首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The envelope proteins of mouse mammary tumor virus (MMTV) are synthesized from a subgenomic 24S mRNA as a 75,000-dalton glycosylated precursor polyprotein which is eventually processed to the mature glycoproteins gp52 and gp36. In vivo synthesis of this env precursor in the presence of the core glycosylation inhibitor tunicamycin yielded a precursor of approximately 61,000 daltons (P61env). However, a 67,000-dalton protein (P67env) was obtained from cell-free translation with the MMTV 24S mRNA as the template. To determine whether the portion of the protein cleaved from P67env to give P61env was removed from the NH2-terminal end of P67env and as such would represent a leader sequence, the NH2-terminal amino acid sequence of the terminal peptide gp52 was determined. Glutamic acid, and not methionine, was found to be the amino-terminal residue of gp52, indicating that the cleaved portion was derived from the NH2-terminal end of P67env. The NH2-terminal amino acid sequences of gp52's from endogenous and exogenous C3H MMTVs were determined though 46 residues and found to be identical. However, amino acid composition and type-specific gp52 radioimmunoassays from MMTVs grown in heterologous cells indicated primary structure differences between gp52's of the two viruses. The nucleic acid sequence of cloned MMTV DNA fragments (J. Majors and H. E. Varmus, personal communication) in conjunction with the NH2-terminal sequence of gp52 allowed localization of the env gene in the MMTV genome. Nucleotides coding for the NH2 terminus of gp52 begin approximately 0.8 kilobase to the 3' side of the single EcoRI cleavage site. Localization of the env gene at that point agrees with the proposed gene order -gag-pol-env- and also allows sufficient coding potential for the glycoprotein precursor without extending into the long terminal repeat.  相似文献   

2.
We have sequenced a cDNA for sex hormone-binding globulin (SHBG) isolated from a phage lambda gt11 human liver cDNA library. The library was screened with a radiolabeled rat androgen-binding protein (ABP) cDNA, and the abundance of SHBG cDNAs was 1 in 750,000 plaques examined. The largest human SHBG cDNA (1194 base-pairs) contained a reading frame for 381 amino acids. This comprised 8 amino acids of a signal peptide followed by 373 residues starting with the known NH2-terminal sequence of human SHBG, and ending with a termination codon. The predicted polypeptide Mr of SHBG is 40,509, and sites of attachment of one O-linked (residue 7) and two N-linked oligosaccharide (residues 351 and 367) chains were identified. Purified SHBG was photoaffinity-labeled with delta 6-[3H]testosterone and cleaved with trypsin. The labeled tryptic fragment was isolated by reverse-phase HPLC, and its NH2-terminal sequence was determined. The results suggest that a portion of the steroid-binding domain of SHBG is located between residue 296 and the 35 predominantly hydrophilic residues at the C-terminus of the protein.  相似文献   

3.
Native Glu-human plasminogen (Mr approximately 92,000 with NH2-terminal glutamic acid) is able to combine directly with streptokinase in an equivalent molar ratio, to yield a stoichiometric complex. The plasminogen moiety in the complex then undergoes streptokinase-induced conformational changes. As a result of such, an active center develops in the plasminogen moiety of the complex. This proteolytically active complex then activates plasminogen in the complex to plasmin and at least two peptide bonds are cleaved in the process. The data presented in this paper reveal that initially an internal peptide bond of plasminogen (in the complex) is cleaved to yield a two-chain, disulfide-linked plasmin molecule. The heavy chain (Mr approximately 67,000 with NH2-terminal glutamic acid) of this plasmin molecule has an identical NH2-terminal amico acid as the native plasminogen. The light chain (Mr approximately 25,000 with NH2-terminal valine) of plasmin is known to be derived from the COOH-terminal portion of the parent plasminogen molecule. A second peptide is then cleaved from the NH2-terminal end of the heavy chain of plasmin producing a proteolytically modified heavy chain (Mr =60.000 with NH2-terminal lysine). This cleavage of the NH2-terminal peptide from the heavy chain of plasmin is shown to be mediated by the dissociated free plasmin present in the activation mixture. Plasmin in the streptokinase-plasmin complex is unable to cleave this NH2-terminal peptide. This same NH2-terminal peptide can also be cleaved from native Glu-plasminogen or from the Glu-plasminogen-streptokinase complex by free plasmin and not by a complex of streptokinase-plasmin. From these studies we conclude (a) in the streptokinase-plasminogen complex, the NH2-terminal peptide need not be released prior to the cleavage of the essential Arg-Val peptide bond which leads to the formation of a two chain plasmin molecule and (b) that this peptide is cleaved from the native plasminogen or from the heavy chain of the initially formed plasmin in the streptokinase complex by free plasmin and not by the plasmin associated with streptokinase. In agreement with this, plasmin associated with streptokinase was unable to cleave the NH2-terminal peptide from the isolated native heavy chain possessing glutamic acid as the NH2-terminal amino acid; whereas free plasmin readily cleaved this peptide from the same isolated Glu-heavy chain.  相似文献   

4.
Genome analysis of MG virus, a human papovavirus.   总被引:2,自引:2,他引:0       下载免费PDF全文
The single late 26S mRNA of Semliki Forest virus (SFV) directs the synthesis of the four viral structural proteins, C, E3, E2, and E1, and the recently described nonstructural protein, 6K. We report here partial NH2-terminal amino acid sequences of the SFV polypeptides E3 and 6K and of p62, the precursor to E3 and E2. In addition, were have determined a partial NH2-terminal sequence of the Sindbis virus homolog of 6K, the 4.2K protein. p62 and E3 of SFV have identical NH2-terminal amino acid sequences. Comparison of the partial NH2-terminal sequences of 6K of SFV and 4.2K of Sindbis virus with the deduced amino acid sequence encoded by the 26S mRNA of each virus reveals that the genes for these peptides are located in each case between those for E2 and E1. The order of the genes on the 26S mRNA of the alphaviruses is therefore 5'-C-E3-E2-6K-E1-3'. We discuss two mechanisms by which the nascent viral glycoproteins may be inserted into the membrane of the endoplasmic reticulum.  相似文献   

5.
In previous studies, we have identified possible biosynthetic precursors of rat insulin-like growth factor II (rIGF-II) using specific immunoprecipitation, approximately 22-kDa prepro-rIGF-II and 20-kDa pro-rIGF-II. We now provide chemical evidence that amino acid sequences corresponding to mature 7484-dalton rIGF-II are present at the NH2 terminus of the putative approximately 20-kDa pro-rIGF-II. BRL-3A cultures have been labeled individually with several radioactive amino acid precursors, the cells have been lysed, and the lysates have been immunoprecipitated with antiserum to rIGF-II. Following electrophoresis of the immunoprecipitated proteins, labeled approximately 20-kDa pro-rIGF-II was eluted from the gels and subjected to automated radiosequence analysis. Discrete peaks of radioactivity were observed in 12 of the first 30 cycles of Edman degradation. The deduced partial amino acid sequence was identical at each position with that of mature 7484-dalton rIGF-II. These results directly demonstrate that mature rIGF-II sequences are present in the approximately 20-kDa protein, as required if the approximately 20-kDa protein were pro-rIGF-II. In addition, they localize the 7484-dalton rIGF-II to the NH2 terminus of the precursor molecule. A second NH2-terminal sequence differing only in the absence of the NH2-terminal residue, alanine, also was present in an approximately equal amount. Similar NH2-terminal heterogeneity has been reported for 7484-dalton rIGF-II and most likely reflects ambiguity in the cleavage sites for the signal peptidase.  相似文献   

6.
Previous studies have indicated that at least part of the selection of proteins for degradation takes place at a binding site on ubiquitin-protein ligase, to which the protein substrate is bound prior to ligation to ubiquitin. It was also shown that proteins with free NH2-terminal alpha-NH2 groups bind better to this site than proteins with blocked NH2 termini (Hershko, A., Heller, H., Eytan, E., and Reiss, Y. (1986) J. Biol. Chem. 261, 11992-11999). In the present study, we used simple derivatives of amino acids, such as methyl esters, hydroxamates, or dipeptides, to examine the question of whether the protein binding site of the ligase is able to distinguish between different NH2-terminal residues of proteins. Based on specific patterns of inhibition of the binding to ligase by these derivatives, three types of protein substrates could be distinguished. Type I substrates are proteins that have a basic NH2-terminal residue (such as ribonuclease and lysozyme); these are specifically inhibited by derivatives of the 3 basic amino acids (His, Arg, and Lys) with respect to degradation, ligation to ubiquitin, and binding to ligase. Type II substrates (such as beta-lactoglobulin or pepsinogen, that have a Leu residue at the NH2 terminus) are not affected by the above compounds, but are specifically inhibited by derivatives of bulky hydrophobic amino acids (Leu, Trp, Phe, and Tyr). In these cases, the amino acid derivatives apparently act as specific inhibitors of the binding of the NH2-terminal residue of proteins, as indicated by the following observations: (a) derivatives in which the alpha-NH2 group is blocked were inactive and (b) in dipeptides, the inhibitory amino acid residue had to be at the NH2-terminal position. An additional class (Type III) of substrates comprises proteins that have neither basic nor bulky hydrophobic NH2-terminal amino acid residues; the binding of these proteins is not inhibited by homologous amino acid derivatives that have NH2-terminal residues similar to that of the protein. It is concluded that Type I and Type II proteins bind to distinct and separate subsites of the ligase, specific for basic or bulky hydrophobic NH2-terminal residues, respectively. On the other hand, Type III proteins apparently predominantly interact with the ligase at regions of the protein molecule other than the NH2-terminal residue.  相似文献   

7.
Highly purified hepatic microsomal epoxide hydrase, which had been purified in the presence of proteolytic enzyme inhibitors, was subjected to carboxypeptidase Y digestion, automated Edman degradation, and carbohydrate analysis. Carboxypeptidase Y digestion resulted in the near stoichiometric release of leucine, the COOH-terminal amino acid. Automated Edman degradation permitted the identification of the first 20 amino acid residues of epoxide hydrase. Methionine was identified as the NH2-terminal residue. The NH2-terminal region of epoxide hydrase is similar in hydrophobicity to the NH2-terminal precursor segments of several secretory proteins and the NH2-terminal regions of several microsomal cytochromes P-450. Carbohydrate analyses of the enzyme revealed the presence of 0.5 to 1.0 mol of mannose/50,000 g of protein. These results provide evidence for the presence of a single polypeptide chain in our purified enzyme preparations and suggest that there may be only one enzymic form of epoxide hydrase in microsomes from phenobarbital-treated rats.  相似文献   

8.
A new purification procedure that permits large-scale purification of dopamine beta-hydroxylase from bovine adrenal medulla was developed. Whole adrenal medullas were extracted with 0.1% Triton X-100, and the enzyme was purified by precipitation with polyethylene glycol, chromatography on DEAE-cellulose, and adsorption to concanavalin A linked to agarose. The yield of protein and the specific activity were high compared with previously published methods. The enzyme appeared essentially homogenous by the criteria of polyacrylamide gel electrophoresis in the presence or absence of dodecylsulfate, and sedimentation velocity analysis. The purified protein was subjected to amino acid and carbohydrate analyses, and the results were compared with previously published data. We found about 3 mol of copper per mol of protein (tetramer of 290000 daltons). No free sulfhydryl groups could be found. Analysis for NH2-terminal amino acids with [14C]dansyl chloride revealed 2 residues of alanine and 2 residues of serine per tetramer. We found the NH2-terminal amino acid of chromogranin A to be leucine. The results of our analysis for amino acid composition and NH2-terminal amino acids do not support the suggestion that dopamine beta-hydroxylase and chromogranin A contain identical peptide chains.  相似文献   

9.
Sex hormone binding globulin (SHBG), a dimeric plasma glycoprotein with a molecular mass of about 90 kDa, was purified from healthy individuals by a rapid two-step procedure using immunoaffinity chromatography on a monoclonal antibody column followed by fast protein liquid chromatography. The individual SHBGs so isolated were pure by several criteria, and the overall yield was usually about 20% according to radioimmunoassay. The isolated SHBGs were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate which showed the SHBG isolated from most subjects to be composed of subunits of two different sizes (52 and 49 kDa) present in the approximate ratio of 10:1 (double-banded SHBG). The SHBG of the remaining subjects contained a third subunit with an estimated molecular mass of about 56 kDa (triple-banded SHBG). In this kind of SHBG, the two heavy subunits were present in approximately equal amounts, suggesting that individuals with triple-banded SHBG are heterozygotes for a genetic variant of the protein. The various subunits of SHBG were separated and individually subjected to amino-terminal amino acid sequence analysis. They all had a heterogeneous amino terminus, but since the sequences obtained seemed to be identical, the structural differences between the subunits would appear to reside in other parts of the molecules. On isoelectric focusing, both kinds of SHBG were resolved into about 10 components, all with steroid-binding activity. Differences were noted between double-banded and triple-banded SHBG, the latter having a greater abundance of acidic species. Screening of 121 healthy individuals by a procedure involving small-scale isolation of SHBG on an antibody column followed by Western blotting revealed that 20% of the subjects had triple-banded SHBG. This new variant of SHBG was found in persons of both sexes and in children as well as in adults.  相似文献   

10.
Four proteins active in blood coagulation have long been known to require vitamin K for their proper biosynthesis: factors II, VII, IX, and X. This paper describes the purification of a hitherto unrecognized vitamin K-dependent glycoprotein from bovine plasma. The biosynthesis of this protein is interfered with by the vitamin K antagonist Dicoumarol. The molecular weight of the protein is approximately 56,000 and, like factor X, it has two polypeptide chains. The light chain binds Ca2+. Its NH2-terminal amino acid sequence is homologous to the NH2-terminal sequences of the other vitamin K-dependent proteins and it contains vitamin K-dependent gamma-carboxyglutamic acid residues. The biological function of this protein is unknown.  相似文献   

11.
A yeast gene for a methionine aminopeptidase, one of the central enzymes in protein synthesis, was cloned and sequenced. The DNA sequence encodes a precursor protein containing 387 amino acid residues. The mature protein, whose NH2-terminal sequence was confirmed by Edman degradation, consists of 377 amino acids. The function of the 10-residue sequence at the NH2 terminus, containing 1 serine and 6 threonine residues, remains to be established. In contrast to the structure of the prokaryotic enzyme, the yeast methionine aminopeptidase consists of two functional domains: a unique NH2-terminal domain containing two motifs resembling zinc fingers, which may allow the protein to interact with ribosomes, and a catalytic COOH-terminal domain resembling other prokaryotic methionine aminopeptidases. Furthermore, unlike the case for the prokaryotic gene, the deletion of the yeast MAP1 gene is not lethal, suggesting for the first time that alternative NH2-terminal processing pathway(s) exist for cleaving methionine from nascent polypeptide chains in eukaryotic cells.  相似文献   

12.
NADH-cytochrome b5 reductases purified from bovine erythrocytes and from bovine brain and liver microsomes solubilized with lysosomal protease were subjected to structural analysis by using HPLC mapping, amino acid analysis of the resulting peptides, and NH2-terminal sequence analysis of apoproteins. HPLC maps of the tryptic peptides derived from these enzymes were very similar to each other, and amino acid analysis of the HPLC-separated peptides indicated that the structures of these enzymes are identical except for the NH2-terminal region. The NH2-terminal sequence of the brain enzyme determined by automated Edman degradation was as follows: NH2-Phe-Gln-Arg-Ser-Thr-Pro-Ala-Ile-Thr-Leu-Glu-Asn-Pro-Asp- Ile-Lys-Tyr-Pro-Leu-Arg-Leu-Ile-Asp-Lys-Glu-Val-Ile- This sequence is identical to that of liver enzyme except that the liver enzyme started at the 3rd Arg or 4th Ser. The NH2-terminal amino acid residue of the soluble erythrocyte enzyme was not detected by automated Edman degradation. The sequence analysis of a tryptic peptide from the erythrocyte enzyme indicated that Leu is present before the NH2-terminal Phe of the brain enzyme. The recently reported sequence of the apparently identical protein (Ozols et al. (1985) J. Biol. Chem. 260, 11953-11961) differs in two amino acid assignments from our sequence.  相似文献   

13.
We have isolated four insulin-like growth factor binding proteins (IGFBPs) from adult human serum by insulin-like growth factor (IGF) I affinity chromatography and high performance liquid chromatography. A 36-kDa binding protein (BP), not digestible with N-glycanase, is increased in patients with extrapancreatic tumor hypoglycemia and during IGF I administration in healthy adults. Its 38 NH2-terminal amino acids are identical to those of an IGFBP sequence derived from a human cDNA that cross-hybridizes with the rat IGFBP-2 cDNA. With probes encoding a NH2-terminal, COOH-terminal, and a middle region of this protein we have obtained three cDNA clones from a Hep G2 cDNA library; one encodes human IGFBP-2, and the other two presumably represent unspliced heteronuclear and alternatively spliced mRNA, respectively. A 28-30-kDa IGFBP represents a novel BP species in human serum. Its 30 NH2-terminal amino acids are not homologous to IGFBP-1, -2, or -3. It is not digestible with N-glycanase and does not bind 125I-IGF I. The NH2-terminal sequences of a 42/45- and a 31-kDa IGFBP are identical to that of human IGFBP-3. The 42/45-kDa proteins are two glycosylation variants of BP-3. The 31-kDa protein presumably is a degradation product of BP-3 that lacks the COOH terminus. It is likely that the different IGFBPs modulate auto-/paracrine and endocrine effects of IGFs on growth and metabolism in a different and specific manner.  相似文献   

14.
The horseshoe crab clotting factor, factor C, present in the hemocytes is a serine-protease zymogen activated with lipopolysaccharide. It is a two-chain glycoprotein (Mr = 123,000) composed of a heavy chain (Mr = 80,000) and a light chain (Mr = 43,000) [T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521]. In our continued study of this zymogen, we have now also found a single-chain form of factor C (Mr = 123,000) in the hemocyte lysate. The heavy chain had the NH2-terminal sequence of Ser-Gly-Val-Asp-, consistent with that of the single-chain factor C, indicating that the heavy chain is derived from the NH2-terminal part of the molecule. The light chain had an NH2-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with lipopolysaccharide resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72 amino acid residues) and B chains derived from the light chain were formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar in sequence to a family of repeats in human beta 2-glycoprotein I, complement factors B, protein H, C4b-binding protein, and coagulation factor XIII b subunit. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence-Asp-Ala-Cys-Ser-Gly-Asp-Ser-Gly-Gly-Pro-. These results indicate that horseshoe crab factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine protease by hydrolysis of a specific Phe-Ile peptide bond.  相似文献   

15.
ATP-regulated (K(ATP)) channels are formed by an inward rectifier pore-forming subunit (Kir) and a sulfonylurea (glibenclamide)-binding protein, a member of the ATP binding cassette family (sulfonylurea receptor (SUR) or cystic fibrosis transmembrane conductance regulator). The latter is required to confer glibenclamide sensitivity to K(ATP) channels. In the mammalian kidney ROMK1-3 are components of K(ATP) channels that mediate K(+) secretion into urine. ROMK1 and ROMK3 splice variants share the core polypeptide of ROMK2 but also have distinct NH(2)-terminal extensions of 19 and 26 amino acids, respectively. The SUR2B is also expressed in rat kidney tubules and may combine with Kir.1 to form renal K(ATP) channels. Our previous studies showed that co-expression of ROMK2, but not ROMK1 or ROMK3, with rat SUR2B in oocytes generated glibenclamide-sensitive K(+) currents. These data suggest that the NH(2)-terminal extensions in both ROMK1 and ROMK3 block ROMK-SUR2B interaction. Seven amino acids in the NH(2)-terminal extensions of ROMK1 and ROMK3 are identical (amino acids 13-19 in ROMK1 and 20-26 in ROMK3) and may determine ROMK-SUR2B interaction. We constructed a series of hemagglutinin-tagged ROMK1 NH(2)-terminal deletion and substitution mutants and examined glibenclamide-sensitive K(+) currents in oocytes when co-expressed with SUR2B. These studies identified an amino acid triplet "IRA" within the conserved segment in the NH(2) terminus of ROMK1 and ROMK3 that blocks the ability of SUR2B to confer glibenclamide sensitivity to the expressed K(+) currents. The position of this triplet in the ROMK1 NH(2)-terminal extension is also important for the ROMK-SUR2B interactions. In vitro co-translation and immunoprecipitation studies with hemagglutinin-tagged ROMK mutants and SUR2B indicted that direct interaction between these two proteins is required for glibenclamide sensitivity of induced K(+) currents in oocytes. These results suggest that the IRA triplet in the NH(2)-terminal extensions of both ROMK1 and ROMK3 plays a key role in subunit assembly of the renal secretary K(ATP) channel.  相似文献   

16.
Preparations of mannose-binding protein isolated from rat liver contain two distinct but homologous polypeptides. The complete primary structures of both of these polypeptides have been determined by sequencing of peptides derived from the proteins, isolation and sequencing of cDNAs for both proteins, and partial characterization of the gene for one of the proteins. Each polypeptide consists of three regions: (a) an NH2-terminal segment of 18-19 amino acids which is rich in cysteine and appears to be involved in the formation of interchain disulfide bonds which stabilize dimeric and trimeric forms of the protein, (b) a collagen-like domain consisting of 18-20 repeats of the sequence Gly-X-Y and containing 4-hydroxyproline residues in several of the Y positions, and (c) a COOH-terminal carbohydrate-binding domain of 148-150 amino acids. The sequences of the COOH-terminal domains are highly homologous to the sequence of the COOH-terminal carbohydrate-recognition portion of the chicken liver receptor for N-acetylglucosamine-terminated glycoproteins and the rat liver asialoglycoprotein receptor. Each protein is preceded by a cleaved, NH2-terminal signal sequence, consistent with the finding that this protein is found in serum as well as in the liver. The entire structure of the mannose-binding proteins is homologous to dog pulmonary surfactant apoprotein.  相似文献   

17.
The two protomers of the purified regulatory subunit from porcine cAMP-dependent protein kinase I have been shown to be covalently cross-linked by interchain disulfide bonding. Limited proteolysis which cleaves the polypeptide chain into two fragments demonstrated that the disulfide bonding was associated exclusively with the fragment that corresponded to the NH2-terminal region of the polypeptide chain. This NH2-terminal fragment accounted for approximately 15 to 20% of the molecule. The disulfide bonding was further characterized by alkylating the cysteines in the native regulatory subunit. Following oxidation with performic acid, each regulatory subunit contained 7 cysteic acid residues; however, under denaturing conditions, but without prior reduction, only 5 cysteine residues could be alkylated with iodoacetic acid. Following limited proteolysis, all five of these cysteines were associated with the larger COOH-terminal, cAMP binding domain. In contrast, if the denatured subunit was first reduced prior to alkylation, all 7 cysteine residues were alkylated. The 2 cysteines that were only accessible to alkylation after prior reduction were both associated with the NH2-terminal end of the polypeptide chain ultimately with a 5,400 peptide. Alkylation of the isolated, denatured NH2-terminal domain with iodoacetic acid resulted in no covalent modification unless the fragment was first reduced with dithiothreitol. The NH2-terminal and COOH-terminal domains were shown to be linked by a region of the polypeptide chain that is rich in both proline and arginine. It is the arginine-rich site that is readily prone to proteolytic cleavage.  相似文献   

18.
Transcobalamin II (TCII) has been purified from Cohn fraction III of human plasma by batchwise binding to and then elution from carboxymethyl-Sephadex, affinity chromatography using photo-labile aminopropyl cobalamin coupled to activated Sephacryl S-200, and finally chromatography through carboxymethyl cellulose. The yield was approximately 80%. The addition of protease inhibitors in all steps of the purification procedure and extensive washing of the carboxymethyl-Sephadex prior to eluting the TCII minimized degradation of the protein and the final preparation of holo-TCII contained 1 mol of cobalamin/mol of protein. A single polypeptide of 43,000 daltons was obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NH2-terminal 19 amino acids have been determined for human TCII. 12 of the amino acids are homologous with rabbit TCII and six are homologous with human R-binder, but there is no homology with human intrinsic factor.  相似文献   

19.
The NH2-terminal amino acid sequence of the 100 kilodalton subunit of porcine gastric H+,K+-ATPase has been determined to be YKAENYELYQVELGPGP. Although the NH2-terminal region of this protein is not similar to the same region of the lamb kidney Na+,K+-ATPase catalytic subunit, other regions of these ATPase proteins appear to be homologous. Both monoclonal and polyclonal antibodies raised to lamb kidney Na+,K+-ATPase and its alpha, but not beta, subunit cross-react with the 100 kilodalton protein of H+,K+-ATPase.  相似文献   

20.
Pre-alpha-inhibitor is a serum protein consisting of two polypeptides named bikunin and heavy chain 3 (H3). Both polypeptides are synthesized in hepatocytes and while passing through the Golgi complex, bikunin, which carries a chondroitin sulfate chain, becomes covalently linked to the COOH-terminal amino acid residue of H3 via its polysaccharide. Immediately prior to this reaction, a COOH-terminal propeptide of 33 kDa is cleaved off from the heavy chain. Using COS-1 cells transfected with rat H3, we found that in the absence of bikunin, the cleaved propeptide remained bound to the heavy chain and that H3 lacking the propeptide sequence did not become linked to coexpressed bikunin. Sequencing of H3 secreted from COS-1 cells showed that part of the molecules had a 12-amino acid residue long NH2-terminal propeptide. Cleavage of this propeptide, which occurred in the endoplasmic reticulum, was found to require basic amino acid residues at P1, P2, and P6 suggesting that it is mediated by a Golgi enzyme in transit. Deletion of the NH2-terminal propeptide or blocking of its release affected neither transport nor coupling of the heavy chain to bikunin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号