首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Behavioral manipulation involving Zatypota (Ichneumonidae: Pimplinae) parasitoids and their spider hosts is usually associated with an increase in web complexity at the location where the parasitoid larva builds its cocoon. A higher number of web threads at this location may improve stability and provide a physical barrier against potential predators. However, we observed that parasitized individuals of Achaearanea tingo attacked by Z. alborhombarta change the three‐dimensional structure of their webs to a very simple and strong structure composed of two cables attached to the surrounding vegetation. This structure holds the curled leaf formerly used by the spider as a shelter. The parasitoid larva remains protected within this shelter after killing the host. The architectural pattern of the cocoon webs of A. tingo indicates that host manipulation is characterized by the repetition of one specific subroutine involved in web construction. Similar alterations have been previously described for cocoon webs constructed by parasitized orb‐weavers, but not for the three‐dimensional webs of theridiids.  相似文献   

2.
3.
Some polysphinctine parasitoid wasps can alter the web building behavior of their host spiders. In this paper, we describe and illustrate a new species Eruga unilabiana sp. nov. and report for the first time, to the best of our knowledge, the interaction between this parasitic wasp and the linyphiid spider Dubiaranea sp. We investigated the wasp's host selection, development, and manipulation of host behavior. We found that most of the parasitized spiders were intermediate‐sized adult females that probably provide sufficient resources for parasitoid larvae and are less vulnerable for parasitoid females than larger host individuals at attack. The cocoon web of Dubiaranea sp. consists of a complex three‐dimensional tangle structure with several non‐stick radial lines that converge at the cocoon. In addition, E. unilabiana individuals construct their cocoons horizontally, which differ from cocoons of the majority of polysphinctine wasps. This study provides important information and discussion to further understand the evolution of parasitoid wasp–spider interactions.  相似文献   

4.
1. Echthrodesis lamorali Masner, 1968 is the only known parasitoid of the eggs of the intertidal rocky shore spider Desis formidabilis O.P. Cambridge 1890 and is endemic to a small area of South Africa. 2. The abundance of spider nests and parasitoid presence were assessed in relation to their in‐ and between‐shore location at multiple sites within the distribution of E. lamorali along the Cape Peninsula (Western Cape, South Africa). 3. Desis formidabilis nests were more abundant in the mid‐shore zone than higher up or lower down the shore. Spider population sizes also differed between collection sites, with higher numbers recorded on the cooler western coast of the peninsula. 4. Evidence of parasitoid activity was recorded in 43.31% of the 127 nests and 13.85% of the 592 egg sacs they contained. 5. Where parasitoids gained entry to a spider egg sac, oviposition took place into all of the eggs present. 6. Incidence of wasp activity was positively correlated with spider nest concentration, not with height up the shore, suggesting that both the host and parasitoid are tolerant of salt‐water inundation. 7. These results should assist managers of the Table Mountain National Park, in which the full distribution of E. lamorali falls, to better understand this component of rocky shore community dynamics.  相似文献   

5.
Species assemblages and their interactions vary through space, generating diversity patterns at different spatial scales. Here, we study the local‐scale spatial variation of a cavity‐nesting bee and wasp community (hosts), their nest associates (parasitoids), and the resulting antagonistic network over a continuous and homogeneous habitat. To obtain bee/wasp nests, we placed trap‐nests at 25 sites over a 32 km2 area. We obtained 1,541 nests (4,954 cells) belonging to 40 host species and containing 27 parasitoid species. The most abundant host species tended to have higher parasitism rate. Community composition dissimilarity was relatively high for both hosts and parasitoids, and the main component of this variability was species turnover, with a very minor contribution of ordered species loss (nestedness). That is, local species richness tended to be similar across the study area and community composition tended to differ between sites. Interestingly, the spatial matching between host and parasitoid composition was low. Host β‐diversity was weakly (positively) but significantly related to geographic distance. On the other hand, parasitoid and host‐parasitoid interaction β‐diversities were not significantly related to geographic distance. Interaction β‐diversity was even higher than host and parasitoid β‐diversity, and mostly due to species turnover. Interaction rewiring between plots and between local webs and the regional metaweb was very low. In sum, species composition was rather idiosyncratic to each site causing a relevant mismatch between hosts and parasitoid composition. However, pairs of host and parasitoid species tended to interact similarly wherever they co‐occurred. Our results additionally show that interaction β‐diversity is better explained by parasitoid than by host β‐diversity. We discuss the importance of identifying the sources of variation to understand the drivers of the observed heterogeneity.  相似文献   

6.
Host manipulation is a strategy used by some parasites to enhance their transmission. These parasites use a combination of neuropharmacological, psychoneuroimmunological, genomic/proteomic, or symbiont-mediated mechanisms to manipulate their hosts. Bodyguard manipulation occurs when parasitized hosts guard parasitoid pupae to protect them from their natural enemies. Bodyguard-manipulated hosts exhibit altered behaviours only after the egression of parasitoid prepupae. Behavioural changes in post-parasitoid egressed hosts could have resulted from their altered physiology. Previous studies have shown that gregarious manipulative parasitoids induce multiple physiological changes in their host, but the physiological changes induced by solitary manipulative parasitoids are unknown. Microplitis pennatulae Ranjith & Rajesh (Hymenoptera: Braconidae) is a larval parasitoid of Psalis pennatula Fabricius (Lepidoptera: Erebidae). After the egression of parasitoid prepupae, P. pennatula stops its routine activities and protects the parasitoid pupa from hyperparasitoids by body thrashes. In this study, we looked into the physiological changes induced by the solitary manipulative parasitoid, M. pennatulae, in its host, P. pennatula, during various stages of parasitization. We considered octopamine concentration and phenoloxidase (PO) activity as biomarkers of physiological change. We also examined whether M. pennatulae has a symbiotic virus and whether the wasp transfers it to the host during parasitization. We found that octopamine concentration was low in the pre-parasitoid egressed host, but it was elevated after the parasitoid egressed. Phenoloxidase activity was lower in the pre- and post-parasitoid egressed host than in the unparasitized host. We also detected symbiotic bracovirus (BV) in the wasp ovaries and isolated the BV virulence gene from the parasitised host. Our study suggests that solitary parasitoids also induce multiple physiological changes to influence the host behaviour to their advantage, as is the case with the gregarious parasitoids.  相似文献   

7.
The overall impact of the parasitoid Sphecophaga vesparum vesparum on invasive Vespula wasps in New Zealand native beech forest was evaluated by assessing the levels of parasitism achieved and the parasitoid’s effect at nest level and population level. The maximum proportion of nests parasitised was 17%, but there was no significant increase with time (r= 0.139; p = 0.115). However, there was an exponential reduction in the number of parasitoids produced per parasitised nest from a peak of 570 (SE = 143) parasitoids per nest in 1990, declining to only 15 (SE = 6) parasitoids per nest in 2004. Even when parasitoid density was high, the parasitoid had no detectable impact on the number of small cells or the total host nest size, but it halved the number of large (reproductive) cells produced. This may have resulted in fewer queens produced per parasitised nest. Wasp nest density was highly variable from year to year, but there was no evidence that the wasp population density at the parasitised site (Pelorus Bridge) had declined relative to the five sites where the parasitoid had not established. We conclude that the parasitoid is unlikely to have had any significant effect on wasp populations hitherto, nor is it likely to impact host populations in the future. We recommend other biological control programs adopt pre-release assessment of per capita impact as a way of identifying agents that are more likely to be successful and hence minimising economic and potential ecological costs of biocontrol.  相似文献   

8.
The structure of populations across landscapes influences the dynamics of their interactions with other species. Understanding the geographic structure of populations can thus shed light on the potential for interacting species to co‐evolve. Host–parasitoid interactions are widespread in nature and also represent a significant force in the evolution of plant–insect interactions. However, there have been few comparisons of population structure between an insect host and its parasitoid. We used microsatellite markers to analyse the population genetic structure of Pleistodontes imperialis sp. 1, a fig‐pollinating wasp of Port Jackson fig (Ficus rubiginosa), and its main parasitoid, Sycoscapter sp. A, in eastern Australia. Besides exploring this host–parasitoid system, our study also constitutes, to our knowledge, the first study of population structure in a nonpollinating fig wasp species. We collected matched samples of pollinators and parasitoids at several sites in two regions separated by up to 2000 km. We found that pollinators occupying the two regions represent distinct populations, but, in contrast, parasitoids formed a single population across the wide geographic range sampled. We observed genetic isolation by distance for each species, but found consistently lower FST and RST values between sites for parasitoids compared with pollinators. Previous studies have indicated that pollinators of monoecious figs can disperse over very long distances, and we provide the first genetic evidence that their parasitoids may disperse as far, if not farther. The contrasting geographic population structures of host and parasitoid highlight the potential for geographic mosaics in this important symbiotic system.  相似文献   

9.
Bracoviruses are used by parasitoid wasps to allow development of their progeny within the body of lepidopteran hosts. In parasitoid wasps, the bracovirus exists as a provirus, integrated in a wasp chromosome. Viral replication occurs in wasp ovaries and leads to formation of particles containing dsDNA circles (segments) that are injected into the host body during wasp oviposition. We identified a large DNA transposon Maverick in a parasitoid wasp bracovirus. Closely related elements are present in parasitoid wasp genomes indicating that the element in CcBV corresponds to the insertion of an endogenous wasp Maverick in CcBV provirus. The presence of the Maverick in a bracovirus genome suggests the possibility of transposon transfers from parasitoids to lepidoptera via bracoviruses.  相似文献   

10.
Studies of thermal level‐related asynchrony in a host–parasitoid relationship are necessary to understand the effects of climate change on new host–parasitoid interactions. In the Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) and its Chalcidoidea parasitoids, phenological synchrony is assumed to be weather‐dependent in a new area of expansion. To evaluate the effects of environmental thermal regimes on the host, a phenology model for different cynipid stages (larvae, pupae, adults, and adult emergence) and a host–parasitoid phenological estimator are developed in three chestnut fields during two successive growth seasons and subsequently validated in areas with chestnut fields at two different altitudes. Comparisons of the timings of the juvenile and adult stages with those of the parasitoid complex demonstrate that the shortest period of occurrence for cynipids within galls has negative effects on the host–parasitoid relationships at higher temperature levels, thereby increasing phenological asynchrony for some parasitoids species. Reducing the development time of pupae and adults decreases the likelihood of success for some parasitoid species at higher temperature levels. We also record the extension of the gall wasp development time (approximately 15 days) at higher altitudes (linked to a lower mean temperature of approximately 1.5 °C). These results highlight how parasitization on the new hosts is dependent on the host phenology and, in the present study, is limited by the short duration of the presence of the host in galls, which could explain the considerable differences in cynipid gall wasp parasitization recorded at different altimeters.  相似文献   

11.
The study conducted in 2005–2010 analyzes the behavioral response of the parasitoids Latibulus argiolus (Rossi) (Hymenoptera, Ichneumonidae) and Elasmus schmitti Ruschka (Hymenoptera, Eulophidae) to the distribution of their host, Polistes wasps (Hymenoptera, Vespidae). Various conditions of the parasitoid-host system and conditions of regulation of the host abundance are discussed. The parasitoid females are more active in wasp colony clusters and tend to infest larger nests. If the parasitoids are abundant, infestation of host colonies starts earlier, sometimes before the worker emergence; therefore, density-dependent behavioral response of parasitoids is caused primarily by the impact of the aggregation component. Thus, the host population density factor appears to be mediated not only by the non-uniform development rates of colonies and their spatial distribution, but also by the seasonal (temporal) aspect of their development. Low density of the host population, at which the parasitoids regulate the wasp abundance, corresponds to a certain phase of the seasonal colony development, namely to the period before the emergence of workers. On the whole, we are dealing with a host-parasitoid system in which the spatial and temporal factors are closely interrelated.  相似文献   

12.
Although most polistine wasp species are found in the Neotropical region, mainly in Brazil, only a very limited number of South American parasitoids or parasites are known to exist. We assessed the frequency of a hymenopterous parasitoid, Pachysomoides sp. (Ichneumonidae, Cryptinae), in the nests of the Brazilian independent‐founding wasp Polistes satan and compared the rates of the parasitization of P. satan by Pachysomoides sp. between the dry (winter) and wet (summer) seasons. Pachysomoides sp. larvae were seen to feed on P. satan pupa and were found in both the upper and lower parts of the host pupal cell (ca. 10 individuals in each host pupal cell). Approximately one‐third of the pupal cells in the P. satan colonies were parasitized in the dry season, whereas there were no parasitized pupal cells in the wet season. Consequently, the rates of parasitization by Pachysomoides sp. were significantly greater during the dry season than during the wet season due to unknown reasons.  相似文献   

13.
Abstract.
  • 1 In nature, interference among Anagrus delicatus (Hymenoptera: Mymaridae) parasitoids reduced the per-capita number of hosts parasitized. Interference increased with parasitoid density.
  • 2 Anagrus delicatus did not avoid parasitizing hosts that had recently been parasitized by conspecific wasps. Evidence indicated that this superparasitism was largely a random process, increasing with the ratio of parasitized to unparasitized hosts.
  • 3 Individual parasitoid efficiency, the number of hosts killed per wasp per unit time, decreased with increasing wasp density. This occurred whether wasps searched the patch together (simultaneously) or one by one (sequentially), and was the result of an increase in time spent superparasitizing hosts at higher wasp density. This is known as indirect mutual interference.
  • 4 Increasing numbers of parasitoids together on the same patch caused a significant decline in the rate and per-capita number of hosts parasitized. However, there was not a correspondent decline in searching efficiency with increasing wasp density (i.e. no direct mutual interference).
  • 5 These forms of parasitoid density dependence should contribute to the stability of the host—parasitoid interaction.
  相似文献   

14.
The wasp parasitoid Pseudopompilus humboldti (Hymenoptera; Pompilidae) in the Negev desert of Israel stores its paralyzed host, the spider Stegodyphus lineatus (Araneae; Eresidae), at the entrance of the spider's nest. The spider is moved by the wasp from the depth of the nest to the entrance in spite of increased exposure to visually-searching predators, such as birds. We examined the hypothesis that this behaviour has evolved to prevent the wasp's host from overheating in this hot desert. Experimental manipulations of the position of the parasitized spiders demonstrated that spiders and wasp larvae could not survive the heat experienced deep in the spider's nest during summer. By contrast, in the cooler nest entrance, spiders and larvae survived, if they were overlooked by predators. This host-storing behaviour is an adaptive trade-off between thermoregulatory requirements and predation risk. This appears to be the first evidence that a parasitoid manipulates the temperature of its host, albeit for its own ultimate gain.  相似文献   

15.
Trophic interactions and environmental conditions determine the structure of food webs and the host expansion of parasitoids into novel insect hosts. In this study, we investigate plant–insect–parasitoid food web interactions, specifically the effect of trophic resources and environmental factors on the presence of the parasitoids expanding their host range after the invasion of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae). We also consider potential candidates for biological control of this non‐native pest. A survey of larval stages of Plusiinae (Lepidoptera: Noctuidae) and their larval parasitoids was conducted in field and vegetable greenhouse crops in 2009 and 2010 in various locations of Essex and Chatham‐Kent counties in Ontario, Canada. Twenty‐one plant–host insect–host parasitoid associations were observed among Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), C. chalcites, and larval parasitoids in three trophic levels of interaction. Chrysodeixis chalcites, an old‐world species that had just arrived in the region, was the most common in our samples. The larval parasitoids Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Cotesia vanessae (Reinhard), Cotesia sp., Microplitis alaskensis (Ashmead), and Meteorus rubens (Nees) (all Hymenoptera: Braconidae) expanded their host range into C. chalcites changing the structure of the food web. Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae) was the most common parasitoid of T. ni that was not found in the invasive species. Plant species, host abundance, and agro‐ecosystem were the most common predictors for the presence of the parasitoids expanding their host range into C. chalcites. Our results indicate that C. sonorensis, C. vanessae, and C. floridanum should be evaluated for their potential use in biological control of C. chalcites and T. ni.  相似文献   

16.
Elasmus schmitti and Baryscapus elasmi have been recorded in southern Ukraine as gregarious parasitoids in the nests of the paper wasps Polistes dominulus and Polistes nimphus. Polistes dominulus nests infested with E. schmitti were less productive than uninfested nests in only one year (2004) of the three years of the present study, when an increase in the host population size occurred. Females of E. schmitti are synovigenic, and they lay their eggs on the skins of P. dominulus last instar larvae, without paralyzing the host. Rather, the parasitoid larvae feed on young host pupae. The pupae of E. schmitti are isolated from the host remnants by a thin fecal partition as in Elasmus polistis and Elasmus japonicus, other paper wasp parasitoids. Baryscapus elasmi is a pupal endoparasitoid of E. schmitti. The females of B. elasmi emerge without mature eggs in their ovaries and mate with males. They penetrate the paper wasp’s cells with their ovipositor and feed on the extracted hemolymph exudate. Pupation of B. elasmi occurs inside or outside the pupa of the host, E. schmitti. If inside, then the cranial end of the pupa and the adult emergence hole of B. elasmi are situated in the caudal ends of the pupae of their hosts. Comparative notes and illustrations on the morphology of adults are provided, and DNA sequences of three genes (nuclear 28S D2 rDNA, mitochondrial cytochrome oxidase subunit I, and mitochondrial cytochrome b) were obtained for both parasitoid species. The similarity of the 28S D2 sequences of E. schmitti and E. polistis relative to other available Elasmus sequences suggests a single origin of parasitism on paper wasps in this genus.  相似文献   

17.
Summary Anelosimus eximius is a social spider species of South America. Many individuals share the same web and participate in prey capture, taking some ten seconds to locate the prey in the silky structures. In the laboratory, we analyzed the movements of each spider which took part in the pursuit, and showed that they were both synchronized and rhythmical. Spiders alternate simultaneous periods of immobility (involving 100% of the attacking individuals) and activity (involving at least 70% of the spiders).The results are discussed with reference to the model developed by Goss and Deneubourg (1988) suggesting that autocatalysis may be the motor of certain synchronized and rhythmical activities in social arthropods.  相似文献   

18.
Chemical signals that can be associated with the presence of a host insect often work as arrestants in close range host location by parasitoids, leading to longer searching times on patches where such signals are present. Our current view of parasitoid host location is that by prolonging the search times in patches, randomly searching parasitoids enhance their chance of detecting host insects. However, prolonged search times are not necessarily the only modification in parasitoid behaviour. In this study, we examine the exploitation of host-fruit marking pheromone of rose-hip flies, Rhagoletis basiolaOsten-Sacken (Diptera: Tephritidae) by the specialized egg-larval parasitoid Halticoptera rosae Burks (Hymenoptera: Pteromalidae). We provide evidence that the instantaneous probability that a host egg will be located by a searching parasitoid wasp differs markedly between pheromone-marked and unmarked fruits. The arresting response to the marking pheromone, i.e., the prolonged time a wasp is willing to search on marked fruits, can only account for a small fraction of the difference in successful host location on marked and unmarked fruits. We further demonstrate that the time wasps require to locate the host egg is independent of the size of the rose-hip harbouring the fly egg, and thus is independent of the area the wasp potentially has to search. A comparison of our findings with results of different search algorithms for parasitoid wasps suggests that wasps use the fly's pheromone marking trail as a guide way to the fly's oviposition site and thus the host egg.  相似文献   

19.
Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.  相似文献   

20.
Although ovipositing insects may predominantly use resources that lead to high offspring quality, exceptions to this rule have considerably aided understanding of oviposition decisions. We report the frequency of host species use by a solitary facultative hyperparasitoid, Brachymeria subrugosa Blanchard (Hymenoptera: Chalcididae). In our samples, the wasp attacks the large pupae of the moth Gonioterma indecora Zeller (Lepidoptera: Elachistidae), as well as the considerably smaller, and rarer, pupae of two of its other parasitoids. Consistent with conditional sex allocation models, the wasp produced mainly female offspring on the largest (moth) host, an unbiased sex ratio on the middle‐sized (parasitoid) host, and only males on the smallest (parasitoid) host. Adult offspring size was correlated with the size of the host attacked. These features strongly suggest that the two smaller, primary parasitoid, hosts produce lower‐quality offspring. Despite being more common, the proportion of hosts from which parasitoids emerged was lowest (14%) on the largest host species, and highest on the rarer middle‐sized (34%) and smallest (30%) hosts. This suggests that costs or constraints on attacking high‐quality primary hosts may be a selective force favouring the evolution of hyperparasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号