共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of lipid research》2023,64(1):100316
The large HDL particles generated by administration of cholesteryl ester transfer protein inhibitors (CETPi) remain poorly characterized, despite their potential importance in the routing of cholesterol to the liver for excretion, which is the last step of the reverse cholesterol transport. Thus, the effects of the CETPi dalcetrapib and anacetrapib on HDL particle composition were studied in rabbits and humans. The association of rabbit HDL to the LDL receptor (LDLr) in vitro was also evaluated. New Zealand White rabbits receiving atorvastatin were treated with dalcetrapib or anacetrapib. A subset of patients from the dal-PLAQUE-2 study treated with dalcetrapib or placebo were also studied. In rabbits, dalcetrapib and anacetrapib increased HDL-C by more than 58% (P < 0.01) and in turn raised large apo E-containing HDL by 66% (P < 0.001) and 59% (P < 0.01), respectively. Additionally, HDL from CETPi-treated rabbits competed with human LDL for binding to the LDLr on HepG2 cells more than control HDL (P < 0.01). In humans, dalcetrapib increased concentrations of large HDL particles (+69%, P < 0.001) and apo B-depleted plasma apo E (+24%, P < 0.001), leading to the formation of apo E-containing HDL (+47%, P < 0.001) devoid of apo A-I. Overall, in rabbits and humans, CETPi increased large apo E-containing HDL particle concentration, which can interact with hepatic LDLr. The catabolism of these particles may depend on an adequate level of LDLr to contribute to reverse cholesterol transport. 相似文献
2.
Keita Watanabe Mayu Yamano Yuki Masujima Ryuji Ohue-Kitano Ikuo Kimura 《Biochemistry and Biophysics Reports》2021
Indigestible polysaccharides, such as dietary fibers, benefit the host by improving the intestinal environment. Short-chain fatty acids (SCFAs) produced by gut microbial fermentation from dietary fibers exert various physiological effects. The bacterial polysaccharide curdlan benefits the host intestinal environment, although its effect on energy metabolism and SCFA production remains unclear. Hence, this study aimed to elucidate the effect of curdlan intake on gut microbial profiles, SCFA production, and energy metabolism in a high-fat diet (HFD)-induced obese mouse model. Gut microbial composition of fecal samples from curdlan-supplemented HFD-fed mice indicated an elevated abundance of Bacteroidetes, whereas a reduced abundance of Firmicutes was noted at the phylum level compared with that in cellulose-supplemented HFD-fed mice. Moreover, curdlan supplementation resulted in an abundance of the family Bacteroidales S24-7 and Erysipelotrichaceae, and a reduction in Deferribacteres in the feces. Furthermore, curdlan supplementation elevated fecal SCFA levels, particularly butyrate. Although body weight and fat mass were not affected by curdlan supplementation in HFD-induced obese mice, HFD-induced hyperglycemia was significantly suppressed with an increase in plasma insulin and incretin GLP-1 levels. Curdlan supplementation elevated fecal bile acid and SCFA production, improved host metabolic functions by altering the gut microbial composition in mice. 相似文献
3.
4.
BackgroundWith dry eye, the ratio of cholesteryl ester (CE) to wax ester (WE) decreases substantially in meibum, but the functional and structural consequences of this change are speculative. The aim of this study is to confirm this finding and to bridge this gap in knowledge by investigating the effect of varying CE/WE ratios on lipid structure and thermodynamics.MethodsInfrared spectroscopy was use to quantify CE and WE in human meibum and to measure hydrocarbon chain conformation and thermodynamics in a cholesteryl behenate, stearyl stearate model system.ResultsThe CE/WE molar ratio was 36% lower for meibum from donors with dry eye due to meibomian gland dysfunction compared with meibum from donors without dry eye. CE (5 mol %) dramatically increased the phase transition temperature of pure WE from -0.12 °C to 63 °C in the mixture. Above 5 mol % CB, the phase transition temperature increased linearly, from 68.5 °C to 85 °C. In the ordered state, CE caused an increase in lipid order from about 72% trans rotamers to about 86% trans rotamers. Above 10% CE, the hydrocarbon chains were arranged in a monoclinic geometry.ConclusionsThe CE/WE is lower in meibum from donors with dry eye due to meibomian-gland dysfunction. Major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above.General significanceCE-WE interactions may be important for in understanding lipid layer structure and functional relationships on the surface of tears, skin and plants. 相似文献
5.
6.
Wei Liu Yaoting Sun Weigang Ge Fangfei Zhang Lin Gan Yi Zhu Tiannan Guo Kexin Liu 《Molecular & cellular proteomics : MCP》2022,21(2):100187
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR. 相似文献
7.
《Biochemical and biophysical research communications》2020,521(1):84-90
Current cerebral organoid technology provides excellent in vitro models mimicking the structure and function of the developing human brain, which enables studies on normal and pathological brain; however, further improvements are necessary to overcome the problems of immaturity and dearth of non-parenchymal cells. Vascularization is one of the major challenges for recapitulating processes in the developing human brain. Here, we examined the formation of blood vessel-like structures in cerebral organoids induced by vascular endothelial growth factor (VEGF) in vitro. The results indicated that VEGF enhanced differentiation of vascular endothelial cells (ECs) without reducing neuronal markers in the embryonic bodies (EBs), which then successfully developed into cerebral organoids with open-circle vascular structures expressing an EC marker, CD31, and a tight junction marker, claudin-5, characteristic of the blood-brain barrier (BBB). Further treatment with VEGF and Wnt7a promoted the formation of the outer lining consisting of pericyte-like cells, which surrounded the vascular tubes. RNA sequencing revealed that VEGF upregulated genes associated with tube formation, vasculogenesis, and the BBB; it also changed the expression of genes involved in brain embryogenesis, suggesting a role of VEGF in neuronal development. These results indicate that VEGF treatment can be used to generate vessel-like structures with mature BBB characteristics in cerebral organoids in vitro. 相似文献
8.
《Journal of lipid research》2023,64(3):100340
Therapeutic reduction of hydrophobic bile acids exposure is considered beneficial in cholestasis. The Cyp2c70 KO mice lack hydrophilic muricholic acids and have a human-like hydrophobic bile acid pool resulting in hepatobiliary injury. This study investigates if combining an apical sodium-dependent bile acid transporter inhibitor GSK2330672 (GSK) and fibroblast growth factor-15 (FGF15) overexpression, via simultaneous inhibition of bile acid synthesis and gut bile acid uptake, achieves enhanced therapeutic efficacy in alleviating hepatobiliary injury in Cyp2c70 KO mice. The effects of GSK, adeno-associated virus (AAV)-FGF15, and the combined treatment on bile acid metabolism and cholangiopathy were compared in Cyp2c70 KO mice. In female Cyp2c70 KO mice with more severe cholangiopathy than male Cyp2c70 KO mice, the combined treatment was more effective in reversing portal inflammation, ductular reaction, and fibrosis than AAV-FGF15, while GSK was largely ineffective. The combined treatment reduced bile acid pool by ~80% compared to ~50% reduction by GSK or AAV-FGF15, and enriched tauro-conjugated ursodeoxycholic acid in the bile. Interestingly, the male Cyp2c70 KO mice treated with AAV-FGF15 or GSK showed attenuated cholangiopathy and portal fibrosis but the combined treatment was ineffective despite reducing bile acid pool. Both male and female Cyp2c70 KO mice showed impaired gut barrier integrity. AAV-FGF15 and the combined treatment, but not GSK, reduced gut exposure to lithocholic acid and improved gut barrier function. In conclusion, the combined treatment improved therapeutic efficacy against cholangiopathy than either single treatment in the female but not male Cyp2c70 KO mice by reducing bile acid pool size and hydrophobicity. 相似文献
9.
Paige E. Solomon Lisa L. Kirkemo Gary M. Wilson Kevin K. Leung Mark H. Almond Leanne C. Sayles E. Alejandro Sweet-Cordero Oren S. Rosenberg Joshua J. Coon James A. Wells 《Molecular & cellular proteomics : MCP》2022,21(7):100247
Since the discovery of oncogenes, there has been tremendous interest to understand their mechanistic basis and to develop broadly actionable therapeutics. Some of the most frequently activated oncogenes driving diverse cancers are c-MYC, EGFR, HER2, AKT, KRAS, BRAF, and MEK. Using a reductionist approach, we explored how cellular proteomes are remodeled in isogenic cell lines engineered with or without these driver oncogenes. The most striking discovery for all oncogenic models was the systematic downregulation of scores of antiviral proteins regulated by type 1 interferon. These findings extended to cancer cell lines and patient-derived xenograft models of highly refractory pancreatic cancer and osteosarcoma driven by KRAS and MYC oncogenes. The oncogenes reduced basal expression of and autocrine stimulation by type 1 interferon causing remarkable convergence on common phenotypic and functional profiles. In particular, there was dramatically lower expression of dsRNA sensors including DDX58 (RIG-I) and OAS proteins, which resulted in attenuated functional responses when the oncogenic cells were treated with the dsRNA mimetic, polyI:C, and increased susceptibility to infection with an RNA virus shown using SARS-CoV-2. Our reductionist approach provides molecular and functional insights connected to immune evasion hallmarks in cancers and suggests therapeutic opportunities. 相似文献
10.
Hiroaki Matsushita Aito Isoguchi Masamitsu Okada Teruaki Masuda Yohei Misumi Yuko Ichiki Mitsuharu Ueda Yukio Ando 《Biochemistry and Biophysics Reports》2021
In the future, humans may live in space because of global pollution and weather fluctuations. In microgravity, convection does not occur, which may change the amyloidogenicity of proteins. However, the effect of gravity on amyloid fibril formation is unclear and remains to be elucidated. Here, we analyzed the effect of microgravity on amyloid fibril formation of amyloidogenic proteins including insulin, amyloid β42 (Aβ42), and transthyretin (TTR). We produced microgravity (10?3 g) by using the gravity controller Gravite. Human insulin, Aβ42, and human wild-type TTR (TTRwt) were incubated at pH 3.0, 7.0, and 3.5 at 37 °C, respectively, in 1 g on the ground or in microgravity. We measured amyloidogenicity via the thioflavin T (ThT) method and cell-based 1-fluoro-2,5-bis[(E)-3-carboxy-4-hydroxystyryl]benzene (FSB) assay. ThT fluorescence intensity and cell-based FSB assay results for human insulin samples were decreased in microgravity compared with results in 1 g. Aβ42 samples did not differ in ThT fluorescence intensity in microgravity and in 1 g on the ground. However, in the cell-based FSB assay, the staining intensity was reduced in microgravity compared with that on 1 g. Human TTRwt tended to form fewer amyloid fibrils in ThT fluorescence intensity and cell-based FSB assays in microgravity than in 1 g. Human insulin and Aβ42 showed decreased amyloid fibril formation in microgravity compared with that in 1 g. Human TTRwt tended to form fewer amyloid fibrils in microgravity. Our experiments suggest that the earth's gravity may be an accelerating factor for amyloid fibril formation. 相似文献
11.
Reuben S.E. Young Andrew P. Bowman Kaylyn D. Tousignant Berwyck L.J. Poad Jennifer H. Gunter Lisa K. Philp Colleen C. Nelson Shane R. Ellis Ron M.A. Heeren Martin C. Sadowski Stephen J. Blanksby 《Journal of lipid research》2022,63(6):100223
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics. 相似文献
12.
Heta S. Desai Tianyang Yan Fengchao Yu Alexander W. Sun Miranda Villanueva Alexey I. Nesvizhskii Keriann M. Backus 《Molecular & cellular proteomics : MCP》2022,21(4):100218
Proteinaceous cysteine residues act as privileged sensors of oxidative stress. As reactive oxygen and nitrogen species have been implicated in numerous pathophysiological processes, deciphering which cysteines are sensitive to oxidative modification and the specific nature of these modifications is essential to understanding protein and cellular function in health and disease. While established mass spectrometry-based proteomic platforms have improved our understanding of the redox proteome, the widespread adoption of these methods is often hindered by complex sample preparation workflows, prohibitive cost of isotopic labeling reagents, and requirements for custom data analysis workflows. Here, we present the SP3-Rox redox proteomics method that combines tailored low cost isotopically labeled capture reagents with SP3 sample cleanup to achieve high throughput and high coverage proteome-wide identification of redox-sensitive cysteines. By implementing a customized workflow in the free FragPipe computational pipeline, we achieve accurate MS1-based quantitation, including for peptides containing multiple cysteine residues. Application of the SP3-Rox method to cellular proteomes identified cysteines sensitive to the oxidative stressor GSNO and cysteine oxidation state changes that occur during T cell activation. 相似文献
13.
Jenna Cleyle Marie-Pierre Hardy Robin Minati Mathieu Courcelles Chantal Durette Joel Lanoix Jean-Philippe Laverdure Krystel Vincent Claude Perreault Pierre Thibault 《Molecular & cellular proteomics : MCP》2022,21(5):100228
Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry–based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer–derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I–associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell–based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309. 相似文献
14.
15.
Hideki Tanaka Hirotsugu Hino Shota Moriya Hiromi Kazama Masaya Miyazaki Naoharu Takano Masaki Hiramoto Kiyoaki Tsukahara Keisuke Miyazawa 《Biochemistry and Biophysics Reports》2020
Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells. 相似文献
16.
Sina Jasim Kepal N. Patel Gregory Randolph Stephanie Adams Roberto Cesareo Edward Condon Tara Henrichsen Malak Itani Maria Papaleontiou Leonardo Rangel John Schmitz Marius N. Stan 《Endocrine practice》2022,28(4):433-448
ObjectiveThe objective of this disease state clinical review is to provide clinicians with a summary of the nonsurgical, minimally invasive approaches to managing thyroid nodules/malignancy, including their indications, efficacy, side effects, and outcomes.MethodsA literature search was conducted using PubMed and appropriate key words. Relevant publications on minimally invasive thyroid techniques were used to create this clinical review.ResultsMinimally invasive thyroid techniques are effective and safe when performed by experienced centers. To date, percutaneous ethanol injection therapy is recommended for recurrent benign thyroid cysts. Both ultrasound-guided laser and radiofrequency ablation can be safely used for symptomatic solid nodules, both toxic and nontoxic. Microwave ablation and high-intensity focused ultrasound are newer approaches that need further clinical evaluation. Despite limited data, encouraging results suggest that minimally invasive techniques can also be used in small-size primary and locally recurrent thyroid cancer.ConclusionSurgery and radioiodine treatment remain the conventional and established treatments for nodular goiters. However, the new image-guided minimally invasive approaches appear safe and effective alternatives when used appropriately and by trained professionals to treat symptomatic or enlarging thyroid masses. 相似文献
17.
Chang-Ming Zhong Song Li Xiao-Wen Wang Dan Chen Zhao-Lei Jiang Cheng Zhang Xiang-Jun He Chun Huang Ying-Jiu Jiang Qing-Chen Wu 《Experimental cell research》2021,398(1):112402
PurposeLong-term failure of vein grafts due to neointimal hyperplasia remains an important problem in coronary artery bypass graft surgery. Endothelial to mesenchymal transition (EndMT) contributes to vein graft vascular remodeling. However, there is little study on microRNA-mediated EndMT contributions to neointimal formation in vein graft. We hypothesized that microRNA-92a (miR-92a) might play an important role in determining EndMT contributions to neointimal formation.MethodsmiR-92a and EndMT-related proteins detected by qRT-PCR and Western blot in vitro and in vivo. Adeno-associated virus 6 (AAV6) delivery gene therapy was used to inhibit neointimal formation in vivo. The intimal hyperplasia of vein grafts was measured by HE staining, the expression of EndMT-related protein in vein grafts was measured by immunofluorescence. Immunohistochemistry and luciferase assay were used to detect potential targets of miR-92a.ResultsThe expression of miR-92a was found to be upregulated in neointimal hyperplasic lesions after vein grafting. Using cultured human umbilical vein endothelial cells (HUVECs), we show that TGF-β1 treatment of HUVECs significantly increased miR-92a expression and induced EndMT, characterized by suppression of endothelial-specific markers (CD31 and VE-cadherin) and an increase in mesenchymal-specific markers (a-SMA and vimentin), while inhibition of miR-92a expression blunted EndMT in cultured HUVECs. Furthermore, AAV6 mediated miR-92a suppression gene therapy effectively resulted in decreased EndMT and less neointimal formation in vein grafts in vivo. We further identified that integrin alpha 5 (ITGA5) is a potential target gene involved in the development of neointima formation in these vein grafts.ConclusionThis data suggests that neointimal formation does not solely rely on vascular smooth muscle cell phenotypic switching but is also related to EndMT, and miR-92a-mediated EndMT is an important mechanism underlying neointimal formation in vein grafts. 相似文献
18.
Maissa M. Gaye Christina M. Ward Andrew J. Piasecki Vanessa L. Stahl Aikaterini Karagianni Catherine E. Costello Katya Ravid 《Molecular & cellular proteomics : MCP》2022,21(4):100213
Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin β1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in β1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin β1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and β1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550. 相似文献
19.
Yusuke Sayama Mika K. Kaneko Junko Takei Hideki Hosono Masato Sano Teizo Asano Yukinari Kato 《Biochemistry and Biophysics Reports》2021
TROP2 is a type I transmembrane glycoprotein originally identified in human trophoblast cells that is overexpressed in several types of cancer. To better understand the role of TROP2 in cancer, we herein aimed to develop a sensitive and specific anti-TROP2 monoclonal antibody (mAb) for use in flow cytometry, Western blot, and immunohistochemistry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with N-terminal PA-tagged and C-terminal RAP/MAP-tagged TROP2-overexpressed Chinese hamster ovary (CHO)–K1 cells (CHO/PA-TROP2-RAP-MAP), and hybridomas showing strong signals from PA-tagged TROP2-overexpressed CHO–K1 cells (CHO/TROP2-PA) and weak-to-no signals from CHO–K1 cells were selected using flow cytometry. We demonstrated using flow cytometry that the established anti-TROP2 mAb, TrMab-29 (mouse IgG1 kappa), detected TROP2 in MCF7 breast cancer cell line as well as CHO/TROP2-PA cells. Western blot analysis showed a 40 kDa band in lysates prepared from both CHO/TROP2-PA and MCF7 cells. Furthermore, TROP2 was strongly detected by immunohistochemical analysis using TrMab-29, indicating that TrMab-29 may be a valuable tool for the detection of TROP2 in cancer. 相似文献
20.
Oluwatobi T. Somade Babajide O. Ajayi Oyinkansola E. Olunaike Latifah A. Jimoh 《Biochemistry and Biophysics Reports》2020
2-methoxyethanol (2-ME) is an organic solvent widely used in the manufacture of brake fluids, paints, resins, varnish, nail polish, acetate cellulose, wood coloring, and as a plasticizer in plastics manufacturing. We therefore, investigated its effect on the liver, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of 2-ME for a period of 7, 14, and 21 days. Following 7 days of administration of 2-ME, there was a significant increase in the level of Bax, c-Myc, K-Ras, TNF-α, IL-1β, IL-6, MDA and GPx activity, while the levels of Bcl-2, NO and GSH were significantly reduced compared with control. At the end of 14 days exposure, Bcl-2, and GSH levels, as well as GST activity, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, TNF-α, IL-1β, IL-6, MDA and NO were significantly increased compared with control. After 21 days of 2-ME administration, Bcl-2, IL-10, and GSH levels, as well as SOD and GST activities, were significantly decreased, while levels of Bax, c-Myc, K-Ras, caspase-3, p53, TNF-α, IL-1β, IL-6, MDA and NO were significantly increased compared with control. Lastly, liver histopathology confirmed and corroborated the biochemical findings reported above. We therefore, advised that exposures to 2-ME should be strictly avoided as it could trigger hepatic damage through the disorganization of the antioxidant system, up-regulation of inflammatory, apoptotic, and oncogenic markers in rats. 相似文献