首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Multiple factors affect skin pigmentation, including those that regulate melanocyte and/or keratinocyte function. Such factors, particularly those that operate at the level of the melanosome, are relatively well characterized in mice, but the expression and function of structural and enzymatic proteins in melanocytes in human skin are not as well known. Some years ago, we generated peptide-specific antibodies to murine melanosomal proteins that proved to be instrumental in elucidating melanocyte development and differentiation in mice, but cross-reactivity of those antibodies with the corresponding human proteins often was weak or absent. In an effort to characterize the roles of melanosomal proteins in human skin pigmentation, and to understand the underlying mechanism(s) of abnormal skin pigmentation, we have now generated polyclonal antibodies against the human melanocyte-specific markers, tyrosinase, tyrosinase-related protein (TYRP1), Dopachrome tautomerase (DCT) and Pmel17 (SILV, also known as GP100). We used these antibodies to determine the distribution and function of melanosomal proteins in normal human skin (adult and newborn) and in various cutaneous pigmented lesions, such as intradermal nevi, lentigo simplex, solar lentigines and malignant melanomas. We also examined cytokeratin expression in these same samples to assess keratinocyte distribution and function. Immunohistochemical staining reveals distinct patterns of melanocyte distribution and function in normal skin and in various types of cutaneous pigmented lesions. Those differences in the expression patterns of melanocyte markers provide important clues to the roles of melanocytes in normal and in disrupted skin pigmentation.  相似文献   

2.
A pilot study for grafting of patients with vitiligo using cultured epithelial autografts containing melanocytes gave disappointing clinical results, with pigmentation achieved in only one out of five patients. Irrespective of the fate of melanocytes grafted back onto the patients, we experienced problems in identifying melanocytes within these well‐integrated keratinocyte sheets. This led us to explore the fate of these cells within these sheets in vitro and to seek to improve their number and function within the sheets. We report that the introduction of a fibroblast feeder layer can improve melanocyte number within melanocyte/keratinocyte co‐cultures initially, but at very high keratinocyte density, there is a marked loss of melanocytes (as detected by staining for S100). Additionally, we found that keratinocytes not only down‐regulate melanocyte number, but also pigmentary function; thus, it was possible to identify melanocytes that were S100 positive but tyrosinase‐related protein‐1 (TRP‐1) negative in confluent well‐integrated keratinocyte sheets. In summary, our data suggest that keratinocytes at high density initially suppress melanocyte pigmentation (as evidenced by a lack of TRP‐1 expression) and then cause a physical loss of melanocytes. The introduction of a fibroblast feeder layer can help maintain melanocyte number while keratinocytes are subconfluent, but fails to oppose the inhibitory influence of the keratinocytes on melanocyte TRP‐1 expression.  相似文献   

3.
4.
5.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

6.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte–keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

7.
8.
9.
Oculocutaneous albinism (OCA) is caused by reduced or deficient melanin pigmentation in the skin, hair, and eyes. OCA has different phenotypes resulting from mutations in distinct pigmentation genes involved in melanogenesis. OCA type 2 (OCA2), the most common form of OCA, is an autosomal recessive disorder caused by mutations in the P gene, the function(s) of which is controversial. In order to elucidate the mechanism(s) involved in OCA2, our group used several antibodies specific for various melanosomal proteins (tyrosinase, Tyrp1, Dct, Pmel17 and HMB45), including a specific set of polyclonal antibodies against the p protein. We used confocal immunohistochemistry to compare the processing and distribution of those melanosomal proteins in wild type (melan-a) and in p mutant (melan-p1) melanocytes. Our results indicate that the melanin content of melan-p1 melanocytes was less than 50% that of wild type melan-a melanocytes. In contrast, the tyrosinase activities were similar in extracts of wild type and p mutant melanocytes. Confocal microscopy studies and pulse-chase analyses showed altered processing and sorting of tyrosinase, which is released from melan-p1 cells to the medium. Processing and sorting of Tyrp1 was also altered to some extent. However, Dct and Pmel17 expression and subcellular localization were similar in melan-a and in melan-p1 melanocytes. In melan-a cells, the p protein showed mainly a perinuclear pattern with some staining in the cytoplasm where some co-localization with HMB45 antibody was observed. These findings suggest that the p protein plays a major role in modulating the intracellular transport of tyrosinase and a minor role for Tyrp1, but is not critically involved in the transport of Dct and Pmel17. This study provides a basis to understand the relationship of the p protein with tyrosinase function and melanin synthesis, and also provides a rational approach to unveil the consequences of P gene mutations in the pathogenesis of OCA2.  相似文献   

10.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

11.
The relative expression of a number of key mediators of human pigmentation including tyrosinase, tyrosinase related protein-1 (TYRP1), endothelin-1 and adrenocorticotrophic hormone (ACTH) proteins were analysed and quantified in immunohistochemically stained skin sections using semiquantitative computer assisted image analysis. Comparisons were made between a range of different ethnic skin types including European, Chinese, Mexican, Indian and African at both chronically photoexposed and photoprotected sites. Melanocyte number varied little with ethnicity except in the European group which had 60-80% more melanocytes than other skin types (P < 0.01, n = 10; Student Neuman-Keuls). However, melanocyte number was increased approximately twofold in chronically photoexposed skin of all ethnic groups (P < 0.001, n = 48; paired t-test). Tyrosinase protein expression in melanocytes did not vary with ethnicity, but TYRP1 protein was significantly elevated (approximately 2.6-fold) in darkly pigmented African and Indian skin types compared with lightly pigmented Mexican, Chinese and European skin types. In melanocytes from chronically photoexposed skin, there was a modest but significant increase in the expression of tyrosinase protein (approximately 1.2-fold, P < 0.001, n = 48; paired t-test), together with a significant and slightly larger increase in the expression of TYRP1 protein (approximately 1.6-fold, P < 0.005, n = 48; paired t-test). In contrast, the expression of endothelin-1 and ACTH showed no significant variation with either ethnicity or photoexposure. These data are consistent with the view that maintenance of a chronically hyperpigmented phenotype in chronically photoexposed human skin is largely the result of a stable increase in the number of tyrosinase positive melanocytes at these sites. Moreover, the observed ethnic variation in TYRP1 protein expression suggests that TYRP1 may play a significant role in mediating ethnic differences in melanogenesis and constitutive skin pigmentation in vivo.  相似文献   

12.
13.
In mammalian skin, melanocyte proliferation and melanogenesis can be stimulated by keratinocytes, fibroblasts and other regulatory factors. To determine whether hydroxybenzyl alcohols (HBAs) show more inhibitory in melanocytes cultured alone or in melanocytes co-cultured with keratinocytes, we developed a murine melanocyte-keratinocyte co-culture model to investigate the pigmentation regulators in company with other melanogenic inhibitors and stimulators. It was found that the effects of HBAs and melanogenic factors were more evident in melanocytes co-cultured with keratinocytes. Keratinocytes may play a synergistic role in melanocyte melanogenesis and influence the pigment production. The tests in the co-culture model also imply that the inhibitory effects of HBAs on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity. HBAs showed a low cytotoxicity. The eventual results proved that HBAs are promising and safe agents for skin whitening in melanocyte alone and in co-culture systems. The co-culture model provides a more physiologically realistic condition to study the interaction between melanocytes and keratinocytes, which enables a reliable screening system for depigmenting compounds.  相似文献   

14.
Sturm RA  Teasdale RD  Box NF 《Gene》2001,277(1-2):49-62
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones alpha-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation.  相似文献   

15.
Although the administration of melanocyte-stimulating hormone (MSH) peptides results in skin darkening in man, cultured human melanocytes have been reported to be unresponsive to these peptides. This may be a consequence of the conditions under which the cells were maintained in vitro, particularly the use of phorbol esters and cholera toxin as melanocyte mitogens. By culturing the cells in the absence of these additives, we demonstrate that α-MSH and its synthetic analogue Nle4DPhe7α-MSH (NDP-MSH) induce dose-related increases in melanin content and tyrosinase activity and affect cell morphology in the majority of human melanocyte cultures. In addition, NDP-MSH induces increases in tyrosinase mRNA and tyrosinase-related protein-1 (TRP-1) mRNA. The dose-response curves for the MSH peptides are sigmoidal and the two peptides are equipotent in their effects on human melanocytes. Adrenocorticotropic hormone (ACTH) also affects morphology and stimulates melanogenesis and tyrosinase activity in human melanocytes. However, the dose-response curves for ACTH are biphasic, and the melanocytes respond to lower concentrations of ACTH than MSH peptides, similar to those normally present in human plasma. These findings may be important in understanding the role of these pro-opiomelanocortin peptides in human skin pigmentation.  相似文献   

16.
Rab proteins, a subfamily of the ras superfamily, are low molecular weight GTPases involved in the regulation of intracellular vesicular transport. Cloning of human RAB32 was recently described. Presently, we report the cloning and characterization of the mouse homologue of Rab32. We show that murine Rab32 exhibits a ubiquitous expression pattern, with tissue-specific variation in expression level. Three cell types with highly specialized organelles, melanocytes, platelets and mast cells, exhibit relatively high level of Rab32. We show that in murine amelanotic in vitro transformed melanocytes as well as in human amelanotic metastatic melanoma cell lines, the expression of Rab32 is markedly reduced or absent, in parallel with the loss of expression of two key enzymes for the production of melanin, tyrosinase and Tyrp1. Therefore, in both mouse and human systems, the expression of Rab32 correlates with the expression of genes involved in pigment production. However, in melanoma samples, amelanotic due to a mutation in the tyrosinase gene, the expression of Rab32 remains at levels comparable to those observed in pigmented melanoma samples. Finally, we observed co-localization of Rab32 and the melanosomal proteins, Tyrp1 and Dct, indicating an association of Rab32 with melanosomes. Based on these data, we propose the inclusion of Rab32 to the so-called melanocyte/platelet family of Rab proteins.  相似文献   

17.
Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan‐a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan‐a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan‐a melanocytes were co‐cultured with SP‐1 keratinocytes or stimulated by α‐MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.  相似文献   

18.
Wnt signaling plays a role in the differentiation as well as the development of melanocytes. Using a microarray analysis, hyperpigmentary skin of melasma expressed high levels of Wnt inhibitory factor‐1 (WIF‐1) compared with perilesional normal skin. In this study, the expression and functional roles of WIF‐1 on melanocytes were investigated. WIF‐1 was expressed both in the melanocytes of normal human skin and in cultured melanocytes. The upregulation of WIF‐1 on cultured normal human melanocytes significantly induced expressions of MITF and tyrosinase, which were associated with increased melanin content and tyrosinase activity. Consistent with the stimulatory effect of WIF‐1, WIF‐1 siRNA reduced melanogenesis in the cells. Moreover, WIF‐1 increases pigmentation in melanocytes co‐cultured with WIF‐1‐overexpressed fibroblasts and of organ‐cultured human skin. These findings suggest that melanocytes express WIF‐1 constitutively in vivo and in vitro and that WIF‐1 promotes melanogenesis in normal human melanocytes.  相似文献   

19.
Active roles of cell-cell interaction between melanocytes and neighboring keratinocytes for the regulation of melanocyte functions in the skin have been suggested. We examined substantial regulatory mechanisms of keratinocyte extracellular matrix (kECMs) for normal human melanocyte functions without direct cell-cell contact. We specially devised kECMs from proliferating or differentiating keratinocytes and further treated them with environmental stimulus ultraviolet B (UVB) for skin pigmentary system. Normal human melanocytes (NHM) were cultured on the various keratinocyte ECMs and initially the effects of the kECMs upon melanocyte morphology (dendrite formation and extension), growth, melanin production and expressions of pigmentation-associated protein (MEL-5) and proliferation-associated protein (proliferating cell nuclear antigen; PCNA/cyclin) were studied. Then we compared the effects of these cell-matrix interactions with those of direct melanocyte-keratinocyte, cell-cell contact in co-culture on melanocyte functions. Melanocytes cultured on any types of the kECMs that were tested significantly extended dendrites more than that on plastic cell culture dish without kECM (control). Melanocytes cultured on the kECM prepared from UVB irradiated differentiating keratinocytes resulted in 219% increase in the number of dendrites. The growth of melanocytes on kECMs was also stimulated up to 280% of control. The kECM produced by proliferating keratinocytes had a more significant effect on the growth than kECM from differentiating keratinocytes. This melanocyte growth stimulating effect was decreased with kECM from UVB treated differentiating keratinocytes. The melanin content per melanocyte was constant on any of the kECMs. Expression of pigmentation-associated protein detected by monoclonal antibody, MEL-5, was not changed on the kECM, while it was increased in melanocytes in co-culture with keratinocytes. Expression of PCNA/cyclin in melanocytes cultured on kECMs was generally downregulated on kECM and in co-culture compared to that in a control culture. We demonstrated that the kECMs play important roles in the melanocyte morphology and proliferation. These observations suggest that environmental (UVB) and physiological (Ca++) stimuli can regulate melanocyte functions through the keratinocyte extracellular matrix in vivo.  相似文献   

20.
《Cellular signalling》2014,26(4):716-723
Transfer of melanin-containing melanosomes from melanocytes to neighboring keratinocytes results in skin pigmentation. Pharmacological modulation of melanosomal transfer has recently gained much attention as a strategy for modifying normal or abnormal pigmentation. In this study, while investigating the impact of pyridinyl imidazole (PI) compounds, a class of p38 MAPK inhibitors, on melanocyte differentiation we observed that some, but not all PIs interfere with the physiological melanosome sorting producing a strong retention of melanin in the intracellular compartment associated with a general reduction of melanin synthesis. Electron microscopy studies illustrated an accumulation of melanosomes inside melanocytes with enrichment in immature melanosome at stages II and III at the end of dendrites. We identified cyclin G-associated kinase GAK, a protein expressed ubiquitously in various tissues, as the off-target responsible of intracellular melanin accumulation and we report evidence that reduced GAK-dependent cathepsin maturation is implicated in melanosome sorting deficiency. The co-regulation of GAK and cathepsin B and L expression with the melanogenic biosynthetic pathway in normal human melanocytes as well as in B16-F0 melanoma cells strengthen the idea that these proteins represent new possible targets for prevention and treatment of irregular pigmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号