities in relation to the degree of thermal stratification. A co-inertia analysis showed the association between these communities and the trophic conditions (abundance and composition of microplankton) driven by stratification. Three divergent communities were evident. The first, characterized by annelid larvae and coastal copepods, was associated with shallow mixed and microplankton-rich water (June, coastal). The second, characterized by euphausiids, amphipods, doliolids and several deep-water copepods, corresponded to highly stratified microplankton-poor water (September). The third, characterized by the most ubiquitous and abundant species, was linked to intermediate water (June deep and July). Temperature and salinity conditions also explained the distribution of key species. Clausocalanus furcatus, Oithona plumifera and Triconia conifera were clearly associated with warm and highly stratified water (September). Enhanced thermal stratification led to higher surface salinity, explaining the emergence of euryhaline taxa such as Oithona plumifera.  相似文献   

20.
The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion (Neophoca cinerea) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide‐ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号