首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Drought is one of the main factors affecting the productivity of agricultural crops, and plants respond to such stress by activating various physiological and biochemical mechanisms against dehydration. The present study investigated two varieties of sugarcane (Saccharum spp.) with contrasting responses to drought (RB867515, more tolerant; and RB855536, less tolerant) and subjected them to progressive drought conditions (2, 4, 6 and 8 days) followed by rehydration. Drought caused a decrease in water potential (ψw) and osmotic potential (ψos) in the leaves, which recovered to normal levels after rehydration only up to the fourth day of drought. Water stress changed the carbon metabolism of leaves by reducing starch and sucrose contents and increasing glucose and fructose contents in both varieties. Water deficit caused a significant reduction in the maximum quantum efficiency of photosystem II (Fv/Fm) and effective quantum yield (ΦPSII) in both varieties; however, RB867515 recovered faster after rehydration. Under water stress, the more tolerant variety RB867515 exhibited increased activity of the antioxidant enzymes catalase, ascorbate peroxidase and superoxide dismutase compared with the RB855536 variety. The results suggest that RB867515 is more tolerant to drought conditions because of a more efficient antioxidant system, which results in reduced photosynthesis photoinhibition during water stress, thus revealing itself as a potential physiological marker for drought tolerance studies.  相似文献   

2.
Drought and heat stress are two major abiotic stresses that tend to co‐occur in nature. Recent climate change models predict that the frequency and duration of periods of high temperatures and moisture‐deficits are on the rise and can be detrimental to crop production and hence a serious threat for global food security. In this study we examined the impact of short‐term heat, drought and combined heat and drought stress on four barley varieties. These stresses were applied during vegetative stage or during heading stages. The impact on root and shoot biomass as well as seed yields were analyzed. This study demonstrated that sensitivity to combined stress was generally greater than heat or drought individually, and greater when imposed at heading than at the vegetative stages. Micromalted seeds collected from plants stressed during heading showed differences in malt extract, beta‐glucan content and percent soluble protein. Screening barley germplasm during heading stage is recommended to identify novel sources of tolerance to combined stress. Apart from seed yield, assessing the seed quality traits of concern for the stakeholders and/or consumers should be an integral part of breeding programs for developing new barley varieties with improved heat and drought stress tolerance.  相似文献   

3.
Plant tolerance against a combination of abiotic stresses is a complex phenomenon, which involves various mechanisms. Physiological and biochemical analyses of salinity (NaCl) and nickel (Ni) tolerance in two contrasting tomato genotypes were performed in a hydroponics experiment. The tomato genotypes selected were proved to be tolerant (Naqeeb) and sensitive (Nadir) to both salinity and Ni stress in our previous experiment. The tomato genotypes were exposed to combinations of NaCl (0, 75 and 150 mM) and Ni (0, 15, and 20 mg l−1) for 28 days. The results revealed that the tolerant and sensitive tomato genotypes showed similar response to NaCl and Ni stress; however, the level of response was significantly different in both genotypes. The tolerant tomato genotype showed less reduction in growth than the sensitive genotype against both NaCl and Ni stress. Root and shoot ionic analysis showed a decrease in Na and increase in K concentration by increasing Ni levels in the growth medium. Moreover, accumulation of Na and Ni in tissues showed a decrease in membrane stability index and an increase in malondialdehyde contents. The activity of superoxide dismutase, catalase, peroxidase and glutathione reductase under NaCl and Ni stress was significantly higher in the tolerant compared to the sensitive genotype. Enhanced activity of many antioxidant enzymes in Naqeeb under stress conditions is among the other mechanisms that enabled the genotype to better detoxify reactive oxygen species and therefore Naqeeb tolerated the stresses better than Nadir.  相似文献   

4.
β‐1,3‐glucans such as paramylon act as elicitors in plants, modifying the hormonal levels and the physiological responses. Plant hormones affect all phases of the plant life cycle and their responses to environmental stresses, both biotic and abiotic. The aim of this study was to investigate the effects of a root treatment with Euglena gracilis paramylon on xylem hormonal levels, photosynthetic performance and dehydration stress in tomato (Solanum lycopersicum). Paramylon granules were processed to obtain the linear fibrous structures capable to interact with tomato cell membrane. Modulation of hormone levels (abscisic acid, jasmonic acid and salicylic acid) and related physiological responses such as CO2 assimilation rate, stomatal and mesophyll conductance, intercellular CO2 concentration, transpiration rate, water‐use efficiency, quantum yield of photosystem II and leaf water potential were investigated. The results indicate a clear dose‐dependent effect of paramylon on the hormonal content of xylem sap, photosynthetic performance and dehydration tolerance. Paramylon has the capability to enhance plant defense capacity against abiotic stress, such as drought, by modulating the conductance to CO2 diffusion from air to the carboxylation sites and improving the water‐use efficiency.  相似文献   

5.
The effects of nitrogen fertilization on the growth, photosynthetic pigment contents, gas exchange, and chlorophyll (Chl) fluorescence parameters in two tall fescue cultivars (Festuca arundinacea cv. Barlexas and Crossfire II) were investigated under heat stress at 38/30 °C (day/night) for two weeks. Shoot growth rate of two tall fescue cultivars declined significantly under heat stress, and N supply can improved the growth rates, especially for the Barlexas. Chl content, leaf net photosynthetic rate, stomatal conductance, water use efficiency, and the maximal efficiency of photosystem 2 photochemistry (Fv/Fm) also decreased less under heat stress by N supply, especially in Crossfire II. Moreover, cultivar variations in photosynthetic performance were associated with their different response to heat stress and nitrogen fertilization, which were evidenced by shoot growth rate and photosynthetic pigment contents.  相似文献   

6.

Background

Aluminium (Al) toxicity and drought stress are two major constraints for crop production in the world, particularly in the tropics. The variation in rainfall distribution and longer dry spells in much of the tropics during the main growing period of crops are becoming increasingly important yield-limiting factors with the global climate change. As a result, crop genotypes that are tolerant of both drought and Al toxicity need to be developed.

Scope

The present review mainly focuses on the interaction of Al and drought on root development, crop growth and yield on acid soils. It summarizes evidence from our own studies and other published/related work, and provides novel insights into the breeding for the adaptation to these combined abiotic stresses. The primary symptom of Al phytotoxicity is the inhibition of root growth. The impeded root system will restrict the roots for exploring the acid subsoil to absorb water and nutrients which is particularly important under condition of low soil moisture in the surface soil under drought. Whereas drought primarily affects shoot growth, effects of phytotoxic Al on shoot growth are mostly secondary effects that are induced by Al affecting root growth and function, while under drought stress root growth may even be promoted. Much progress has recently been made in the understanding of the physiology and molecular biology of the interaction between Al toxicity and drought stress in common bean (Phaseolus vulgaris L.) in hydroponics and in an Al-toxic soil.

Conclusions

Crops growing on acid soils yield less than their potential because of the poorly developed root system that limits nutrient and water uptake. Breeding for drought resistance must be combined with Al resistance, to assure that drought resistance is expressed adequately in crops grown on soils with acid Al-toxic subsoils.  相似文献   

7.
Grasslands dominate the terrestrial landscape, and grasses have evolved complex and elegant strategies to overcome abiotic stresses. The C4 grasses are particularly stress tolerant and thrive in tropical and dry temperate ecosystems. Growing evidence suggests that the presence of C4 photosynthesis alone is insufficient to account for drought resilience in grasses, pointing to other adaptations as contributing to tolerance traits. The majority of grasses from the Chloridoideae subfamily are tolerant to drought, salt, and desiccation, making this subfamily a hub of resilience. Here, we discuss the evolutionary innovations that make C4 grasses so resilient, with a particular emphasis on grasses from the Chloridoideae (chloridoid) and Panicoideae (panicoid) subfamilies. We propose that a baseline level of resilience in chloridoid ancestors allowed them to colonize harsh habitats, and these environments drove selective pressure that enabled the repeated evolution of abiotic stress tolerance traits. Furthermore, we suggest that a lack of evolutionary access to stressful environments is partially responsible for the relatively poor stress resilience of major C4 crops compared to their wild relatives. We propose that chloridoid crops and the subfamily more broadly represent an untapped reservoir for improving resilience to drought and other abiotic stresses in cereals.

Chloridoid grasses have evolved unique adaptations to adverse environments and represent an untapped reservoir for improving resilience to drought and other abiotic stresses in cereals.  相似文献   

8.
9.
Soil salinity and drought are the two most common and frequently co‐occurring abiotic stresses limiting cotton growth and productivity. However, physiological mechanisms of tolerance to such condition remain elusive. Greenhouse pot experiments were performed to study genotypic differences in response to single drought (4% soil moisture; D) and salinity (200 mM NaCl; S) stress and combined stresses (D + S) using two cotton genotypes Zhongmian 23 (salt‐tolerant) and Zhongmian 41 (salt‐sensitive). Our results showed that drought and salinity stresses, alone or in combination, caused significant reduction in plant growth, chlorophyll content and photosynthesis in the two cotton genotypes, with the largest impact visible under combined stress. Interestingly, Zhongmian 23 was more tolerant than Zhongmian 41 under the three stresses and displayed higher plant dry weight, photosynthesis and antioxidant enzymes activities such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX) activities compared to control, while those parameters were significantly decreased in salt‐stresses Zhongmian 41 compared to control. Moreover, Na+/K+‐ATPase activity was more enhanced in Zhongmian 23 than in Zhongmian 41 under salinity stress. However, under single drought stress and D + S stress no significant differences were observed between the two genotypes. No significant differences were detected in Ca2+/Mg2+‐ATPase activity in Zhongmian 41, while in Zhongmian 23 it was increased under salinity stress. Furthermore, Zhongmian 23 accumulated more soluble sugar, glycine‐betaine and K+, but less Na+ under the three stresses compared with Zhongmian 41. Obvious changes in leaf and root tips cell ultrastructure was observed in the two cotton genotypes. However, Zhongmian 23 was less affected than Zhongmian 41 especially under salinity stress. These results give a novel insight into the mechanisms of single and combined effects of drought and salinity stresses on cotton genotypes.  相似文献   

10.
11.
Genetic improvement for drought tolerance in chickpea requires a solid understanding of biochemical processes involved with different physiological mechanisms. The objective of this study is to demonstrate genetic variations in altered metabolic levels in chickpea varieties (tolerant and sensitive) grown under contrasting water regimes through ultrahigh‐performance liquid chromatography/high‐resolution mass spectrometry‐based untargeted metabolomic profiling. Chickpea plants were exposed to drought stress at the 3‐leaf stage for 25 days, and the leaves were harvested at 14 and 25 days after the imposition of drought stress. Stress produced significant reduction in chlorophyll content, Fv/Fm, relative water content, and shoot and root dry weight. Twenty known metabolites were identified as most important by 2 different methods including significant analysis of metabolites and partial least squares discriminant analysis. The most pronounced increase in accumulation due to drought stress was demonstrated for allantoin, l ‐proline, l ‐arginine, l ‐histidine, l ‐isoleucine, and tryptophan. Metabolites that showed a decreased level of accumulation under drought conditions were choline, phenylalanine, gamma‐aminobutyric acid, alanine, phenylalanine, tyrosine, glucosamine, guanine, and aspartic acid. Aminoacyl‐tRNA and plant secondary metabolite biosynthesis and amino acid metabolism or synthesis pathways were involved in producing genetic variation under drought conditions. Metabolic changes in light of drought conditions highlighted pools of metabolites that affect the metabolic and physiological adjustment in chickpea that reduced drought impacts.  相似文献   

12.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.  相似文献   

13.
Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases that play a crucial role in plant development and response to oxidative stress. Here, a novel cDNA fragment (SlGRX1) from tomato encoding a protein containing the consensus Grx family domain with a CGFS active site was isolated and characterized. Southern blot analysis indicated that SlGRX1 gene had a single copy in tomato genome. Quantitative real-time RT-PCR analysis revealed that SlGRX1 was expressed ubiquitously in tomato including leaf, root, stem and flower, and its expression could be induced by oxidative, drought, and salt stresses. Virus-induced gene silencing mediated silencing of SlGRX1 in tomato led to increased sensitivity to oxidative and salt stresses with decreased relative chlorophyll content, and reduced tolerance to drought stress with decreased relative water content. In contrast, over-expression of SlGRX1 in Arabidopsis plants significantly increased resistance of plants to oxidative, drought, and salt stresses. Furthermore, expression levels of oxidative, drought and salt stress related genes Apx2, Apx6, and RD22 were up-regulated in SlGRX1-overexpressed Arabidopsis plants when analyzed by quantitative real-time PCR. Our results suggest that the Grx gene SlGRX1 plays an important role in regulating abiotic tolerance against oxidative, drought, and salt stresses.  相似文献   

14.
15.
  • Climate change is increasing the frequency of high temperature shocks and water shortages, pointing to the need to develop novel tolerant varieties and to understand the mechanisms employed to withstand combined abiotic stresses.
  • Two tomato genotypes, a heat-tolerant Solanum lycopersicum accession (LA3120) and a novel genotype (E42), previously selected as a stable yielding genotype under high temperatures, were exposed to single and combined water and heat stress. Plant functional traits, pollen viability and physiological (leaf gas exchange and chlorophyll a fluorescence emission measurements) and biochemical (antioxidant content and antioxidant enzyme activity) measurements were carried out. A Reduced Representation Sequencing approach allowed exploration of the genetic variability of both genotypes to identify candidate genes that could regulate stress responses.
  • Both abiotic stresses had a severe impact on plant growth parameters and on the reproductive phase of development. Growth parameters and leaf gas exchange measurements revealed that the two genotypes used different physiological strategies to overcome individual and combined stresses, with E42 having a more efficient capacity to utilize the limiting water resources. Activation of antioxidant defence mechanisms seemed to be critical for both genotypes to counteract combined abiotic stresses. Candidate genes were identified that could explain the different physiological responses to stress observed in E42 compared with LA3120.
  • Results here obtained have shown how new tomato genetic resources can be a valuable source of traits for adaptation to combined abiotic stresses and should be used in breeding programmes to improve stress tolerance in commercial varieties.
  相似文献   

16.
Soils under field conditions may experience fluctuating soil water regimes ranging from drought to waterlogging. The inability of roots to acclimate to such changes in soil water regimes may result in reduced growth and function thereby, dry matter production. This study compared the root and shoot growth, root aerenchyma development, and associated root oxygen transport of aerobic and irrigated lowland rice genotypes grown under well-watered (control), waterlogged, and droughted soil conditions for 30 days. The aerobic genotypes were as tolerant as the irrigated lowland genotypes under waterlogging because of their comparable abilities to enhance aerenchyma that effectively facilitated O2 diffusion to the roots for maintaining root growth and dry matter production. Under drought, aerobic genotypes were more tolerant than the irrigated lowland genotypes due to their higher ability to maintain nodal root production, elongation, and branching, thus, less reduction in dry matter production. Aerenchyma was also formed in droughted roots regardless of genotypes, but was resistant to internal O2 transport under O2 deficiency. The ability of roots to resist temporal variations in drought and waterlogging stresses might have strong implications for the adaptation of rice growing in environments with fluctuating soil water regimes.  相似文献   

17.
A study was conducted to find out the role of ascorbic acid (AsA) in modulating growth and different physio-biochemical attributes of canola plants under well-watered as well as water-deficit conditions. Drought stress imposed on 60 % field capacity significantly decreased the shoot and root fresh and dry weights, leaf chlorophyll contents, shoot and root P, root K+, and activity of CAT enzyme, while increased chlorophyll a/b contents, MDA, NPQ, leaf total phenolics, free proline and GB contents in both canola cultivars. Foliar-applied varying levels (50, 100 and 150 mg L?1) of AsA enhanced shoot and root fresh and root dry weights, qN, NPQ, shoot and root P, AsA as well as the activity of POD enzyme particularly under drought stress conditions. Of both canola cultivars, cv. Dunkeld was higher in shoot fresh weights, ETR and F v /F m, MDA, proline and GB contents, and POD activity, however, cv. Cyclone in total phenolics and qN under well-watered and water-deficit conditions. Overall, the foliar-applied AsA had a positive effect, though not marked, on salt sensitive cv. Cyclone in terms of improved growth and other attributes, whereas exogenously applied AsA had a non-significant effect on relatively salt tolerant cv. Dunkeld.  相似文献   

18.
Havaux M 《Plant physiology》1992,100(1):424-432
The in vivo photochemical activity of photosystem II was inferred from modulated chlorophyll fluorescence and photoacoustic measurements in intact leaves of several plant species (Lycopersicon esculentum Mill., Solanum tuberosum L., Solanum nigrum L.) exposed to various environmental stresses (drought, heat, strong light) applied separately or in combination. Photosystem II was shown to be highly drought-resistant: even a drastic desiccation in air of detached leaf samples only marginally affected the quantum yield for photochemistry in photosystem II. However, water stress markedly modified the responses of photosystem II to superimposed constraints. The stability of photosystem II to heat was observed to increase strongly in leaves exposed to water stress conditions: heat treatments (e.g. 42°C in the dark), which caused a complete and irreversible inhibition of photosystem II in well-watered (tomato) leaves, resulted in a small and fully reversible reduction of the photochemical efficiency of photosystem II in drought-stressed leaves. In vivo photoacoustic data indicated that photosystem I was highly resistant to both heat and water stresses. When leaves were illuminated with intense white light at 25°C, photoinhibition damage of photosystem II was more pronounced in water-stressed leaves than in undesiccated controls. However, in nondehydrated leaves, photoinhibition of photosystem II was strongly temperature dependent, being drastically stimulated at high temperatures above 38 to 40°C. As a consequence, when exposed to strong light at high temperature, photosystem II photochemistry was significantly less inhibited in dehydrated leaves than in control well-hydrated leaves. Our results demonstrate the existence of a marked antagonism between physicochemical stresses, with water stress enhancing the resistance of photosystem II to constraints (heat, strong light at high temperature) that are usually associated with drought in the field.  相似文献   

19.
Abiotic stresses, such as high temperature and drought, are major limiting factors of crop production and growth. Coronatine (COR), a structural and functional analog of jasmonates, is suggested to have a role in abiotic stress tolerance. The aim of our study was to examine whether pretreatment with COR enhances the tolerance of chickpea (Cicer arietinum L. cv ICC 4958) roots to PEG-induced osmotic stress, heat stress, and their combination. Therefore, seedlings raised hydroponically in a growth chamber for 15 days were pretreated with or without COR at 0.01 μM for 24 h and then exposed to 6 % PEG 6000-induced osmotic stress or heat (starting at 35 °C and then gradually increased 1 °C every 15 min and kept at 44 °C for 1 h) stress for 3 days. After different treatment periods, the changes in relative growth rate (RGR); malondialdehyde (MDA), proline (Pro), and hydrogen peroxide (H2O2) contents; and the activities of antioxidant enzymes/isoenzymes in roots of chickpea seedlings with or without 0.01 μM COR application were studied. RGR in roots was increased by COR application. Under all stress conditions, H2O2, MDA, and Pro levels increased sharply, but pretreatment with COR significantly reduced them. Moreover, COR increased the activities of H2O2 scavenger enzymes such as catalase (CAT) under heat stress, ascorbate peroxidase (POX) under PEG stress, and CAT and POX under combined stresses. Therefore, COR might alleviate adverse effects of PEG stress and heat stress and combined stresses on roots of chickpea by reduction of H2O2 production, enhancing or keeping the existent activity of antioxidant enzymes, thereby preventing membrane peroxidation.  相似文献   

20.
For the first time, the adaptive role of the rolling leaf trait for tolerance of wheat plants (Triticum aestivum L.) to the main factor of drought, high temperature, was demonstrated. Cv. Otan with high degree of this trait expression was more tolerant to temperature stress (40°C, 4 h during 2 days (2h/day)). Changes in parameters of chlorophyll fluorescence, F v/F m and R Fd690, suggest that cv. Otan was tolerant to inhibition of photochemical activities of photosystem II (PSII) and photosystem I (PSI). Furthermore, high temperature had no effect on the rate of net photosynthesis (P N) in cv. Otan, although it decreased this parameter in the other wheat cultivars. The main factors, which provid for this tolerance, were adaptation of the photosynthetic pigment system by active accumulation of carotenoids, more stable structural organization of PSII and PSI, and their high photosynthetic activities, as well as efficient stomatal regulation of transpiration and supplying of mesophyll cells with CO2. It is hypothesized that the physiological role of the rolling leaf trait is the maintenance of adaptation potential by increasing the efficiency of water metabolism in the flag leaves of wheat under high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号