首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We analyzed restriction fragment length polymorphism (RFLP) of 16S-23S rDNA intergenic spacer region (ISR) of Aeromonas species. A total of 69 isolates belonging to 18 DNA hybridization groups (HG; equivalent of genomic species) were used in this study. ISRs were amplified by PCR and the products were digested with four restriction endonucleases: Hin6I, Csp6I, TaqI, and TasI. The RFLP patterns obtained after digesting by particular enzymes revealed ISR polymorphism of isolates allocated to individual genomic species. The combined Hin6I, Csp6I, TaqI, and TasI restriction profiles were examined by Dice coefficient (SD) and unweighted pair group method of clustering (UPGMA). The isolates were allocated into 15 groups, three strains were unclustered. The strains belonging to the following genomic species: A. hydrophila, A. bestiarum, A. salmonicida, A. caviae, A. media, A. schubertii, A. allosaccharophila, A. popoffii, and A. culicicola formed distinct clusters. Strains belonging to HG 6, HG 7, HG 11, and HG 16 revealed similar combined RFLP patterns and constituted one group. Similarly, the strains of A. jandaei (HG 9) and the type strain of A. trota were allocated into one cluster. Two isolates of HG 14 formed distinct cluster. We noticed a genetic diversity among A. veronii isolates, the strains were clustered in two groups. Our study showed that combined ISR-RFLP analysis may be used for identification of some species of Aeromonas.  相似文献   

2.
AIMS: To evaluate the relationship between the genomospecies, phenotypic profile and pathogenicity for carp of 37 motile Aeromonas strains. METHODS AND RESULTS: Aeromonas strains were identified to genomospecies level by the 16S rDNA restriction fragment length polymorphism (RFLP) method and characterized phenotypically by the API 20E and API Zym systems and by conventional tube or plate methods. 16S rDNA RFLP analysis showed that the strains belonged to five species, Aeromonas bestiarum (5), Aerom. salmonicida (13), Aerom. veronii (11), Aerom. sobria (6) and Aerom. encheleia (2). Most strains of Aerom. bestiarum (80%) and Aerom. salmonicida (85%) could be separated by growth at 4 and 42 degrees C, autoagglutination after boiling, reaction for lipase (C14) and naphthol-AS-BI-phosphohydrolase. All strains of Aerom. veronii corresponded to Aerom. veronii biotype sobria and could be separated from Aerom. sobria by citrate utilization, growth at 37 and 42 degrees C, amygdalin and cellobiose fermentation. All strains of Aerom. bestiarum and most strains of Aerom. salmonicida (76.9%) and Aerom. veronii (63.6%) were pathogenic for carp. CONCLUSIONS: The biochemical identification of carp Aeromonas strains is not entirely clear. Some association between Aeromonas species, phenotypic profile and specific disease signs was observed. SIGNIFICANCE AND IMPACT OF THE STUDY: The results will be useful for ichthyopathology laboratories in the diagnosis of motile aeromonad septicaemia in carp.  相似文献   

3.
Two hundred and five isolates of atypical Aeromonas salmonicida, recovered from a wide range of hosts and countries were characterized by polymerase chain reaction (PCR) targeting four genes. The chosen genes were those encoding the extracellular A-layer protein (AP), the serine protease (Sprot), the glycerophospholipid:cholestrol acetyltransferase protein (GCAT), and the 16S rRNA (16S rDNA). All the atypical A. salmonicida isolates could be assigned to 4 PCR groups. Group 1 comprised 45 strains which tested positive for PCR amplification, using the 16S rDNA, GCAT2, Sprot2, and AP primer-sets. Group 2 comprised 88 strains with produced PCR products using the 16S rDNA, GCAT2 and AP primer-sets. Group 3 comprised 21 strains which produced PCR products using 16S rDNA, GCAT2 and Sprot2 primer-sets, and group 4 comprised 51 strains which produced PCR products using the 16S rDNA and GCAT2 primer-sets only. A. salmonicida subsp. salmonicida isolates tested, belonged to group 1. The PCR primer-sets separated A. salmonicida from other reference strains of Aeromonas species and related bacteria with the exception of Aeromonas hydrophila. The results indicated that PCR typing is a useful framework for characterization of the increasing number of isolations of atypical A. salmonicida.  相似文献   

4.
We investigated the length polymorphism of the intergenic spacers lying between tRNA genes of Aeromonas spp. A total of 69 strains representing all known genomic species of Aeromonas were used in the study. tDNA-PCR patterns were examined by Dice coefficient (S(D)) and unweighted pair group method of clustering (UPGMA). The strains were allocated into 15 groups at a similarity level of 70%. The strains belonging to seven genomic species: A. hydrophila (HG 1), A. caviae (HG 4), A. sobria (HG 7), A. veronii (HG 8/10), A. encheleia (HG 16), A. popoffii (HG 17), and A. culicicola (HG 18) formed distinct clusters. Our study revealed a genetic heterogeneity of the following species: A. bestiarum, A. salmonicida, A. media, A. eucrenophila, A. jandaei, A. schubertii, and A. allosaccharophila.  相似文献   

5.
Three strains of thermophilic-acidophilic bacteria isolated previously from different hot springs in Japan were characterized by molecular genetic methods. The strategy taken involved PCR amplification, sequencing and restriction pattern analysis of 16S rDNA, 16S-23S rDNA spacer polymorphism analysis and genomic DNA-DNA hybridization. A phylogenetic analysis based on 16S rDNA sequences showed that the new thermoacidophilic isolates formed a genetically coherent group at the species level and fell into a major cluster together with members of the genera Alicyclobacillus and Sulfobacillus with A. acidocaldarius and A. acidoterrestris as their closest relatives. The levels of binary sequence similarity between the isolates and the two Alicyclobacillus species were 97.6 to 97.9%, values considered low enough to warrant placement of the isolates in a distinct species of the genus Alicyclobacillus. The 16S rDNA restriction pattern analysis, but not 16S-23S rDNA spacer polymorphism analysis, was useful for differentiating the isolates from the established Alicyclobacillus species. DNA-DNA hybridization assays demonstrated a distinct phylogenetic position of our isolates as a genospecies within the genus Alicyclobacillus. On the basis of these results, the thermoacidophilic isolates should be classified into a new species of Alicyclobacillus. The results of this study suggest that this new genospecies of Alicyclobacillus is widely distributed in hot springs in Japan.  相似文献   

6.
The intergenic spacer region (ISR) between the 16S and 23S rRNA genes was tested as a tool for differentiating lactococci commonly isolated in a dairy environment. 17 reference strains, representing 11 different species belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Enterococcus and Leuconostoc, and 127 wild streptococcal strains isolated during the whole fermentation process of "Fior di Latte" cheese were analyzed. After 16S-23S rDNA ISR amplification by PCR, species or genus-specific patterns were obtained for most of the reference strains tested. Moreover, results obtained after nucleotide analysis show that the 16S-23S rDNA ISR sequences vary greatly, in size and sequence, among Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis as well as other streptococci from dairy environments. Because of the high degree of inter-specific polymorphism observed, 16S-23S rDNA ISR can be considered a good potential target for selecting species-specific molecular assays, such as PCR primer or probes, for a rapid and extremely reliable differentiation of dairy lactococcal isolates.  相似文献   

7.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

8.
Restriction endonuclease fingerprinting (REF) analysis was used to examine total cellular DNA prepared from 56 independent field isolates of the fish pathogen, Aeromonas salmonicida. DNA was digested singly with the restriction enzymes EcoRI and HindIII, and the resulting fragments separated by polyacrylamide gel electrophoresis and visualized by silver staining. The REF patterns of typical isolates of A. salmonicida subsp. salmonicida were distinct from those of A. hydrophila, A. salmonicida subsp. achromogenes, A. salmonicida subsp. masoucida, and atypical isolates of A. salmonicida subsp. salmonicida. Differences between strains of typical A. salmonicida subsp. salmonicida could also be distinguished. Canadian isolates examined could be assigned to 1 of 12 different groups (REF groups), with the majority of the isolates belonging to REF groups 1 and 5. REF group 1 strains were isolated from British Columbia and New Brunswick while REF group 5 isolates were found in Ontario. None of the European strains examined had REF patterns identical to those of Canadian isolates. Based on REF analysis, there was little genetic heterogeneity detected among 23 isolates from two short-term studies of naturally occurring infections. Several different REF groups were seen among A. salmonicida collected over a 10-year period from coho salmon from the Credit River. Consistent with earlier biochemical and hybridization studies, the REF data suggest that A. salmonicida is a clonal pathogen. REF analysis can, however, permit the identification of subgroups, which may be useful in epidemiological studies.  相似文献   

9.
We analyzed polymorphism of the PCR-amplified 16S-23S rDNA spacer of Aeromonas species. A total of 69 isolates representing 18 DNA hybridization groups were used in this study. The analysis of PCR products of 16S-23S rDNA spacers revealed patterns consisting of two to eight DNA fragments. The fragment sizes ranged from 730 to 1050 bp. DNA patterns revealed a considerable genetic diversity between species and within a species. When a procedure to eliminate heteroduplex formation was performed, the number of bands was reduced to 2-5. Nevertheless the homoduplex ISR (intergenic spacer region) patterns obtained were not useful for species distinguishing.  相似文献   

10.
A facultative anaerobic bacterium was isolated from a mediator-less microbial fuel cell fed with artificial wastewater containing acetate and designated as PA3. The isolate was identified as a strain of Aeromonas hydrophila based on its biochemical, physiological and morphological characteristics as well as 16S rDNA sequence analysis and DNA-DNA hybridization. PA3 used glucose, glycerol, pyruvate and hydrogen to reduce Fe(III), nitrate and sulfate. Cyclic voltammetry showed that PA3 was electrochemically active and was the culture collection strain A. hydrophila KCTC 2358. Electricity was generated from a fuel cell-type reactor, the anode compartment of which was inoculated with cell suspensions of the isolate or A. hydrophila KCTC 2358. The electrochemical activities are novel characteristics of A. hydrophila.  相似文献   

11.
Fourteen strains of Gram-negative, anaerobic, fluoroquinolone-resistant, non-sporulating rods were isolated from various infections in cats and dogs, as well as from wounds in humans after cat- or dog-bites. These strains were characterized by sequencing of the 16S-23S rDNA internal transcribed spacer (ITS) regions, 16S rDNA, DNA-DNA hybridization, phylogenetic analysis, and phenotypic tests. The results indicate that the novel strains belong to a distinct species, closely related to Fusobacterium nucleatum. The species Fusobacterium canifelinum sp. nov. is proposed, with strain ATCC BAA 689T as the type strain.  相似文献   

12.
AIMS: To study the phenotypic characteristics of Aeromonas spp. from environmental and clinical samples in Spain and to cluster these strains by numerical taxonomy. METHODS AND RESULTS: A collection of 202 Aeromonas strains isolated from bivalve molluscs, water and clinical samples was tested for 64 phenotypic properties; 91% of these isolates were identified at species level. Aeromonas caviae was predominant in bivalve molluscs and Aerom. bestiarum in freshwater samples. Cluster analyses revealed eight different phena: three containing more than one DNA-DNA hybridization group but including strains that belong to the same phenospecies complex (Aerom. hydrophila, Aerom. sobria and Aerom. caviae), Aerom. encheleia, Aerom. trota and three containing unidentified Aeromonas strains isolated from bivalve molluscs. CONCLUSIONS:Aeromonas spp. are widely distributed in environmental and clinical sources. A selection of 16 of the phenotypical tests chosen allowed the identification of most isolates (91%), although some strains remain unidentified, mainly isolates from bivalve molluscs, suggesting the presence of new Aeromonas species. Numerical taxonomy was not in total concordance with the identification of the studied strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Numerical taxonomy of Aeromonas strains isolated from different sources revealed the presence of potentially pathogenic Aeromonas spp., especially in bivalve molluscs, and phena with unidentified strains that suggest new Aeromonas species.  相似文献   

13.
Polynucleotide sequences among 24 motile and 11 non-motile aeromonads were studied by analysis of deoxyribonucleic acid - deoxyribonucleic acid (DNA-DNA) duplexes with endonuclease S1. In addition, DNA base composition (mole % guanine and cytosine (G + C)) and relative genome sizes were determined for selected strains. Large variations in genome size were found and % GC ranged from 57.1 to 62.9%. On the basis of the strains examined, the Genus Aeromonas consists of two genotypically legitimate groups: a diverse group of motile aeromonads, and the genetically more homogeneous non-motile aeromonads, comprising the species Aeromonas salmonicida. Internal homology groups could not be demonstrated within the motile aeromonads, and significant divergence in related sequences was indicated. This diverse motile group forms the single species Aeromonas hydrophila.  相似文献   

14.
DNA:DNA reassociation analysis of Aeromonas salmonicida   总被引:6,自引:0,他引:6  
DNA from 26 Aeromonas salmonicida strains, namely 11 'typical' and 15 so-called 'atypical' strains, was used to assess the taxonomic relatedness within the species. The genomes were characterized by determination of DNA base composition, DNA:DNA reassociation, calculation of sequence divergence following reassociation, and by genome size estimations. By comparison with DNA obtained from controls and the Aeromonas hydrophila group, A. salmonicida strains were determined to be correctly placed with respect to genus and species. A. salmonicida subspecies salmonicida (the 'typical' group) was an extremely homogeneous taxon. The 'atypical' strains were more diverse, but distinct biotypes were recognizable. The first biotype included several geographically diverse isolates from goldfish. The second recognizable biotype included strains isolated from European carp. Other 'atypical' isolates could not be grouped but showed enough internal homology to be retained within the species. The A. salmonicida subspecies achromogenes and masoucida were found to be closely related to the motile aeromonads. It is considered that the present classification of A. salmonicida is unsuitable and should be restructured to include A. salmonicida subspecies salmonicida, subspecies achromogenes (to include the present subspecies masoucida), and the reintroduced subspecies nova.  相似文献   

15.
RAPD analysis of Aeromonas salmonicida and Aeromonas hydrophila   总被引:2,自引:0,他引:2  
The randomly amplified polymorphic DNA (RAPD) technique was used to analyse the genetic differentiation of 13 strains of Aeromonas salmonicida subsp. salmonicida , and seven strains of Aer. hydrophila. Reproducible profiles of genomic DNA fingerprints were generated by polymerase chain reaction (PCR) using a single randomly designed primer. The RAPD profiles of all the non-motile aeromonads, Aer. salmonicida subsp. salmonicida were identical. However, profiles of the motile aeromonads, Aer. hydrophila differed between isolates. These findings reveal genomic homogeneity in Aer. salmonicida subsp. salmonicida and genetic variety in Aer. hydrophila strains.  相似文献   

16.
Genetic diversity, genetic relationship, identification and population structure of 120 Aeromonas strains (including Aer. hydrophila, Aer. bestiarum, Aer. salmonicida and Aer. popoffii) isolated from various sources were studied by analysis of 15 genetic loci by multilocus enzyme electrophoresis (MLEE). All 15 loci were polymorphic, with an average of 9.4 alleles per locus and a mean genetic diversity (H) of 0.64. Cluster analysis defined at H < or = 0.7 differentiated most of the taxa analysed except the Aer. popoffii and Aer. bestiarum strains, which showed a close genetic relationship. Allelic frequencies of five loci (EST1, HEX, IDH, LDH1 and MDH) identified 94% of the strains. The index of association (IA) for the total sample was 2.38 and IA values calculated for the different populations were always significantly different from zero. These results suggest that the population structure of this Aeromonas sample is strongly clonal, confirm the taxonomic status of the analysed species in population genetics terms, and show the usefulness of MLEE for identifying Aeromonas species.  相似文献   

17.
The complete 16S-23S rDNA internal transcribed spacer (ITS) was sequenced in 35 reference strains of the Mycobacterium avium complex. Twelve distinct ITS sequences were obtained, each of which defined a "sequevar"; a sequevar consists of the strain or strains which have a particular sequence. ITS sequences were identified which corresponded to M. avium (16 strains, four ITS sequevars) and Mycobacterium intracellulare (12 strains, one ITS sequevars). The other seven M. avium complex strains had ITS sequences which varied greatly from those of M. avium and M. intracellulare and from each other. The 16S-23S rDNA ITS was much more variable than 16S rDNA, which is widely used for genus and species identification. Phylogenetic trees based on the ITS were compatible with those based on 16S rDNA but were more detailed and had longer branches. The results of ITS sequencing were consistent with the results of hybridization with M. avium and M. intracellulare probes (Gen-Probe) for 30 of 31 strains tested. Serologic testing correlated poorly with ITS sequencing. Strains with the same sequence were different serovars, and those of the same serovar had different sequences. Sequencing of the 16S-23S rDNA ITS should be useful for species and strain differentiation for a wide variety of bacteria and should be applicable to studies of epidemiology, diagnosis, virulence, and taxonomy.  相似文献   

18.
This study explores the potential of the amplified ribosomal DNA restriction analysis (ARDRA) for intra- and interspecies identification of the genus Mycobacteria. A set of primers was used to amplify part of the 16S and 23S rDNA as well as the 16S-23S rDNA spacer from 121 isolates belonging to 13 different mycobacterial species. Restriction analysis was carried out with five different restriction enzymes, namely CfoI, HaeIII, RsaI, MspI and TaqI. Restriction digestion of the PCR product using CfoI enabled differentiation between 9 of the 13 mycobacterial species, whereas the remaining four enzymes differentiated between 7 of these 13 species. None of the five enzymes distinguished between different isolates of Mycobacterium tuberculosis or between species within the M. tuberculosis complex i.e., M. tuberculosis, M. bovis, M. bovis BCG and M. africanum. Although ARDRA analysis of the 16S-23S rDNA does not seem to have a potential for intraspecies differentiation, it has proven to be a rapid and technically relatively simple method to recognise strains belonging to the M. tuberculosis complex as well as to identify mycobacterial species outside this complex.  相似文献   

19.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

20.
Lactic acid bacteria (LAB) associated with gaseous spoilage of modified-atmosphere-packaged, raw, tomato-marinated broiler meat strips were identified on the basis of a restriction fragment length polymorphism (RFLP) (ribotyping) database containing DNAs coding for 16S and 23S rRNAs (rDNAs). A mixed LAB population dominated by a Leuconostoc species resembling Leuconostoc gelidum caused the spoilage of the product. Lactobacillus sakei, Lactobacillus curvatus, and a gram-positive rod phenotypically similar to heterofermentative Lactobacillus species were the other main organisms detected. An increase in pH together with the extreme bulging of packages suggested a rare LAB spoilage type called "protein swell." This spoilage is characterized by excessive production of gas due to amino acid decarboxylation, and the rise in pH is attributed to the subsequent deamination of amino acids. Protein swell has not previously been associated with any kind of meat product. A polyphasic approach, including classical phenotyping, whole-cell protein electrophoresis, 16 and 23S rDNA RFLP, 16S rDNA sequence analysis, and DNA-DNA reassociation analysis, was used for the identification of the dominant Leuconostoc species. In addition to the RFLP analysis, phenotyping, whole-cell protein analysis, and 16S rDNA sequence homology indicated that L. gelidum was most similar to the spoilage-associated species. The two spoilage strains studied possessed 98.8 and 99.0% 16S rDNA sequence homology with the L. gelidum type strain. DNA-DNA reassociation, however, clearly distinguished the two species. The same strains showed only 22 and 34% hybridization with the L. gelidum type strain. These results warrant a separate species status, and we propose the name Leuconostoc gasicomitatum sp. nov. for this spoilage-associated Leuconostoc species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号