首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A demographic study was conducted in the northern Australian Astrebla grasslands to determine the importance of habitat type in influencing invasion patterns of Acacia nilotica, an exotic leguminous tree from Africa and Asia. One of the repeated patterns observed for A. nilotica is that denser populations are often associated with riparian habitats. Data available on this species do not enable us to determine which of a number of processes has lead to the formation of this pattern. Several explanations were tested for patterns in tree abundance: (i) that more seedlings emerge in wetter habitats; (ii) that mortality is lower in wetter habitats; (iii) that growth rates are faster in wetter habitats; and (iv) that plants are more vigorous (as indicated by leaf cover, flowering intensity and predation rates) over longer periods in wetter habitats. The study was stratified across three habitat types, perennial and ephemeral riparian and non‐riparian, which are characteristic of Astrebla grasslands and differentiated by the availability of water. In addition to testing for habitat‐linked differentiation in demography, data were also used to test whether seedling emergence, mortality, growth and vigour varied between sites with cattle versus sheep. The data collected indicated that seedling emergence, determined primarily by livestock dispersal, was likely to be the dominant influence on patterns of A. nilotica invasion. Mortality and growth rates were similar in ephemeral riparian and non‐riparian habitats, whereas perennial riparian habitats had more rapid growth rates, which may increase the rate of invasion in these areas. Plant vigour was also greater over longer periods in perennial riparian habitats with greater leaf cover, longer flowering season and fewer insect borer holes. Livestock species were found to have little influence on the demography of A. nilotica plants in this study. Very low growth rates and high mortality in A. nilotica populations are likely to lead to net decline in ephemeral riparian and non‐riparian habitats in the long term. The importance of episodic recruitment in the maintenance of A. nilotica populations is discussed.  相似文献   

2.
An impact assessment study was undertaken to determine seed predation rates by two bruchid beetles, Bruchidus sahlbergi Schilsky and Caryedon serratus Olivier, on the invasive shrub Acacia nilotica (L.) Willd. ex Del. The former bruchid was released as a biological control agent for A. nilotica, whereas the latter is naturalized in Australia. We attempted to determine the dynamics and magnitude of bruchid predation, following a number of differing reports of their effectiveness. To investigate the importance of seed availability on bruchid numbers, we compared seed death in high- and low-seed-density habitats, both before and after pods had dropped from tree branches. Bruchid predation was initially low (<2%) in pods on tree branches in both habitats, but increased abruptly to 12% in riparian and 32% in nonriparian exclosures by the third collection date. Bruchid numbers then crashed to below 2% in both habitats, when pods dropped to the ground. B. sahlbergi predation later increased markedly (up to 65%) again at high-pod-density sites. No further increase in predation took place beyond this level. Seed predation by C. serratus was found to be minimal (<5% of seeds infested) throughout the monitoring period. We suggest that seed predation by the bruchids, prior to pod drop and removal by cattle, is insufficient to cause major impacts on A. nilotica populations. Bruchid seed damage is likely to be significant only in situations with low cattle numbers, where cattle cannot remove the majority of fallen seed pods or where cattle are excluded. Exclusion of cattle from some areas within A. nilotica-invaded landscapes to potentially increase bruchid effectiveness is proposed. The demographic impact of optimal A. nilotica seed losses is discussed.  相似文献   

3.
1. Changes to the natural flow regime of a river caused by flow regulation may affect waterborne seed dispersal (hydrochory), and this may be an important mechanism by which regulation affects riverine plant communities. We assessed the effect of altered timing of seasonal flow peaks on hydrochory and considered the potential implications for plant recruitment. 2. We sampled hydrochory within five lowland rivers of temperate Australia, three of which are regulated by large dams. These dams are operated to store winter and spring rains and release water in summer and autumn for agriculture. At three sites on each river, hydrochory was sampled monthly for 12 months using passive drift nets. The contents of the drift samples were determined using the seedling‐emergence method. 3. More than 33 000 seedlings from 142 taxa germinated from the samples. In general, more seeds and taxa were observed in the drift at higher flows. By altering the period of peak flows from winter–spring to summer–autumn, flow regulation similarly affected the period of peak seed dispersal. The effect of regulation on seed dispersal varied between taxa depending on their timing of seed release and whether or not they maintain a persistent soil seed bank. 4. Hydrochory in rivers is a product of flow regime and the life history of plants. By altering natural flow regimes and thus hydrochorous dispersal patterns, flow regulation is likely to affect adversely the recruitment of native plant species with dispersal phenologies adapted to natural flow regimes (such as many riparian trees and shrubs) and encourage the spread of non‐native (exotic) species. 5. Changes to hydrochorous dispersal patterns are an important mechanism by which altered flow timing affects riverine plant communities. Natural seasonal flow peaks (in this case spring) are likely to be important for the recruitment of many native riparian woody taxa.  相似文献   

4.
Aim The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ‘unidirectional dispersal hypothesis’ and is the genetic equivalent of the more generally known ‘drift paradox’. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location The Meuse River (Belgium) and rivers world‐wide. Methods First, we used amplified fragment length polymorphism markers to compare patterns of within‐ and between‐population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta‐analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta‐analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity.  相似文献   

5.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

6.
Intra and interspecific variation in frugivore behaviour can have important consequences for seed dispersal outcomes. However, most information comes from among‐species comparisons, and within‐species variation is relatively poorly understood. We examined how large intraspecific differences in the behaviour of a native disperser, blackbuck antelope Antilope cervicapra, influence dispersal of a woody invasive, Prosopis juliflora, in a grassland ecosystem. Blackbuck disperse P. juliflora seeds through their dung. In lekking blackbuck populations, males defend clustered or dispersed mating territories. Territorial male movement is restricted, and within their territories males defecate on dung‐piles. In contrast, mixed‐sex herds range over large areas and do not create dung‐piles. We expected territorial males to shape seed dispersal patterns, and seed deposition and seedling recruitment to be spatially localized. Territorial males had a disproportionately large influence on seed dispersal. Adult males removed twice as much fruit as females, and seed arrival was disproportionately high on territories. Also, because lek‐territories are clustered, seed arrival was spatially highly concentrated. Seedling recruitment was also substantially higher on territories compared with random sites, indicating that the local concentration of seeds created by territorial males continued into high local recruitment of seedlings. Territorial male behaviour may, thus, result in a distinct spatial pattern of invasion of grasslands by the woody P. juliflora. An ex situ experiment showed no beneficial effect of dung and a negative effect of light on seed germination. We conclude that large intraspecific behavioural differences within frugivore populations can result in significant variation in their effectiveness as seed dispersers. Mating strategies in a disperser could shape seed dispersal, seedling recruitment and potentially plant distribution patterns. These mating strategies may aid in the spread of invasives, such as P. juliflora, which could, in turn, negatively influence the behaviour and ecology of native dispersers.  相似文献   

7.
Although seed dispersal is considered to be a key process determining the spatial structure and spread of non-native plant populations, few studies have explicitly addressed the link between dispersal vector behaviour, seed distribution and seedling recruitment to gain insight into the process of exotic species invasion within a fragmented landscape context. The present study analyses the relationship between avian frugivory and spatial patterns of seed deposition and seedling recruitment for an expanding population of the invasive Prunus serotina in a hedgerow network landscape in Flanders, Belgium. We quantified fruit production, observed frugivores, and determined the spatial distribution of bird droppings and P. serotina seedlings. A relatively diverse assemblage of frugivores visited P. serotina seed trees, with Columba palumbus and Turdus merula being by far the most important dispersers. Landscape structure strongly affected dispersal vector behaviour and the spatial distribution of perching birds, droppings and seedlings. Frugivorous birds non-randomly dispersed seeds to perching sites and an association between perching birds, seed deposition and seedling recruitment was found. Results indicate that landscape structure contributes to non-random seed deposition of P. serotina by common local frugivores. Cutting the larger seed trees is proposed as the most feasible measure to slow down the invasion rate.  相似文献   

8.
Endozoochory and fire are crucial ecological factors determining germination success and recruitment in many plant species. Fire is a well‐known germination trigger while endozoochory may allow seed dispersal along with an increase in germination. Their interaction has rarely been addressed, however, even though both factors are pervasive in human‐transformed ecosystems like most Neotropical Dry Forests (NDF). For three common Mesoamerican tree species (Acacia pennatula, Enterolobium cyclocarpum, and Guazuma ulmifolia), we used feeding trials to assess the preference of cattle, which are their main seed dispersal agent. We also experimentally tested the interaction between gut passage and fire as triggers of germination. The fruits of the three species were eaten by cattle, but the small seeds of G. ulmifolia were ingested 10‐fold more than those of the other species. While gut passage did not have any effect on germination, heat‐shocks above 90 °C increased the number of germinating seeds by 15 percent. These results suggest that cattle may be a key dispersal vector in NDF, but that fire may be an important germination trigger. Physical dormancy in these species may have been selected for by extinct megaherbivores because it was a key trait ensuring seed survival after gut passage. However, in light of the recent expansion of cattle‐ranching and fire occurrence in NDF, it has become a useful exaptation facilitating the colonization of disturbed areas.  相似文献   

9.
Abstract. Shrub encroachment, i.e. the increase in woody plant cover, is a major concern for livestock farming in southern Kalahari savannas. We developed a grid‐based computer model simulating the population dynamics of Grewia flava, a common, fleshy‐fruited encroaching shrub. In the absence of large herbivores, seeds of Grewia are largely deposited in the sub‐canopy of Acacia erioloba. Cattle negate this dispersal limitation by browsing on the foliage of Grewia and dispersing seeds into the grassland matrix. In this study we first show that model predictions of Grewia cover dynamics are realistic by comparing model output with shrub cover estimates obtained from a time series of aerial photographs. Subsequently, we apply a realistic range of intensity of cattle‐induced seed dispersal combined with potential precipitation and fire scenarios. Based on the simulation results we suggest that cattle may facilitate shrub encroachment of Grewia. The results show that the severity of shrub encroachment is governed by the intensity of seed dispersal. For a high seed dispersal intensity without fire (equivalent to a high stocking rate) the model predicts 56% shrub cover and 85% cell cover after 100 yr. With fire both recruitment and shrub cover are reduced, which may, under moderate intensities, prevent shrub encroachment. Climate change scenarios with two‐fold higher frequencies of drought and wet years intensified shrub encroachment rates, although long‐term mean of precipitation remained constant. As a management recommendation we suggest that shrub encroachment on rangelands may be counteracted by frequent fires and controlling cattle movements to areas with a high proportion of fruiting Grewia shrubs.  相似文献   

10.
1. Plant physical ecosystem engineers can influence vegetation population and community dynamics by modifying, maintaining or creating habitats. They may also have the potential to act upon biotic processes, such as seed dispersal. 2. Examples exist of reduction in seed dispersal distances in vegetated compared to unvegetated terrestrial environments, and concentration of seed deposits associated with plant patches. Such effects in aquatic environments have been little studied, but the engineering effect of plant patches on patterns of flow velocity and sediment deposition in streams suggests that they may play a similar role. 3. In this study, we assess the potential of an emergent aquatic species, Sparganium erectum, to play a role in physically modifying river habitats and trapping seeds by examining patterns of seed deposition and substrate type in 47 river reaches across England and southern Scotland, U.K. 4. Areas of the river channel within or adjacent to S. erectum patches harboured more plant seeds and more species than unvegetated areas and had finer, sandier substrates with higher organic matter, total nitrogen and total phosphorus content. Most seed species were competitive, indicating that they were well suited to colonise the competitive environment of an S. erectum patch, and could potentially further stabilise accumulated sediments and contribute to landform development. 5. We demonstrate that S. erectum patches influence both the physical environment and the retention of seeds, in consistent patterns across the channel bed, for a range of lowland rivers that vary in stream power and geology and which can be expected to vary in levels of supply of fine sediment and seeds. 6. Our findings support the hypothesis that the fundamental influence of a riverine ecosystem‐engineering species on slowing fluid flow links the habitat creation process of sediment sorting and retention to seed trapping. We suggest the process is applicable to a wide range of aquatic and riparian vegetation. We also suggest that the mono‐specific and competitive growth, which is typical of these engineering species, will strongly influence the recruitment of trapped seeds.  相似文献   

11.
In recent years an increasing number of streams have been restored to improve conditions for natural fen and meadow vegetation to develop in the associated riparian areas, but with modest success. Here we apply a controlled and replicated approach to investigate the role of flooding, sediment deposition, and seed addition for species recruitment in riparian areas with different types of standing vegetation. We expect that species recruitment is restricted in areas where the vegetation is dominated by fast‐growing productive species because competition for light will make the establishment of new species difficult, especially for low‐productive target species. We found that the naturally recruited species were few, mostly common, and widely distributed species. A majority of the recruited species, including target species added as seeds into the sediments, emerged in all areas independent of the characteristics of the standing vegetation. We observed significant temporal changes in compositional patterns throughout the experimental period (May to October). These changes were especially pronounced in areas with fen/fen‐meadow vegetation and were closely associated with the emergence and growth of species originating from the deposited sediments (e.g. Equisetum pratense, Poa trivialis, Urtica dioica), including the seeded target species (Lychnis flos‐cuculi and Lotus pedunculatus) and with a decline in fen‐associated mosses and small sedges. Compositional changes were also associated with shifts toward more productive species in areas previously dominated by low and intermediately productive species. We infer that flooding and sediment deposition play a limited role for recruitment of target species in riparian areas and that sediment deposition may entail a risk of losing diversity in riparian areas.  相似文献   

12.
This study analyzes dispersal effectiveness of understory birds that feed on fruits of the tropical tree Dendropanax arboreus in a fragmented forest at Los Tuxtlas, east-central Mexico. The quantity and quality components of effectiveness were estimated in three different sites: continuous forest, 40 ha forest fragment, and 3 ha forest fragment. The quantity component was estimated through relative abundance, frequency of visits to fruits, and number of seeds in fecal samples. The quality component was estimated by analyzing germination of seeds defecated by birds and seed deposition patterns by birds. Seed deposition patterns were estimated by comparing the number of seeds found in fecal samples and the number of reproductive adults of D. arboreus in each site. Results showed that dispersal effectiveness of birds varied among sites. Turdus grayi was the most effective disperser in continuous forest, while Hylocichla mustelina was the most effective one in 40 and 3 ha forest fragments. These birds are contributing to the gene flow between fragments and continuous forest because they are able to use forest or riparian remnants, living fences, and isolated trees.  相似文献   

13.
Small vertebrates were inventoried within three habitat types in a degraded dry forest region of Panama. Animals were classified as frugivorous if they were observed foraging on fruit or if fecal samples contained mostly or exclusively seeds. Overall, we found that eight bat species and 21 bird species consumed fruit. The greatest numbers of birds were observed within live fences and bird species richness was greatest within riparian forests. Bat assemblages were not significantly different between habitats. The implication is that ecosystem services such as seed dispersal may still be functional in this landscape.  相似文献   

14.
Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit‐eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish–fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre‐dating most modern bird–fruit and mammal–fruit interactions, and contributing to long‐distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large‐bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems.  相似文献   

15.
The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.  相似文献   

16.
Recognition that tree recruitment depends on the balance between seed arrival and seedling survival has led to a surge of interest in seed‐dispersal limitation and seedling‐establishment limitation in primary forests. Virtually unaddressed are comparisons of this balance in mature and early successional habitats. We assessed seed rain and seedling recruitment dynamics of tree species in primary forest, secondary forest and pasture released from grazing in a tropical agricultural landscape. Seed to seedling ratios (seed effectiveness; Φi) for 43 species in southern Mexico determined differences in the extent to which seeds produced seedlings by habitat, life history, and dispersal mode. Reproductive potential as estimated by the transition from seed rain to seedling recruitment, differed by habitats, and varied dramatically by life history and dispersal mode. Expected recruit densities (Eit) were higher for animal‐dispersed than wind‐dispersed species, and for non‐pioneer than pioneer species. Non‐pioneers and animal‐dispersed species had higher expected relative recruit abundance (εit) in primary forest (median of 4 seeds recruit?1) whereas in secondary forest wind‐dispersed pioneers had the highest expected relative recruit abundance (median of 16 seeds per recruit). In pastures, wind‐dispersed pioneer species were most successful with many more seeds per recruit (median of 291) than both forest habitats. Seeds per recruit (Φi) appeared to decrease with increase in seed mass for 43 species for which data were available (r = –0.55, P < 0.001). This was associated with a negative correlation of Φi with seed size in primary forest (r = –0.50, P = 0.08 for 13 species); Φi was not correlated with seed size in secondary forest (n = 16) or pasture (n = 14). Metrics of seeds per recruit, expected recruit density and expected relative recruit abundance dramatically illustrate differences in barriers to recruitment in successional habitats.  相似文献   

17.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

18.
Large‐seeded plants may suffer seed dispersal limitation in human‐modified landscapes if seed dispersers are absent or unable to disperse their seeds. We investigated dispersal limitation for the large‐seeded tree Virola surinamensis in a human‐modified landscape in southern Costa Rica. During two fruiting seasons, we monitored crop size, seed removal rates, the number of fruiting conspecifics within 100 m, and feeding visitation rates by frugivores at trees located in high and low forest disturbance conditions. Seed removal rates and the total number of seeds removed were high regardless of the disturbance level, but these parameters increased with tree crop size and decreased with the number of fruiting V. surinamensis trees within a 100 m radius. Trees at low disturbance levels were more likely to be visited by seed dispersers. Black mandibled toucans (Ramphastos ambiguus) and spider monkeys (Ateles geoffroyi) were the most important seed dispersers, based on visitation patterns and seed removal rates. Spider monkey feeding visits were more frequent at high disturbance levels, but the monkeys preferentially visited isolated trees with large yields and surrounded by a low number of fruiting Virola trees within 100 m. Toucan visitation patterns were not constrained by any of the predictors and they visited trees equally across the landscape. We suggest that isolated and highly fecund Virola trees are an important food resource for spider monkeys in human‐modified landscapes and that toucans can provide resilience against seed dispersal limitations for large‐seeded plants in human‐modified landscapes in the absence of hunting.  相似文献   

19.
The objective of this study was to analyse quantitatively the spatial distribution of holly (Ilex aquifolium L.) seed rain and seed bank, and to detect the relationships between these consecutive processes. We measured seed dispersal by birds and fallen fruits, and also density and viability of seed bank in two Ilex populations in central Spain. Analysis was made distinguishing the following microhabitats: holly woodland, edge of holly woodland, open grassland 10 m and 100 m from the woodland, fleshy fruit shrubs, dry fruit shrubs, and adjacent non-holly woodland. Spatial distribution of dispersed and in-soil seeds was measured by the clumping index. Seed rain and seed bank under holly woodlands were significantly higher than in the other microhabitats. Forest edges and fleshy fruit shrubs were the next microhabitats with the highest seed rain and seed bank density. Interannual and interlocality variations were not significant. The relative importance of the different dispersal methods varied between microhabitats, with a similar support of bird dispersed seeds and fallen fruits within the woodland and a greater influence of cattle dispersal in open areas. Seed spatial aggregation was significant in both dispersed seeds and soil seeds from holly woodlands and the edge of the forest. Aggregation under shrubs, grasslands and the adjacent forests evidenced a general random distribution of holly seeds (only in some cases clumping index was significant). Quantitative differences between seed rain and seed bank are important. Post-dispersal seed predation did not modify seed rain distribution, which was mirrored in the seed bank pattern. These two phases of holly regeneration had a heavy spatial influence, determined by the landscape structure and activity of the dispersal agents, that reflects a differential recruitment potential. Comparisons between both populations suggest that in the southern locality (Robregordo) holly has a weaker capacity to colonize open areas, and a stronger recruitment limitation due to propagule availability.  相似文献   

20.
Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号