首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leimu R  Kloss L  Fischer M 《Ecology letters》2008,11(10):1101-1110
Inbreeding is common in plant populations and can affect plant fitness and resistance against herbivores. These effects are likely to depend on population history. In a greenhouse experiment with plants from 17 populations of Lychnis flos-cuculi, we studied the effects of experimental inbreeding on resistance and plant fitness. Depending on the levels of past herbivory and abiotic factors at the site of plant origin, we found either inbreeding or outbreeding depression in herbivore resistance. Furthermore, when not damaged experimentally by snail herbivores, plants from populations with higher heterozygosity suffered from inbreeding depression and those from populations with lower heterozygosity suffered from outbreeding depression. These effects of inbreeding and outbreeding were not apparent under experimental snail herbivory. We conclude that inbreeding effects on resistance and plant fitness depend on population history. Moreover, herbivory can mask inbreeding effects on plant fitness. Thus, understanding inbreeding effects on plant fitness requires studying multiple populations and considering population history and biotic interactions.  相似文献   

2.
Mating between related individuals results in inbreeding depression, and this has been thought to select against incestuous matings. However, theory predicts that inbreeding can also be adaptive if it increases the representation of genes identical by descent in future generations. Here, I recapitulate the theory of inclusive fitness benefits of incest, and extend the existing theory by deriving the stable level of inbreeding in populations practicing mate choice for optimal inbreeding. The parsimonious assumptions of the model are that selection maximizes inclusive fitness, and that inbreeding depression is a linear function of homozygosity of offspring. The stable level of inbreeding that maximizes inclusive fitness, and is expected to evolve by natural selection, is shown to be less than previous theory suggests. For wide range of realistic inbreeding depression strengths, mating with intermediately related individuals maximizes inclusive fitness. The predicted preference for intermediately related individuals as reproductive partners is in qualitative agreement with empirical evidence from mate choice experiments and reproductive patterns in nature.  相似文献   

3.
The majority of reported multilocus heterozygosity–fitness correlations (HFCs) are from large, outbred populations, and their relevance to studies on inbreeding depression in threatened populations is often stressed. The results of such HFC studies conducted on outbred populations may be of limited application to threatened population management, however, as bottlenecked populations exhibit increased incidence of inbreeding, increased linkage disequilibrium, reduced genetic diversity and possible effects of historical inbreeding such as purging. These differences may affect both our ability to detect inbreeding depression in threatened species, and our interpretation of the underlying mechanisms for observed heterozygosity–fitness relationships. The study of HFCs in outbred populations is of interest in itself, but the results may not translate directly to threatened populations that have undergone severe bottlenecks.  相似文献   

4.
Disease-mediated inbreeding depression is a potential cost of living in groups with kin, but its general magnitude in wild populations is unclear. We examined the relationships between inbreeding, survival and disease for 312 offspring, produced by 35 parental pairs, in a large, open population of cooperatively breeding American crows (Corvus brachyrhynchos). Genetic analyses of parentage, parental relatedness coefficients and pedigree information suggested that 23 per cent of parental dyads were first- or second-order kin. Heterozygosity–heterozygosity correlations suggested that a microsatellite-based index of individual heterozygosity predicted individual genome-wide heterozygosity in this population. After excluding birds that died traumatically, survival probability was lower for relatively inbred birds during the 2–50 months after banding: the hazard rate for the most inbred birds was 170 per cent higher than that for the least inbred birds across the range of inbreeding index values. Birds that died with disease symptoms had higher inbreeding indices than birds with other fates. Our results suggest that avoidance of close inbreeding and the absence of inbreeding depression in large, open populations should not be assumed in taxa with kin-based social systems, and that microsatellite-based indices of individual heterozygosity can be an appropriate tool for examining the inbreeding depression in populations where incest and close inbreeding occur.  相似文献   

5.
Although inbreeding can reduce individual fitness and contribute to population extinction, gene flow between inbred but unrelated populations may overcome these effects. Among extant Mexican wolves (Canis lupus baileyi), inbreeding had reduced genetic diversity and potentially lowered fitness, and as a result, three unrelated captive wolf lineages were merged beginning in 1995. We examined the effect of inbreeding and the merging of the founding lineages on three fitness traits in the captive population and on litter size in the reintroduced population. We found little evidence of inbreeding depression among captive wolves of the founding lineages, but large fitness increases, genetic rescue, for all traits examined among F1 offspring of the founding lineages. In addition, we observed strong inbreeding depression among wolves descended from F1 wolves. These results suggest a high load of deleterious alleles in the McBride lineage, the largest of the founding lineages. In the wild, reintroduced population, there were large fitness differences between McBride wolves and wolves with ancestry from two or more lineages, again indicating a genetic rescue. The low litter and pack sizes observed in the wild population are consistent with this genetic load, but it appears that there is still potential to establish vigorous wild populations.  相似文献   

6.
Inbreeding depression, the reduced fitness of offspring of related individuals, is a central theme in evolutionary biology. Inbreeding effects are influenced by the genetic makeup of a population, which is driven by any history of genetic bottlenecks and genetic drift. The Chatham Island black robin represents a case of extreme inbreeding following two severe population bottlenecks. We tested whether inbreeding measured by a 20‐year pedigree predicted variation in fitness among individuals, despite the high mean level of inbreeding and low genetic diversity in this species. We found that paternal and maternal inbreeding reduced fledgling survival and individual inbreeding reduced juvenile survival, indicating that inbreeding depression affects even this highly inbred population. Close inbreeding also reduced survival for fledglings with less‐inbred mothers, but unexpectedly improved survival for fledglings with highly inbred mothers. This counterintuitive interaction could not be explained by various potentially confounding variables. We propose a genetic mechanism, whereby a highly inbred chick with a highly inbred parent inherits a “proven” genotype and thus experiences a fitness advantage, which could explain the interaction. The positive and negative effects we found emphasize that continuing inbreeding can have important effects on individual fitness, even in populations that are already highly inbred.  相似文献   

7.
Matings between relatives lead to a decrease in offspring genetic diversity which can reduce fitness, a phenomenon known as inbreeding depression. Because alpine ungulates generally live in small structured populations and often exhibit a polygynous mating system, they are susceptible to inbreeding. Here, we used marker-based measures of pairwise genetic relatedness and inbreeding to investigate the fitness consequences of matings between relatives in a long-term study population of mountain goats ( Oreamnos americanus ) at Caw Ridge, Alberta, Canada. We first assessed whether individuals avoided mating with kin by comparing actual and random mating pairs according to their estimated genetic relatedness, which was derived from 25 unlinked polymorphic microsatellite markers and reflected pedigree relatedness. We then examined whether individual multilocus heterozygosity H , used as a measure of inbreeding, was predicted by parental relatedness and associated with yearling survival and the annual probability of giving birth to a kid in adult females. Breeding pairs identified by genetic parentage analyses of offspring that survived to 1 year of age were less genetically related than expected under random matings. Parental relatedness was negatively correlated with offspring H , and more heterozygous yearlings had higher survival to 2 years of age. The probability of giving birth was not affected by H in adult females. Because kids that survived to yearling age were mainly produced by less genetically related parents, our results suggest that some individuals experienced inbreeding depression in early life. Future research will be required to quantify the levels of gene flow between different herds, and evaluate their effects on population genetic diversity and dynamics.  相似文献   

8.
The degree to which individuals inbreed is a fundamental aspect of population biology shaped by both passive and active processes. Yet, the relative influences of random and non-random mating on the overall magnitude of inbreeding are not well characterized for many taxa. We quantified variation in inbreeding among qualitatively accessible and isolated populations of a sessile marine invertebrate (the colonial ascidian Lissoclinum verrilli) in which hermaphroditic colonies cast sperm into the water column for subsequent uptake and internal fertilization. We compared estimates of inbreeding to simulations predicting random mating within sites to evaluate if levels of inbreeding were (1) less than expected because of active attempts to limit inbreeding, (2) as predicted by genetic subdivision and passive inbreeding tolerance, or (3) greater than simulations due to active attempts to promote inbreeding via self-fertilization or a preference for related mates. We found evidence of restricted gene flow and significant differences in the genetic diversity of L. verrilli colonies among sites, indicating that on average colonies were weakly related in accessible locations, but their levels of relatedness matched that of first cousins or half-siblings on isolated substrates. Irrespective of population size, progeny arrays revealed variation in the magnitude of inbreeding across sites that tracked with the mean relatedness of conspecifics. Biparental reproduction was confirmed in most offspring (86%) and estimates of total inbreeding largely overlapped with simulations of random mating, suggesting that interpopulation variation in mother–offspring resemblance was primarily due to genetic subdivision and passive tolerance of related mates. Our results highlight the influence of demographic isolation on the genetic composition of populations, and support theory predicting that tolerance of biparental inbreeding, even when mates are closely related, may be favoured under a broad set of ecological and evolutionary conditions.  相似文献   

9.
Understanding the fitness consequences of inbreeding (inbreeding depression) is of importance to evolutionary and conservation biology. There is ample evidence for inbreeding depression in captivity, and data from wild populations are accumulating. However, we still lack a good quantitative understanding of inbreeding depression and what influences its magnitude in natural populations. Specifically, the relationship between the magnitude of inbreeding depression and environmental severity is unclear. We quantified inbreeding depression in survival and reproduction in populations of cactus finches (Geospiza scandens) and medium ground finches (Geospiza fortis) living on Isla Daphne Major in the Galápagos Archipelago. Our analyses showed that inbreeding strongly reduced the recruitment probability (probability of breeding given that an adult is alive) in both species. Additionally, in G. scandens, first-year survival of an offspring with f = 0.25 was reduced by 21% and adults with f = 0.25 experienced a 45% reduction in their annual probability of survival. The magnitude of inbreeding depression in both adult and juvenile survival of this species was strongly modified by two environmental conditions, food availability and number of competitors. In juveniles, inbreeding depression was only present in years with low food availability, and in adults inbreeding depression was five times more severe in years with low food availability and large population sizes. The combination of relatively severe inbreeding depression in survival and the reduced recruitment probability led to the fact that very few inbred G. scandens ever succeeded in breeding. Other than recruitment probability, no other trait showed evidence of inbreeding depression in G. fortis, probably for two reasons: a relatively high rate of extrapair paternity (20%), which may lead to an underestimate of the apparent inbreeding depression, and low sample sizes of highly inbred G. fortis, which leads to low statistical power. Using data from juvenile survival, we estimated the number of lethal equivalents carried by G. scandens, G. fortis, and another congener, G. magnirostris. These results suggest that substantial inbreeding depression can exist in insular populations of birds, and that the magnitude of the inbreeding depression is a function of environmental conditions.  相似文献   

10.
Reintroductions of threatened species are increasingly common in conservation. The translocation of a small subset of individuals from a genetically diverse source population could potentially lead to substantial inbreeding depression due to the high genetic load of the parent population. We analysed 12 years of data from the reintroduced population of North Island robins Petroica longipes on Tiritiri Matangi Island, New Zealand, to determine the frequency of inbreeding and magnitude of inbreeding depression. The initial breeding population consisted of 12 females and 21 males, which came from a large mainland population of robins. The frequency of mating between relatives ( f >0; 39%, n =82 pairs) and close relatives ( f =0.25; 6.1%) and the average level of inbreeding ( f =0.027) were within the range reported for other small island populations of birds. The average level of inbreeding fluctuated from year to year depending on the frequency of close inbreeding (e.g. sib–sib pairs). We found evidence for inbreeding depression in juvenile survival, with survival probability estimated to decline from 31% among non-inbred birds ( f =0) to 11% in highly inbred juveniles ( f =0.25). The estimated number of lethal equivalents based on this relationship (4.14) was moderate compared with values reported for other island populations of passerines. Given that significant loss of fitness was only evident in highly inbred individuals, and such individuals were relatively rare once the population expanded above 30 pairs, we conclude that inbreeding depression should have little influence on this robin population. Although the future fitness consequences of any loss of genetic variation due to inbreeding are uncertain, the immediate impact of inbreeding depression is likely to be low in any reintroduced population that expands relatively quickly after establishment.  相似文献   

11.
Inbreeding is common in small and threatened populations and often has a negative effect on individual fitness and genetic diversity. Thus, inbreeding can be an important factor affecting the persistence of small populations. In this study, we investigated the effects of inbreeding on fitness in a small, wild population of house sparrows (Passer domesticus) on the island of Aldra, Norway. The population was founded in 1998 by four individuals (one female and three males). After the founder event, the adult population rapidly increased to about 30 individuals in 2001. At the same time, the mean inbreeding coefficient among adults increased from 0 to 0.04 by 2001 and thereafter fluctuated between 0.06 and 0.10, indicating a highly inbred population. We found a negative effect of inbreeding on lifetime reproductive success, which seemed to be mainly due to an effect of inbreeding on annual reproductive success. This resulted in selection against inbred females. However, the negative effect of inbreeding was less strong in males, suggesting that selection against inbred individuals is at least partly sex specific. To examine whether individuals avoided breeding with close relatives, we compared observed inbreeding and kinship coefficients in the population with those obtained from simulations of random mating. We found no significant differences between the two, indicating weak or absent inbreeding avoidance. We conclude that there was inbreeding depression in our population. Despite this, birds did not seem to actively avoid mating with close relatives, perhaps as a consequence of constraints on mating possibilities in such a small population.  相似文献   

12.
Inbreeding results in more homozygous offspring that should suffer reduced fitness, but it can be difficult to quantify these costs for several reasons. First, inbreeding depression may vary with ecological or physiological stress and only be detectable over long time periods. Second, parental homozygosity may indirectly affect offspring fitness, thus confounding analyses that consider offspring homozygosity alone. Finally, measurement of inbreeding coefficients, survival and reproductive success may often be too crude to detect inbreeding costs in wild populations. Telomere length provides a more precise measure of somatic costs, predicts survival in many species and should reflect differences in somatic condition that result from varying ability to cope with environmental stressors. We studied relative telomere length in a wild population of Seychelles warblers (Acrocephalus sechellensis) to assess the lifelong relationship between individual homozygosity, which reflects genome‐wide inbreeding in this species, and telomere length. In juveniles, individual homozygosity was negatively associated with telomere length in poor seasons. In adults, individual homozygosity was consistently negatively related to telomere length, suggesting the accumulation of inbreeding depression during life. Maternal homozygosity also negatively predicted offspring telomere length. Our results show that somatic inbreeding costs are environmentally dependent at certain life stages but may accumulate throughout life.  相似文献   

13.
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.  相似文献   

14.
Maintenance of genetic variation in the face of strong natural selection is a long‐standing problem in evolutionary biology. One of the most extreme examples of within‐population variation is the polymorphic, genetically determined color pattern of male Trinidad guppies (Poecilia reticulata). Female mating preference for rare or novel patterns has been implicated as a factor in maintaining this variation. The origin of this preference is not understood, although inbreeding avoidance has been proposed as a mechanism. Inbreeding avoidance is advantageous when populations exhibit inbreeding depression and the opportunity for mating between relatives exists. To determine whether these conditions are met in a natural guppy population, we assessed mating and reproductive patterns using polymorphic molecular markers. Females produced more offspring with less‐related males than with more‐related ones. In addition, females were more likely to have mated with less‐related males, but this trend was only marginally significant. Male heterozygosity was positively correlated with mating success and with the number of offspring sired, consistent with strong inbreeding depression for adult male fitness. These results provide substantial insight into mating patterns of a wild guppy population: strong inbreeding depression occurs, and individuals tend to avoid mating with relatives.  相似文献   

15.
As populations become increasingly fragmented, managers are often faced with the dilemma that intentional hybridization might save a population from inbreeding depression but it might also induce outbreeding depression. While empirical evidence for inbreeding depression is vastly greater than that for outbreeding depression, the available data suggest that risks of outbreeding, particularly in the second generation, are on par with the risks of inbreeding. Predicting the relative risks in any particular situation is complicated by variation among taxa, characters being measured, level of divergence between hybridizing populations, mating history, environmental conditions and the potential for inbreeding and outbreeding effects to be occurring simultaneously. Further work on consequences of interpopulation hybridization is sorely needed with particular emphasis on the taxonomic scope, the duration of fitness problems and the joint effects of inbreeding and outbreeding. Meanwhile, managers can minimize the risks of both inbreeding and outbreeding by using intentional hybridization only for populations clearly suffering from inbreeding depression, maximizing the genetic and adaptive similarity between populations, and testing the effects of hybridization for at least two generations whenever possible.  相似文献   

16.
Understanding how the mating system varies with population size in plant populations is critical for understanding their genetic and demographic fates. We examined how the mating system, characterized by outcrossing rate, biparental inbreeding rate, and inbreeding coefficient, and genetic diversity varied with population size in natural populations of the biennial Sabatia angularis. We found a significant, positive relationship between outcrossing and population size. Selfing was as high as 40% in one small population but was only 7% in the largest population. Despite this pattern, observed heterozygosity did not vary with population size, and we suggest that selection against inbred individuals maintains observed heterozygosity in small populations. Consistent with this hypothesis, we found a trend of lower inbreeding coefficients in the maternal than progeny generation in all of the populations, and half of the populations exhibited significant excesses of adult heterozygosity. Moreover, genetic diversity was not related to population size and was similar across all populations examined. Our results suggest that the consequences of increased selfing for population fitness in S. angularis, a species that experiences significant inbreeding depression, will depend on the relative magnitude and consistency of inbreeding depression and the demographic cost of selection for outcrossed progeny in small populations.  相似文献   

17.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

18.
The deleterious effects of inbreeding can be substantial in wild populations and mechanisms to avoid such matings have evolved in many organisms. In situations where social mate choice is restricted, extrapair paternity may be a strategy used by females to avoid inbreeding and increase offspring heterozygosity. In the cooperatively breeding Seychelles warbler, Acrocephalus sechellensis, neither social nor extrapair mate choice was used to avoid inbreeding facultatively, and close inbreeding occurred in approximately 5% of matings. However, a higher frequency of extra-group paternity may be selected for in female subordinates because this did reduce the frequency of mating between close relatives. Inbreeding resulted in reduced individual heterozygosity, which, against expectation, had an almost significant (P = 0.052), positive effect on survival. Conversely, low heterozygosity in the genetic mother was linked to reduced offspring survival, and the magnitude of this intergenerational inbreeding depression effect was environment-dependent. Because we controlled for genetic effects and most environmental effects (through the experimental cross-fostering of nestlings), we conclude that the reduced survival was a result of maternal effects. Our results show that inbreeding can have complicated effects even within a genetic bottlenecked population where the "purging" of recessive alleles is expected to reduce the effects of inbreeding depression.  相似文献   

19.
Androdioecy is an uncommon form of reproduction in which males coexist with hermaphrodites. Androdioecy is thought to be difficult to evolve in species that regularly inbreed. The freshwater shrimp Eulimnadia texana has recently been described as both androdioecious and highly selfing and is thus anomalous. Inbreeding depression is one factor that may maintain males in these populations. Here we examine the extent of "late" inbreeding depression (after sexual maturity) in these clam shrimp using two tests: (1) comparing the fitness of shrimp varying in their levels of individual heterozygosity from two natural populations that differ in overall genetic diversity; and (2) specifically outcrossing and selfing shrimp from these same populations and comparing fitness of the resulting offspring. The effects of inbreeding differed within each population. In the more genetically diverse population, fecundity, size, and mortality were significantly reduced in inbred shrimp. In the less genetically diverse population, none of the fitness measures was significantly lowered in selfed shrimp. Combining estimates of early inbreeding depression from a previous study with current estimates of late inbreeding depression suggests that inbreeding depression is substantial (delta = 0.68) in the more diverse population and somewhat lower (delta = 0.50) in the less diverse population. However, given that males have higher mortality rates than hermaphrodites, neither estimate of inbreeding depression is large enough to account for the maintenance of males in either population by inbreeding depression alone. Thus, the stability of androdioecy in this system is likely only if hermaphrodites are unable to self-fertilize many of their own eggs when not mated to a male or if male mating success is generally high (or at least high when males are rare). Patterns of fitness responses in the two populations were consistent with the hypothesis that inbreeding depression is caused by partially recessive deleterious alleles, although a formal test of this hypothesis still needs to be conducted.  相似文献   

20.
Little is known about how inbreeding alters selection on ecologically relevant traits. Inbreeding could affect selection by changing the distribution of traits and/or fitness, or by changing the causal effect of traits on fitness. Here, I test whether selection on egg size varies with the degree of inbreeding in the seed‐feeding beetle, Stator limbatus. There was strong directional selection favoring large eggs for both inbred and outbred beetles; offspring from smaller eggs had lower survivorship on a resistant host. Inbreeding treatment had no effect on the magnitude of selection on egg size; all selection coefficients were between ~0.078 and 0.096, regardless of treatment. However, inbreeding depression declined with egg size; this is because the difference in fitness between inbreds and outbreds did not change, but average fitness increased, with egg size. A consequence of this is that populations that differ in mean egg size should experience different magnitudes of inbreeding depression (all else being equal) and thus should differ in the magnitude of selection on traits that affect mating, simply as a consequence of variation in egg size. Also, maternal traits (such as egg size) that mediate stressfulness of the environment for offspring can mediate the severity of inbreeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号