首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Typically, pathogens infect multiple host species. Such multihost pathogens can show considerable variation in their degree of infection and transmission specificity, which has important implications for potential disease emergence. Transmission of multihost pathogens can be driven by key host species and changes in such transmission networks can lead to disease emergence. We study two viruses that show contrasting patterns of prevalence and specificity in managed honeybees and wild bumblebees, black queen cell virus (BQCV) and slow bee paralysis virus (SBPV), in the context of the novel transmission route provided by the virus‐vectoring Varroa destructor. Our key result is that viral communities and RNA virus genetic variation are structured by location, not host species or V. destructor presence. Interspecific transmission is pervasive with the same viral variants circulating between pollinator hosts in each location; yet, we found virus‐specific host differences in prevalence and viral load. Importantly, V. destructor presence increases the prevalence in honeybees and, indirectly, in wild bumblebees, but in contrast to its impact on deformed wing virus (DWV), BQCV and SBPV viral loads are not increased by Varroa presence, and do not show genetic evidence of recent emergence. Effective control of Varroa in managed honeybee colonies is necessary to mitigate further disease emergence, and alleviate disease pressure on our vital wild bee populations. More generally, our results highlight the over‐riding importance of geographical location to the epidemiological outcome despite the complexity of multihost‐parasite interactions.  相似文献   

2.
Deformed wing virus (DWV; Iflaviridae) is one of many viruses infecting honeybees and one of the most heavily investigated due to its close association with honeybee colony collapse induced by Varroa destructor. In the absence of V. destructor DWV infection does not result in visible symptoms or any apparent negative impact on host fitness. However, for reasons that are still not fully understood, the transmission of DWV by V. destructor to the developing pupae causes clinical symptoms, including pupal death and adult bees emerging with deformed wings, a bloated, shortened abdomen and discolouration. These bees are not viable and die soon after emergence. In this review we will summarize the historical and recent data on DWV and its relatives, covering the genetics, pathobiology, and transmission of this important viral honeybee pathogen, and discuss these within the wider theoretical concepts relating to the genetic variability and population structure of RNA viruses, the evolution of virulence and the development of disease symptoms.  相似文献   

3.
How long‐term antibiotic treatment affects host bacterial associations is still largely unknown. The honeybee‐gut microbiota has a simple composition, so we used this gut community to investigate how long‐term antibiotic treatment affects host‐associated microbiota. We investigated the phylogenetic relatedness, genomic content (GC percentage, genome size, number of genes and CRISPR) and antibiotic‐resistant genes (ARG) for strains from two abundant members of the honeybee core gut microbiota (Gilliamella apicola and Snodgrassella alvi). Domesticated honeybees are subjected to geographically different management policies, so we used two research apiaries, representing different antibiotic treatment regimens in their apiculture: low antibiotic usage (Norway) and high antibiotic usage (Arizona, USA). We applied whole‐genome shotgun sequencing on 48 G. apicola and 22 S. alvi. We identified three predominating subgroups of G. apicola in honeybees from both Norway and Arizona. For G. apicola, genetic content substantially varied between subgroups and distance similarity calculations showed similarity discrepancy between subgroups. Functional differences between subgroups, such as pectin‐degrading enzymes (G. apicola), were also identified. In addition, we identified horizontal gene transfer (HGT) of transposon (Tn10)‐associated tetracycline resistance (Tet B) across the G. apicola subgroups in the Arizonan honeybees, using interspace polymorphisms in the Tet B determinant. Our results support that honeybee‐gut symbiont subgroups can resist long‐term antibiotic treatment and maintain functionality through acquisition of geographically distinct antibiotic‐resistant genes by HGT.  相似文献   

4.
The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75–95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50–90% of the genome. Africanized honeybees are considered undesirable for bee‐keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.  相似文献   

5.
Abstract. 1. The western honeybee, Apis mellifera, has been introduced to many parts of the world and is sometimes purported to be detrimental to native bees because it reduces their food base. It is seldom viewed in this light in Europe; however, when beekeepers maintain very high bee densities, the species could also be displacing insects in its native European range by reducing the resource base. 2. In England, populations of bumblebees (Bombus Latr. Hym.) have been decreasing both in terms of diversity and abundance, mainly because of a loss of habitat resulting from agricultural intensification. The impact of competition from other flower feeders is largely unknown. 3. Nineteen dry lowland heaths in southern England were sampled once for honeybees and bumblebees. Honeybee abundance varied from 4 to 81 bees per 100 m2 (mean = 30.89, median = 23), whereas bumblebees varied from 2 to 17 individuals per 100 m2 (mean = 8.26, median = 7), belonging to between one and five species. There was a negative association between honeybee and bumblebee abundance but there was no apparent relationship between honeybee abundance and bumblebee diversity. 4. The Bray–Curtis coefficient was used to compare the similarity in honeybee and bumblebee floral host breadth at these 19 sites. The coefficient was negatively associated with honeybee abundance: thus where honeybees were most abundant, bumblebees were fewer and/or foraged on different flower species. 5. Foraging host breadth was also examined at four heathlands over a field season (April to September). No association between honeybee abundance and foraging host breadth was found for short‐tongued bees, although there was some evidence for a change in floral host breadth for long‐tongued bees. 6. It is concluded that the impact of honeybees on bumblebees is complex. Although competition between the two species cannot be ruled out, it is perhaps equally likely that bumblebees decline in response to other factors, and that honeybees move independently of this decline.  相似文献   

6.
The ectoparasitic mite, Varroa destructor, shifted host from the eastern honeybee, Apis cerana, to the western honeybee, Apis mellifera. Whereas the original host survives infestations by this parasite, they are lethal to colonies of its new host. Here, we investigated a population of A. cerana naturally infested by the V. destructor Korea haplotype that gave rise to the globally invasive mite lineage. Our aim was to better characterize traits that allow for the survival of the original host to infestations by this particular mite haplotype. A known major trait of resistance is the lack of mite reproduction on worker brood in A. cerana. We show that this trait is neither due to a lack of host attractiveness nor of reproduction initiation by the parasite. However, successful mite reproduction was prevented by abnormal host development. Adult A. cerana workers recognized this state and removed hosts and parasites, which greatly affected the fitness of the parasite. These results confirm and complete previous observations of brood susceptibility to infestation in other honeybee host populations, provide new insights into the coevolution between hosts and parasites in this system, and may contribute to mitigating the large‐scale colony losses of A. mellifera due to V. destructor.  相似文献   

7.
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.  相似文献   

8.
The ectoparasitic mites Varroa destructor and Tropilaelaps mercedesae share life history traits and both infect honeybee colonies, Apis mellifera. Since V. destructor is a biological vector of several honeybee viruses, we here test whether T. mercedesae can also be infected and enable virus replication. In Kunming (China), workers and T. mercedesae mites were sampled from three A. mellifera colonies, where workers were exhibiting clinical symptoms of deformed wing virus (DWV). We analysed a pooled bee sample (15 workers) and 29 mites for the presence of Deformed wing virus (DWV), Black queen cell virus (BQCV), Sacbrood virus (SBV), Kashmir bee virus (KBV), Acute bee paralysis virus (ABPV), and Chronic bee paralysis virus (CBPV). Virus positive samples were analysed with a qPCR. Only DWV +RNA was found but with a high titre of up to 108 equivalent virus copies per mite and 106 per bee. Moreover, in all DWV positive mites (N= 12) and in the bee sample virus–RNA was also detected using RT-PCR and tagged RT-PCR, strongly suggesting virus replication. Our data show for the first time that T. mercedesae may be a biological vector of DWV, which would open a novel route of virus spread in A. mellifera. Received 6 June 2008; revised 14 August 2008; accepted 10 September 2008.  相似文献   

9.
Knowledge on how landscape heterogeneity shapes host–parasite interactions is central to understand the emergence, dynamics and evolution of infectious diseases. However, this is an underexplored subject, particularly for plant–virus systems. Here, we analyse how landscape heterogeneity influences the prevalence, spatial genetic structure, and temporal dynamics of Pepper golden mosaic and Pepper huasteco yellow vein begomoviruses infecting populations of the wild pepper Capsicum annuum glabriusculum (chiltepin) in Mexico. Environmental heterogeneity occurred at different nested spatial scales (host populations within biogeographical provinces), with levels of human management varying among host population within a province. Results indicate that landscape heterogeneity affects the epidemiology and genetic structure of chiltepin‐infecting begomoviruses in a scale‐specific manner, probably related to conditions favouring the viruses' whitefly vector and its dispersion. Increased levels of human management of the host populations were associated with higher virus prevalence and erased the spatial genetic structure of the virus populations. Also, environmental heterogeneity similarly shaped the spatial genetic structures of host and viruses. This resulted in the congruence between host and virus phylogenies, which does not seem to be due to host‐virus co‐evolution. Thus, results provide evidence of the key role of landscape heterogeneity in determining plant–virus interactions.  相似文献   

10.
Parasite transmission strategies strongly impact host–parasite co‐evolution and virulence. However, studies of vector‐borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high‐throughput sequencing to develop microsatellites for malaria‐like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph‐specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector‐mediated parent‐to‐offspring transmission. The conditions for such ‘quasi‐vertical’ transmission may be common and could suppress the evolution of pathogen virulence.  相似文献   

11.
12.
Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite''s close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.  相似文献   

13.
The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses.Deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV) are single-stranded positive-sense RNA viruses of the order Picornavirales and are regularly detected in honeybee populations in the United Kingdom (1). ABPV has been assigned to the family Dicistroviridae and is known to follow a classic acute-type infection strategy since relatively low loads (103 to 106 viruses per honeybee) can rapidly translate into overt symptoms of paralysis and ultimately death for the honeybee, depending on the mode of transmission (6, 33). ABPV shares >92% sequence homology with other members of the family Dicistroviridae, Kashmir bee virus and Israeli acute paralysis virus, across the eight conserved domains of the RNA-dependent RNA polymerase gene, and it has been proposed that these viruses have recently diverged and are variants of each other (7). Advances in the study of this proposed ABPV complex is revealing the significant impact these viruses may have on honeybee colonies on a global scale. For example, a recent study in the United States has observed a correlation between Israeli acute paralysis virus and colony collapse disorder (17). That said, other agents, including bacteria and microsporidia, have also been proposed as important factors in the onset of colony loss (25, 27).BQCV is similar to ABPV in that it, too, follows a typical acute infection strategy. This virus is known to infect honeybee queen cell larvae, causing the larvae to discolor and die (5). It has been shown to be associated with the microsporidian Nosema apis (4) although whether N. apis has a direct role in the transmission of this virus still needs to be determined. Both ABPV and BQCV have been detected in worker honeybees and pupae (38), and the viruses are transmitted orally, via food and feeding activities (14). BQCV has also been detected in queen honeybees (13), suggesting that vertical transmission is also important for this virus. Both BQCV (12) and ABPV (38) have been detected within the varroa mite; however, only ABPV (9) has been shown to be vectored by varroa mites and has been found associated with dead colonies infested with varroa mites in Germany, Russia, and the United States (1). Later modeling work (33) indicated that very large (10,000+) mite populations are required to kill a colony since it is difficult for ABPV to become established among the bee population due to its high virulence.DWV is currently designated as a member of the unassigned genus Iflavirus within the order Picornavirales. It is generally considered as less virulent than ABPV or Kashmir bee virus, but it is known to cause overt symptoms of wing deformities in developing honeybees, resulting in emerging honeybees that are unable to fly and die shortly (5). It is also speculated that a cloud of DWV sequence variants exists that have evolved from a common ancestor. This is due to the high sequence similarities DWV isolates share with Kakugo virus and Varroa destructor virus within the RNA-dependent RNA polymerase gene, yet differences in virus epidemiology and pathological effects distinguish them from each other (29). DWV has been detected in worker honeybees, pupae, larvae, drones, and queens (15, 18, 20) as well as within the varroa mite (38, 43) and more recently the mite Tropilaelaps mercedesae (21), implying a range of horizontal and vertical transmission routes. Despite their global occurrence, it is generally accepted that DWVs play a secondary role in the causes of honeybee disease compared to their parasitic and bacterial counterparts as the viruses routinely reside at low levels in colonies, with symptomatic infections being rare (5). Moreover, multiple variants with differing infection strategies can account for a lack of discernible symptoms.Whether these viruses follow a persistent, latent, inapparent, or progressive infection strategy still remains unclear. Persistent (often called chronic) infections imply that the rate of infection within a host is in balance with the reproduction rate of the infected cell type or host itself. This is achieved through a combination of changing virus replication and host immune responses. Latent infections occur when the virus lies dormant within the host (replication inactive) until activation by defined stimuli. Progressive infections are caused by viruses that enter the host cell and replicate undetected for many cellular generations over many years before manifesting overt or acute symptoms. These three infection strategies all evade the host immune system, which results in the inability of the host to fully expel the virus, and this inability is often lethal. Inapparent (often referred to as covert) infections are indicative of a highly evolved relationship between the virus and natural host. Moreover, these infections are distinct in that the natural host can eventually clear itself from this short-term infection (19). Infections of DWV are often described as inapparent (15); however, Yue et al. (44) have suggested that a distinction should be made between “true inapparent” and their newly defined “covert infection” based on the long-term nature of DWV infection in honeybee colonies and on the nature of its transmission. This conclusion is congruent with current knowledge that traditional serological screening methods for DWV have limitations in their sensitivity (20). Therefore, the presence and duration of DWV within colonies have often been underestimated using serological assays as the overt symptoms of the deformed wing phenotype (>1011 virions per honeybee) are short-lived. Advances in virus detection methodologies have enabled the development of more sensitive techniques, such as PCR, and this has demonstrated that DWV persists for longer periods within colonies (38). However, based on the current research evidence, a case could be made that DWV actually follows the classic persistent infection strategy.DWV is thought to have an intricate relationship with varroa mites such that immunosuppression of the honeybee pupae by the mites results in increased DWV amplification when the honeybees are exposed to other pathogens (42). It has additionally been shown that the number of mites parasitizing honeybee pupae is positively correlated with the probability of their developing malformed wings (10). Other findings indicate that DWV replication within the mite and subsequent transmission to developing honeybees lead to the increased likelihood of the bees'' emerging with wing deformities (24, 43). Taken together, the expectation is that DWV-associated colony collapse would typically occur in the presence of a large (>2,000) varroa mite infestation carrying high levels of DWV and with a high proportion of deformed honeybees. While the effect of varroa mite-induced DWV disease is well recognized, i.e., wing deformities coupled with downregulation of immunity-related genes and antimicrobial peptides (36, 42) and impaired learning behavior (28), the impact of non-varroa mite-vectored DWV within asymptomatic honeybees still needs to be realized. Moreover, it was recently reported that varroa mite-free bumblebees that tested positive for DWV actually showed symptoms of DWV infection (23). Even though these bumblebees were in close proximity to DWV-infected and varroa mite-infested honeybee colonies, it is evidence that the dependency of DWV on varroa mite vectoring for a symptomatic infection (manifested as classic wing deformities or other symptoms) may not be as critical as previously thought.The purpose of this study was to investigate asymptomatic viral dynamics within husbanded honeybee colonies over an annual cycle. We set out to observe the relationship, if any, between virus infections, varroa mite parasitism and vectoring, honeybee colony health, and colony longevity. For the first time, a quantitative analysis of three picorna-like honeybee viruses over the course of a year was undertaken for DWV, ABPV, and BQCV.  相似文献   

14.
The animal gut is a habitat for diverse communities of microorganisms (microbiota). Honeybees and bumblebees have recently been shown to harbour a distinct and species poor microbiota, which may confer protection against parasites. Here, we investigate diversity, host specificity and transmission mode of two of the most common, yet poorly known, gut bacteria of honeybees and bumblebees: Snodgrassella alvi (Betaproteobacteria) and Gilliamella apicola (Gammaproteobacteria). We analysed 16S rRNA gene sequences of these bacteria from diverse bee host species across most of the honeybee and bumblebee phylogenetic diversity from North America, Europe and Asia. These focal bacteria were present in 92% of bumblebee species and all honeybee species but were found to be absent in the two related corbiculate bee tribes, the stingless bees (Meliponini) and orchid bees (Euglossini). Both Snodgrassella alvi and Gilliamella apicola phylogenies show significant topological congruence with the phylogeny of their bee hosts, albeit with a considerable degree of putative host switches. Furthermore, we found that phylogenetic distances between Gilliamella apicola samples correlated with the geographical distance between sampling locations. This tentatively suggests that the environmental transmission rate, as set by geographical distance, affects the distribution of G. apicola infections. We show experimentally that both bacterial taxa can be vertically transmitted from the mother colony to daughter queens, and social contact with nest mates after emergence from the pupa greatly facilitates this transmission. Therefore, sociality may play an important role in vertical transmission and opens up the potential for co‐evolution or at least a close association of gut bacteria with their hosts.  相似文献   

15.
Pathogens and parasites represent significant threats to the health and well-being of honeybee species that are key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Asian honeybees, Apis cerana, in China. Our study provides evidence of infections of A. cerana by pathogenic Deformed wing virus (DWV), Black queen cell virus (BQCV), Nosema ceranae, and C. bombi species that have been linked to population declines of European honeybees, A. mellifera, and bumble bees. However, the prevalence of DWV, a virus that causes widespread infection in A. mellifera, was low, arguably a result of the greater ability of A. cerana to resist the ectoprasitic mite Varroa destructor, an efficient vector of DWV. Analyses of microbial communities from the A. cerana digestive tract showed that Nosema infection could have detrimental effects on the gut microbiota. Workers infected by N. ceranae tended to have lower bacterial quantities, with these differences being significant for the Bifidobacterium and Pasteurellaceae bacteria groups. The results of this nationwide screen show that parasites and pathogens that have caused serious problems in European honeybees can be found in native honeybee species kept in Asia. Environmental changes due to new agricultural practices and globalization may facilitate the spread of pathogens into new geographic areas. The foraging behavior of pollinators that are in close geographic proximity likely have played an important role in spreading of parasites and pathogens over to new hosts. Phylogenetic analyses provide insights into the movement and population structure of these parasites, suggesting a bidirectional flow of parasites among pollinators. The presence of these parasites and pathogens may have considerable implications for an observed population decline of Asian honeybees.  相似文献   

16.
Apiculture often relies on the importation of non-native honeybees (Apis mellifera) and large distance migratory beekeeping. These activities can cause biodiversity conflicts with the conservation of wild endemic honeybee subspecies. We studied the impact of large scale honeybee imports on managed and wild honeybee populations in Sudan, a centre of biodiversity of A. mellifera, using as set of linked microsatellite DNA loci and mitochondrial DNA markers. The mitochondrial DNA analyses showed that all wild honey bees exclusively belonged to African haplotypes. However, we revealed non-native haplotypes in managed colonies on apiaries reflecting unambiguous evidence of imports from European stock. Moreover, we found significantly higher linkage disequilibria for microsatellite markers in wild populations in regions with apiculture compared to wild populations which had no contact to beekeeping. Introgression of imported honeybees was only measurable at the population level in close vicinity to apicultural activities but not in wild populations which represent the vast majority of honeybees in Sudan.  相似文献   

17.
Host‐restricted lineages of gut bacteria often include many closely related strains, but this fine‐scale diversity is rarely investigated. The specialized gut symbiont Snodgrassella alvi has codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years. Snodgrassella alvi strains are nearly identical for 16S rRNA gene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examined S. alvi strain diversity within and between hosts using deep sequencing both of a single‐copy coding gene (minD) and of the V4 region of the 16S rRNA gene. We sampled workers from domestic and feral A. mellifera colonies and wild‐caught Bombus representing 14 species. Conventional analyses of community profiles, based on the V4 region of the 16S rRNA gene, failed to expose most strain variation. In contrast, the minD analysis revealed extensive strain variation within and between host species and individuals. Snodgrassella alvi strain diversity is significantly higher in A. mellifera than in Bombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. Most Bombus individuals (72%) are dominated by a single S. alvi strain, whereas most A. mellifera (86%) possess multiple strains. No S. alvi strains are shared between A. mellifera and Bombus, indicating some host specificity. Among Bombus‐restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations.  相似文献   

18.
The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh ) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh , was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity.  相似文献   

19.
The honey bee Apis mellifera L. is a crucial insect in the agricultural industry and natural ecosystem by being a major pollinator. Nevertheless, honey bee population has been recently facing a decline. Among the several factors responsible for this decline, deformed wing virus (DWV) is considered a primary cause that negatively affects honey bee health. DWV is a cosmopolitan honey bee pathogen and causes morphological disadvantages in individual honey bees and colony collapse. Regarding the horizontal transmission of DWV, in addition to Varroa destructor, a well-known major vector of DWV, flowers have recently been implied as a transmission route. Therefore, in this study, we detected DWV from various substances, including flowers, honey bee feces, pupa, larva, nurse bee, surface of nurse bee, pollen collected by forager bee, and forager bee samples in four strawberry greenhouses, which could suggest the potential for the horizontal transmission of DWV in the semi-field condition. We also detected DWV in pollen collected by DWV-negative forager bees, implying that flowers can serve as a potential source of virus infection. These findings suggest that the surrounding environment such as shared floral sources affects the spread of DWV.  相似文献   

20.
A survey on the occurrence of six honeybee-pathogenic viruses was carried out using one-step RT-PCR assays. Samples were collected between 1999 and 2004 in 52 Hungarian apiaries located in different regions of the country. The results of the assays on samples of adult honeybees and Varroa destructor mites were compared to similar surveys from France and Austria. The study demonstrates geographical differences in the prevalence of honeybee viruses between Hungary and the older EU member states. The results could serve as a basis for monitoring further changes in the distribution of honeybee viruses in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号