首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat selection, including oviposition site choice, is an important driver of community assembly in freshwater systems. Factors determining patch quality are assessed by many colonising organisms and affect colonisation rates, spatial distribution and community structure. For many species, the presence/absence of predators is the most important factor affecting female oviposition decisions. However, individual habitat patches exist in complex landscapes linked by processes of dispersal and colonisation, and spatial distribution of factors such as predators has potential effects beyond individual patches. Perceived patch quality and resulting colonisation rates depend both on risk conditions within a given patch and on spatial context. Here we experimentally confirm the role of one context‐dependent processes, spatial contagion, functioning at the local scale, and provide the first example of another context‐dependent process, habitat compression, functioning at the regional scale. Both processes affect colonisation rates and patterns of spatial distribution in naturally colonised experimental metacommunities.  相似文献   

2.
3.
Spatial contagion occurs when the perceived suitability of neighbouring habitat patches is not independent. As a result, organisms may colonize less-preferred patches near preferred patches and avoid preferred patches near non-preferred patches. Spatial contagion may thus alter colonization dynamics as well as the type and frequency of post-colonization interactions. Studies have only recently documented the phenomenon of spatial contagion and begun to examine its consequences for local recruitment. Here, we test for spatial contagion in the colonization of arboreal egg clutches of red-eyed treefrogs by a frogfly and examine the consequences of contagion for fly recruitment. In laboratory choice experiments, flies oviposit almost exclusively on clutches containing dead frog eggs. In nature, however, flies often colonize intact clutches without dead eggs. Consistent with predictions of contagion-induced oviposition, we found that flies more frequently colonize intact clutches near damaged clutches and rarely colonize intact clutches near other intact clutches. Moreover, contagion appears to benefit flies. Flies survived equally well and suffered less parasitism on clutches lacking dead eggs. This study demonstrates how reward contagion can influence colonization dynamics and suggests that colonization patterns caused by contagion may have important population- and community-level consequences.  相似文献   

4.
The role of habitat selection behaviour in the assembly of natural communities is an increasingly important theme in ecology. At the same time, ecologists and conservation biologists are keenly interested in scale and how processes at scales from local to regional interact to determine species distributions and patterns of biodiversity. How important is habitat selection in generating observed patterns of distribution and diversity at multiple spatial scales? In theory, habitat selection in response to interacting species can generate both positive and negative covariances among species distributions and create the potential to link processes of community assembly across multiple scales. Here I demonstrate that habitat selection by treefrogs in response to the distribution of fish predators functions at both the regional scale among localities and the local scale among patches within localities, implicating habitat selection as a critical link between local communities and the regional dynamics of metacommunities in complex landscapes.  相似文献   

5.
Abstract. 1. Most female Culiseta longiareolata (Diptera: Culicidae) avoid ovipositing in pools that contain the predatory backswimmer Notonecta maculata . Such oviposition habitat selection has been suggested to reflect a trade-off between the risk of predation on larvae and potential density-dependent fitness costs. This putative trade-off was examined. In particular, evidence was sought in support of direct female response to local heterogeneity in habitat quality.
2. Three habitat types were established using artificial outdoor pools: predator pools, and non-predator pools with either low or high densities of Culiseta larvae. During each experimental night, females were offered one of the three possible pair-wise treatment combinations.
3. The majority (≈88%) of females oviposited in low-density pools rather than in the predator- or high-density pools. Furthermore, a substantially higher proportion of females oviposited in predator pools when faced with the high-density alternative, however this was due largely to fewer females ovipositing in high- vs low-density pools.
4. Females of a second mosquito species ( Culex laticinctus ), the larvae of which are at a lower risk of predation, were predicted to exhibit weaker aversion to N. maculata ; this prediction was supported only weakly.
5. Oviposition habitat selection by female C. longiareolata does not appear to involve a behavioural response that is based on individual assessment of local heterogeneity in relative pool quality, at least not at the spatial scale examined here; alternative explanations are discussed.  相似文献   

6.
Classical models of breeding habitat selection rarely deal with the question of information gathering for patch quality assessment. In this paper, we present two models comparing the fitness outcomes of behavioural strategies based on conspecific reproductive success as a cue to assess local environmental quality before selecting a new breeding habitat. The models deal with two phases of the life-cycle of a territorial migratory species: recruitment to a breeding population (model 1) and breeding site fidelity of subsequent breeding attempts (model 2). The first model shows that prospecting breeding patches before recruiting is the best strategy if the environment is predictable and contains a low proportion of good patches, even if it implies losing a breeding opportunity. The second model shows that dispersing after a breeding attempt according to the patch's breeding success rather than the individual's own success is the bests own success is the best strategy if the environment is patchy. These results underline the importance of studying the spatio-temporal variations of factors affecting reproductive success when considering the importance of habitat selection strategies based on conspecifics. Moreover, they allow the understanding of individual behaviour patterns observed in natural populations and their potential consequences at the metapopulation level.  相似文献   

7.
8.
1. Researchers often use the spatial distribution of insect offspring as a measure of adult oviposition preferences, and then make conclusions about the consequences of these preferences for population growth and the relationship between life-history traits (e.g. oviposition preference and offspring performance). However, several processes other than oviposition preference can generate spatial patterns of offspring density (e.g. dispersal limitations, spatially heterogeneous mortality rates). Incorrectly assuming that offspring distributions reflect oviposition preferences may therefore compromise our ability to understand the mechanisms determining population distributions and the relationship between life-history traits. 2. The purpose of this study was to perform an empirical study at the whole-system scale to examine the movement and oviposition behaviours of the eastern tree hole mosquito Ochlerotatus triseriatus (Say) and test the importance of these behaviours in determining population distribution relative to other mechanisms. 3. A mark-release-recapture experiment was performed to distinguish among the following alternative hypotheses that may explain a previously observed aggregated distribution of tree hole mosquito offspring: (H(1)) mosquitoes prefer habitats with particular vegetation characteristics and these preferences determine the distribution of their offspring; (H(2)) mosquitoes distribute their eggs randomly or evenly throughout their environment, but spatial differences in developmental success generate an aggregated pattern of larval density; (H(3)) mosquitoes randomly colonize habitats, but have limited dispersal capability causing them to distribute offspring where founder populations were established; (H(4)) wind or other environmental factors may lead to passive aggregation, or spatial heterogeneity in adult mortality (H(5)), rather than dispersal, generates clumped offspring distributions. 4. Results indicate that the distribution of tree hole mosquito larvae is determined in part by adult habitat selection (H(1)), but do not exclude additional effects from passive aggregation (H(4)), or spatial patterns in adult mortality (H(5)). 5. This research illustrates the importance of studying oviposition behaviour at the population scale to better evaluate its relative importance in determining population distribution and dynamics. Moreover, this study demonstrates the importance of linking behavioural and population dynamics for understanding evolutionary relationships among life-history traits (e.g. preference and offspring performance) and predicting when behaviour will be important in determining population phenomena.  相似文献   

9.
Species distribution models analyse how species use different types of habitats. Their spatial predictions are often used to prioritize areas for conservation. Individuals may, however, prefer settling in habitat types of low quality compared to other available habitats. This ecological trap phenomenon is usually studied in a small number of habitat patches and consequences at the landscape level are largely unknown. It is therefore often unclear whether the spatial pattern of habitat use is aligned with the behavioural decisions made by the individuals during habitat selection or reflects actual variation in the quality of different habitat types. As species distribution models analyse the pattern of occurrence in different habitats, there is a conservation interest in examining what their predictions mean in terms of habitat quality when ecological traps are operating. Previous work in Belgium showed that red-backed shrikes Lanius collurio are more attracted to newly available clear-cut habitat in plantation forests than to the traditionally used farmland habitat. We developed models with shrike distribution data and compared their predictions with spatial variation in shrike reproductive performance used as a proxy for habitat quality. Models accurately predicted shrike distribution and identified the preferred clear-cut patches as the most frequently used habitat, but reproductive performance was lower in clear-cut areas than in farmland. With human-induced rapid environmental changes, organisms may indeed be attracted to low-quality habitats and occupy them at high densities. Consequently, the predictions of statistical models based on occurrence records may not align with variation in significant population parameters for the maintenance of the species. When species expand their range to novel habitats, such models are useful to document the spatial distribution of the organisms, but data on population growth rates are worth collecting before using model predictions to guide the spatial prioritization of conservation actions.  相似文献   

10.
Abstract The wild rabbit (Oryctolagus cuniculus L.) is a significant pest in arid and semi‐arid Australia, where erratic rainfall and irregular pasture growth cause population sizes to oscillate, increasing virtually without limit and then crashing during drought conditions. Vacant habitat patches can be rapidly recolonized from nearby patches in high rainfall years. Using two adjoining rabbit population systems in arid and semi‐arid south‐west Queensland, this study evaluates patterns of population differentiation and proposes a mechanism that may lead to the formation of multiple rabbit population systems in the same locality. Using the combined haplotype frequency data from both a local and regional study, estimates of genetic exchange among local populations are considered in conjunction with ecological data to evaluate the significance of habitat attributes (and their spatial distribution) on the local distribution of rabbit populations, both within and between two adjacent population systems. A tentative model is proposed to explain the observed differences in population structure between the two adjoining systems. Under this model, population structure at specific locations is determined primarily by the availability of areas suitable for prolonged colonization and the quality of the intervening habitat that dictates the degree of isolation between locations and therefore the probability of recolonization following local extinctions. It is also suggested that the current rabbit distribution may be a function of the flexibility of behavioural responses in rabbits to the level of spatial heterogeneity of favourable habitats within the two regions.  相似文献   

11.
Predator community composition can alter habitat quality for prey by changing the strength and direction of consumptive effects. Whether predator community composition also alters prey density via nonconsumptive effects during habitat selection is not well known, but is important for understanding how changes to predator communities will alter prey populations. We tested the hypothesis that predator community composition (presence of caged trout, caged dragonflies, or caged trout + dragonflies) alters colonization of aquatic mesocosms by ovipositing aquatic insects. In a previous experiment in this system, we found a spatial contagion effect, in which insects avoided pools with predators, but only when predator‐free pools were isolated (~5 m away from predator pools). Here, we removed the isolated predator‐free pools, allowing us to test whether insects would make fine‐scale (~1 m) oviposition decisions in the absence of preferred isolated pools. We also estimated consumptive effects by allowing predators to feed on colonists for 5 days following colonization. All insects collected after 21 days were dipterans, dominated by Chironomidae. Total colonization, measured as the number of developing larvae after 21 days, was not affected by either predator presence or composition. Consumption was significant in the trout only treatment, reducing larval insect density by 46 ± 37% (mean ± SE). No other predator treatment significantly reduced prey density, although the proportion of chironomid larvae in protective cases increased in response to direct predation from dragonflies, indicating an antipredatory behavioral response. Taken together, these results reveal that predator community composition altered larval survival and behavior, but colonizing females either did not or could not assess these risks across small scales during oviposition.  相似文献   

12.
The ideal free distribution assumes that animals select habitats that are beneficial to their fitness. When the needs of dependent offspring differ from those of the parent, ideal habitat selection patterns could vary with the presence or absence of offspring. We test whether habitat selection depends on reproductive state due to top‐down or bottom‐up influences on the fitness of woodland caribou (Rangifer tarandus caribou), a threatened, wide‐ranging herbivore. We combined established methods of fitting resource and step selection functions derived from locations of collared animals in Ontario with newer techniques, including identifying calf status from video collar footage and seasonal habitat selection analysis through latent selection difference functions. We found that females with calves avoided predation risk and proximity to roads more strongly than females without calves within their seasonal ranges. At the local scale, females with calves avoided predation more strongly than females without calves. Females with calves increased predation avoidance but not selection for food availability upon calving, whereas females without calves increased selection for food availability across the same season. These behavioral responses suggest that habitat selection by woodland caribou is influenced by reproductive state, such that females with calves at heel use habitat selection to offset the increased vulnerability of their offspring to predation risk.  相似文献   

13.
14.
Modification of habitat structure due to invasive plants can alter the risk landscape for wildlife by, for example, changing the quality or availability of refuge habitat. Whether perceived risk corresponds with actual fitness outcomes, however, remains an important open question. We simultaneously measured how habitat changes due to a common invasive grass (cheatgrass, Bromus tectorum) affected the perceived risk, habitat selection, and apparent survival of a small mammal, enabling us to assess how well perceived risk influenced important behaviors and reflected actual risk. We measured perceived risk by nocturnal rodents using a giving‐up density foraging experiment with paired shrub (safe) and open (risky) foraging trays in cheatgrass and native habitats. We also evaluated microhabitat selection across a cheatgrass gradient as an additional assay of perceived risk and behavioral responses for deer mice (Peromyscus maniculatus) at two spatial scales of habitat availability. Finally, we used mark‐recapture analysis to quantify deer mouse apparent survival across a cheatgrass gradient while accounting for detection probability and other habitat features. In the foraging experiment, shrubs were more important as protective cover in cheatgrass‐dominated habitats, suggesting that cheatgrass increased perceived predation risk. Additionally, deer mice avoided cheatgrass and selected shrubs, and marginally avoided native grass, at two spatial scales. Deer mouse apparent survival varied with a cheatgrass–shrub interaction, corresponding with our foraging experiment results, and providing a rare example of a native plant mediating the effects of an invasive plant on wildlife. By synthesizing the results of three individual lines of evidence (foraging behavior, habitat selection, and apparent survival), we provide a rare example of linkage between behavioral responses of animals indicative of perceived predation risk and actual fitness outcomes. Moreover, our results suggest that exotic grass invasions can influence wildlife populations by altering risk landscapes and survival.  相似文献   

15.
Ecological relationships of animals and their environments are known to vary spatially and temporally across scales. However, common approaches for evaluating resource selection by animals assume that the processes of habitat selection are stationary across space. The assumption that habitat selection is spatially homogeneous may lead to biased inference and ineffective management. We present the first application of geographically weighted logistic regression to habitat selection by a wildlife species. As a case study, we examined nest site selection by greater prairie-chickens at 3 sites with different ecological conditions in Kansas to assess whether the relative importance of habitat features varied across space. We found that 1) nest sites were associated with habitat conditions at multiple spatial scales, 2) habitat associations across spatial scales were correlated, and 3) the influence of habitat conditions on nest site selection was spatially explicit. Post hoc analyses revealed that much of the spatial variability in habitat selection processes was explained at a regional scale. Moreover, habitat features at local spatial scales were more strongly associated with nest site selection in unfragmented grasslands managed intensively for cattle production than they were in fragmented grasslands within a matrix of farmland. Female prairie-chickens exhibited spatial variability in nest site selection at multiple spatial scales, suggesting plasticity in habitat selection behavior. Our results highlight the importance of accounting for spatial heterogeneity when evaluating the ecological effects of habitat components. © 2013 The Wildlife Society.  相似文献   

16.
Aim Habitat selection studies have mainly focused on behavioural choices of individuals or on the habitat‐related regional distribution of a population, with little integration of the two approaches. This is despite the fact that traditional biogeography theory sees the geographical distribution of a species as the collective outcome of the adaptive habitat choices of individuals. Here, we integrate individual habitat choices with regional distribution through a bottom‐up Geographical Information System (GIS)‐based approach, by using a 9‐year data set on a large avian predator, the eagle owl (Bubo bubo L.). We further examine the potential population level and biodiversity consequences of this approach. Location The study was conducted in the Trento Region (central‐eastern Italian Alps) and in six other areas of the nearby Lombardia Region in the central Alps. Methods We used stepwise logistic regression to build a habitat suitability model discriminating between eagle owl territories and an equal number of random locations. The model was applied to the whole Trento region by means of a GIS so as to predict suitable habitat patches. The predicted regional distribution (presence–absence in 10‐km grid quadrats) was then compared with the observed one. Furthermore, we compared estimates of biodiversity in quadrats with and without eagle owls, so as to test whether the presence of this top predator may signal macro‐areas of high biodiversity. Results The logistic habitat suitability model showed that, compared with a random distribution, eagle owls selected low‐elevation breeding sites with high availability of prey‐rich habitats in their surroundings. Breeding performance increased with the availability of prey‐rich habitats, confirming the adaptiveness of the detected habitat choices. We applied the habitat suitability model to the 6200 km2 study region by means of a GIS and found a close fit between the observed and predicted regional distribution. Furthermore, population abundance was positively related to the availability of habitat defined as suitable by the above analyses. Finally, high biodiversity levels were associated with owl presence and with the amount of suitable owl habitat, demonstrating that modelling habitat suitability of a properly chosen indicator species may provide key conservation information at the wider ecosystem level. Main conclusions Our bottom‐up modelling approach may increase the conservation‐value of habitat selection models, by (1) predicting local and regional distribution, (2) estimating regional population size, (3) stimulating further hypothesis testing, (4) forecasting the population effects of future habitat loss and degradation and (5) aiding in the identification and prioritization of high‐biodiversity areas.  相似文献   

17.
We studied the distribution of migratory warblers (genus: Sylvia) in poor and high quality habitat patches at a stopover site in the northern Negev, Israel. The purpose of our study was to test predictions based on the ideal free distribution (IFD) model by using a natural ecosystem which has a high turnover of individuals moving between unfamiliar foraging patches. We trapped birds in two groves of Pistacia atlantica embedded within a coniferous forest. The fruit-density ratio between these groves was 45:1. We compared bird density, body condition and habitat matching (the ratio between bird density and resource density) at the two sites. To analyse the data we integrated two approaches to density-dependent habitat selection: the isodar method and the habitat matching rule. As predicted by the IFD model, we found that habitat suitability decreased with bird density with a high correlation between warbler densities in the two habitat patches. Contrary to IFD predictions, warbler density in the poor patch was higher than expected by the habitat-matching rule. This habitat under-matching, had a cost: in the rich habitat the average energy gain per individual bird was higher than in the poor habitat. Further analysis suggests that the apparent habitat under-matching is not due to interference or differences in warbler competitive abilities. Therefore, we suggest that this migratory bird community is not at equilibrium because the birds possess imperfect knowledge of resource distribution. We propose that this lack of knowledge leads to free, but not ideal distributions of migrant birds in unfamiliar stop over sites.  相似文献   

18.
Haddock Melanogrammus aeglefinus in the North sea increased their distributional range when more abundant, but this density dependent habitat selection (DDHS) explained only a small part of the year‐on‐year variation in distribution patterns. The condition of haddock was examined at 24 sites in the North Sea in August and September 2004 and related to their abundance, to examine if the ideal free distribution theory (IFD), which assumes that organisms select habitats that maximize their rate of food intake, can be used to explain this variation in large scale distribution patterns. At a given temperature, condition (hepato‐somatic index, I H) was better at stations where haddock were most abundant. Therefore, haddock were not distributed perfectly according to the IFD in 2004. The positive correlation between abundance and I H, however, indicated there was some habitat selection by haddock, as in the total absence of habitat selection no correlation between I H and abundance, and no spatial variation in abundance was expected. DDHS may only explain a small part of the yearly variation in the distribution because haddock did not equalize and maximize their fitness at the scale of the North Sea. In addition, stable isotope analysis of muscle samples showed that haddock did not avoid competition for food when at high abundance by feeding at a lower or wider range of trophic levels.  相似文献   

19.
Rethinking patch size and isolation effects: the habitat amount hypothesis   总被引:4,自引:0,他引:4  
I challenge (1) the assumption that habitat patches are natural units of measurement for species richness, and (2) the assumption of distinct effects of habitat patch size and isolation on species richness. I propose a simpler view of the relationship between habitat distribution and species richness, the ‘habitat amount hypothesis’, and I suggest ways of testing it. The habitat amount hypothesis posits that, for habitat patches in a matrix of non‐habitat, the patch size effect and the patch isolation effect are driven mainly by a single underlying process, the sample area effect. The hypothesis predicts that species richness in equal‐sized sample sites should increase with the total amount of habitat in the ‘local landscape’ of the sample site, where the local landscape is the area within an appropriate distance of the sample site. It also predicts that species richness in a sample site is independent of the area of the particular patch in which the sample site is located (its ‘local patch’), except insofar as the area of that patch contributes to the amount of habitat in the local landscape of the sample site. The habitat amount hypothesis replaces two predictor variables, patch size and isolation, with a single predictor variable, habitat amount, when species richness is analysed for equal‐sized sample sites rather than for unequal‐sized habitat patches. Studies to test the hypothesis should ensure that ‘habitat’ is correctly defined, and the spatial extent of the local landscape is appropriate, for the species group under consideration. If supported, the habitat amount hypothesis would mean that to predict the relationship between habitat distribution and species richness: (1) distinguishing between patch‐scale and landscape‐scale habitat effects is unnecessary; (2) distinguishing between patch size effects and patch isolation effects is unnecessary; (3) considering habitat configuration independent of habitat amount is unnecessary; and (4) delineating discrete habitat patches is unnecessary.  相似文献   

20.
1. We studied the relative role of local habitat variables and landscape pattern on vole–plant interactions in a system with grey-sided voles ( Clethrionomys rufocanus (Sund.)) and their favourite winter food plant, bilberry ( Vaccinium myrtillus L.). The study was conducted during a vole peak year (1992–93) in a tundra area in northern Norway.
2. Using Mantel statistics we were able to separate the direct effects of the spatial patterning of habitats and the indirect effects due to spatial aggregations of similar habitats.
3. Results indicate that knowledge about the explicit spatial patterning of patches does not improve our understanding of the system. Instead, two local factors, vegetation height and bilberry biomass, explained more than 50% of the variation in cutting intensity in winter (defined as the proportion of above-ground shoots cut). Increasing vegetation height increased, and increasing bilberry biomass decreased, the cutting intensity.
4. The conclusion that grey-sided voles are able to distribute themselves relative to habitat quality was also partially supported by our estimated over-winter persistence by voles in the various habitats. Vole persistence was uncorrelated with vegetation height, the important predictor of autumn vole density, but tended to correlate with the deviation from the relation between vegetation height and autumn vole density. This conforms to the expectations from the theory of ideal-free habitat distribution.
5. The cue for vole habitat choice, i.e. vegetation height, indicates that either predation or freezing risk is important for voles when selecting over-wintering habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号