首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic digestion (AD) of animal manure is traditionally classified as a treatment to reduce the environmental impacts of odor, pathogens, and excess nutrients associated with animal manure. This report shows that AD also changes the composition of manure fiber and makes it suitable as a cellulosic feedstock for ethanol production. Anaerobically digested manure fiber (AD fiber) contains less hemicellulose (11%) and more cellulose (32%) than raw manure, and has better enzymatic digestibility than switchgrass. Using the optimal dilute alkaline pretreatment (2% sodium hydroxide, 130°C, and 2 h), enzymatic hydrolysis of 10% (dry basis) pretreated AD fiber produces 51 g/L glucose at a conversion rate of 90%. The ethanol fermentation on the hydrolysate has a 72% ethanol yield. The results indicate that 120 million dry tons of cattle manure available annually in the U.S. can generate 63 million dry tons of AD fiber that can produce more than 1.67 billion gallons of ethanol. Integrating AD with biorefining will make significant contribution to the cellulosic ethanol production. Biotechnol. Bioeng. 2010;105: 1031–1039. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Simultaneous saccharification and fermentation (SSF) process for ethanol production from various lignocellulosic woody (poplar and eucalyptus) and herbaceous (Sorghum sp. bagasse, wheat straw and Brassica carinata residue) materials has been assayed using the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875. Biomass samples were previously treated in a steam explosion pilot plant to provide pretreated biomass with increased cellulose content relative to untreated materials and to enhance cellulase accessibility. SSF experiments were performed in laboratory conditions at 42 °C, 10% (w/v) substrate concentration and 15 FPU/g substrate of commercial cellulase. The results indicate that it is possible to reach SSF yields in the range of 50–72% of the maximum theoretical SSF yield, based on the glucose available in pretreated materials, in 72–82 h. Maximum ethanol contents from 16 to 19 g/l were obtained in fermentation media, depending on the material tested.  相似文献   

3.
Bermudagrass, reed and rapeseed were pretreated with phosphoric acid–acetone and used for ethanol production by means of simultaneous saccharification and fermentation (SSF) with a batch and fed-batch mode. When the batch SSF experiments were conducted in a 3% low effective cellulose, about 16 g/L of ethanol were obtained after 96 h of fermentation. When batch SSF experiments were conducted with a higher cellulose content (10% effective cellulose for reed and bermudagrass and 5% for rapeseed), higher ethanol concentrations and yields (of more than 93%) were obtained. The fed-batch SSF strategy was adopted to increase the ethanol concentration further. When a higher water-insoluble solid (up to 36%) was applied, the ethanol concentration reached 56 g/L of an inhibitory concentration of the yeast strain used in this study at 38 °C. The results show that the pretreated materials can be used as good feedstocks for bioethanol production, and that the phosphoric acid–acetone pretreatment can effectively yield a higher ethanol concentration.  相似文献   

4.
《Process Biochemistry》2007,42(5):834-839
Two different process configurations, simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF), were compared, at 8% water-insoluble solids (WIS), regarding ethanol production from steam-pretreated corn stover. The enzymatic loading in these experiments was 10 FPU/g WIS and the yeast concentration in SSF was 1 g/L (dry weight) of a Saccharomyces cerevisiae strain. When the whole slurry from the pretreatment stage was used as it was, diluted to 8% WIS with water and pH adjusted, SSF gave a 13% higher overall ethanol yield than SHF (72.4% versus 59.1% of the theoretical). The impact of the inhibitory compounds in the liquid fraction of the pretreated slurry was shown to affect SSF and SHF in different ways. The overall ethanol yield (based on the untreated raw material) decreased when SSF was run in absence on inhibitors compared to SSF with inhibitors present. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the case of SHF. However, the SHF yield achieves in the absence of inhibitors was still lower than the SSF yield achieves with inhibitors present.  相似文献   

5.
The yield of ethanol from oil palm empty fruit bunches (EFB) was increased on exploiting maleic acid pretreatment combined with fermentation of the pretreated whole slurry. The optimized conditions for pretreatment were to expose EFB to a high temperature (190 °C) with 1 % (w/v) maleic acid for a short time duration (3 min ramping to the set temperature with no holding) in a microwave digester. An enzymatic digestibility of 60.9 % (based on theoretical glucose yield) was exhibited using pretreated and washed EFB after 48 h of hydrolysis. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated EFB for 48 h resulted in 61.3 % theoretical yield of ethanol based on the initial amount of glucan in untreated EFB. These results indicate that maleic acid is a suitable catalyst not requiring detoxification steps for whole slurry fermentation of EFB for ethanol production, thus improving the process economics. Also, the whole slurry fermentation can significantly increase the biomass utilization by converting sugar from both solid and liquid phases of the pretreated slurry.  相似文献   

6.
为研究微生物法预处理对红麻秸秆中木质素的降解及后续的红麻纤维素酶促糖化和发酵效率的影响,将白腐真菌Pleurotus sajor-caju接种在红麻秸秆培养基上固态培养,对红麻秸秆进行预处理。经P. sajor-caju培养25~35 d后,有效转化红麻秸秆中的木质素,转化率最高可达50.20%,并提高红麻纤维素的酶促水解效率,糖化率达69.33%~78.64%,与对照组相比提高了3.5~4.1倍。以微生物法预处理后的红麻秸秆样品为底物的同步糖化发酵实验表明,发酵72 h,发酵液中乙醇浓度达到18.35~  相似文献   

7.
Oil palm fronds are the most abundant lignocellulosic biomass in Malaysia. In this study, fronds were tested as the potential renewable biomass for ethanol production. The soaking in aqueous ammonia pretreatment was applied, and the fermentability of pretreated fronds was evaluated using simultaneous saccharification and fermentation. The optimal pretreatment conditions were 7?% (w/w) ammonia, 80?°C, 20?h of pretreatment, and 1:12 S/L ratio, where the enzymatic digestibility was 41.4?% with cellulase of 60?FPU/g-glucan. When increasing the cellulase loading in the hydrolysis of pretreated fronds, the enzymatic digestibility increased until the enzyme loading reached 60?FPU/g-glucan. With 3?% glucan loading in the SSF of pretreated fronds, the ethanol concentration and yield based on the theoretical maximum after 12 and 48?h of the SSF were 7.5 and 9.7?g/L and 43.8 and 56.8?%, respectively. The ethanol productivities found at 12 and 24?h from pretreated fronds were 0.62 and 0.36?g/L/h, respectively.  相似文献   

8.
Simultaneous saccharification and fermentation of lime-treated biomass   总被引:4,自引:0,他引:4  
Simultaneous saccharification and fermentation (SSF) was performed on lime-treated switchgrass and corn stover, and oxidatively lime-treated poplar wood to determine their compatibility with Saccharomyces cerevisiae. Cellulose-derived glucose was extensively utilized by the yeast during SSF. The ethanol yields from pretreated switchgrass, pretreated corn stover, and pretreated-and-washed poplar wood were 72%, 62% and 73% of theoretical, respectively, whereas those from -cellulose were 67 to 91% of theoretical. The lower ethanol yields from treated biomass resulted from lower cellulose digestibilities rather than inhibitors produced by the pretreatment. Oxidative lime pretreatment of poplar wood increased the ethanol yield by a factor of 5.6, from 13% (untreated) to 73% (pretreated-and-washed).  相似文献   

9.
Jatropha curcas has great potential as an oil crop for use in biodiesel applications, and the outer shell is rich in lignocellulose that may be converted to ethanol, giving rise to the concept of a biorefinery. In this study, two dilute pretreatments of 0.5% H2SO4 and 1.0% NaOH were performed on Jatropha shells with subsequent simultaneous saccharification and fermentation (SSF) of the pretreated water-insoluble solids (WIS) to evaluate the effect of inhibitors in the pretreatment slurry. A cellulase loading of 15 FPU/g WIS, complimented with an excess of cellobiase (19.25 U/g), was used for SSF of either the washed WIS or the original slurry to determine the effect of inhibitors. Ethanol and glucose were monitored during SSF of 20 g of pretreated biomass. The unwashed slurry showed to have a positive effect on SSF efficiency for the NaOH-pretreated biomass. Maximum efficiencies of glucan conversion to ethanol in the WIS were 40.43% and 41.03% for the H2SO4- and NaOH-pretreated biomasses, respectively.  相似文献   

10.
The two main sugars in the agricultural by-product corn stover are glucose and xylose. Co-fermentation of glucose and xylose at high content of water-insoluble solids (WIS) without detoxification is a prerequisite to obtain high ethanol concentration and to reduce production costs. A recombinant strain of Saccharomyces cerevisiae, TMB3400, was used in simultaneous saccharification and fermentation (SSF) of whole pretreated slurry of corn stover at high WIS. TMB3400 co-fermented glucose and xylose with relatively high ethanol yields giving high final ethanol concentration. The ethanol productivity increased with increasing concentration of pretreatment hydrolysate in the yeast production medium and when SSF was performed in a fed-batch mode.  相似文献   

11.
Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200°C and 5–20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R 2 = 0.8861) and for ethanol production (R 2 = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190°C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.  相似文献   

12.
We developed a new pretreatment process for producing high-efficiency bioethanol from a lignocellulosic biomass. Barley straw was pretreated with sodium hydroxide in a twin-screw extruder for continuous pretreatment. The biomass to ethanol ratio (BTER) for optimal pretreatment conditions was evaluated by response surface methodology. Simultaneous saccharification and fermentation (SSF) was conducted to investigate the BTER with 30 FPU/g cellulose of enzyme and 7% (v/v) yeast (Saccharomyces cerevisiae CHY 1011) using 10% (w/v) pretreated biomass under various pretreatment conditions. The maximum BTER was 73.00% under optimal pretreatment conditions (86.61 °C, 0.58 M, and 84.79 mL/min for temperature, sodium hydroxide concentration, and solution flow rate, respectively) and the experimental BTER was 70.01 ± 0.59%. SSF was performed to investigate the optimal enzyme and biomass dosage. As a result, maximum ethanol concentration and ethanol yield were 46.00 g/L and 77.36% at a loading pretreated biomass of 20% with 30 FPU/g cellulose of the enzyme dosage for barley straw to bioethanol. These results are a significant contribution to the production of bioethanol from barley straw.  相似文献   

13.
This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or ‘raffinate’. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions.  相似文献   

14.
A thermotolerant yeast strain named Kluyveromyces marxianus IMB4 was used in a simultaneous saccharification and fermentation (SSF) process using Kanlow switchgrass as a feedstock. Switchgrass was pretreated using hydrothermolysis at 200 degrees C for 10 min. After pretreatment, insoluble solids were separated from the liquid prehydrolyzate by filtration and washed with deionized water to remove soluble sugars and inhibitors. Insoluble solids were then hydrolyzed using a commercial cellulase preparation and the released glucose was fermented to ethanol by K. marxianus IMB4 in an SSF process. SSF temperature was 37, 41, or 45 degrees C and pH was 4.8 or 5.5. SSF was conducted for 7 days. Results were compared with a control of Saccharomyces cerevisiae D(5)A at 37 degrees C and pH 4.8. Fermentation by IMB4 at 45 and 41 degrees C ceased after 3 and 4 days, respectively, when a pH 4.8 citrate buffer was used. Fermentation continued for all 7 days using IMB4 at 37 degrees C and the control. When pH 5.5 citrate buffer was used, fermentation ceased after 96 h using IMB4 at 45 degrees C, and ethanol yield was greater than when pH 4.8 citrate buffer was used (78% theoretical). Ethanol yield using IMB4 at 45 degrees C, pH 5.5 was greater than the control after 48, 72, and 96 h (P < 0.05).  相似文献   

15.
Distillers' grains are a co-product of ethanol production. In China, only a small portion of distillers' grains have been used to feed the livestock because the amount was so huge. Nowadays, it has been reported that the distillers' grains have the potential for fuel ethanol production because they are composed of lignocelluloses and residual starch. In order to effectively convert distillers' grains to fuel ethanol and other valuable production, sodium hydroxide pretreatment, step-by-step enzymatic hydrolysis, and simultaneous saccharification and fermentation (SSF) were investigated. The residual starch was first recycled from wet distillers' grains (WDG) with glucoamylase to obtain glucose-rich liquid. The total sugar concentration was 21.3 g/L, and 111.9% theoretical starch was hydrolyzed. Then the removed-starch dry distillers' grains (RDDG) were pretreated with NaOH under optimal conditions and the pretreated dry distillers' grains (PDDG) were used for xylanase hydrolysis. The xylose concentration was 19.4 g/L and 68.6% theoretical xylose was hydrolyzed. The cellulose-enriched dry distillers' grains (CDDG) obtained from xylanase hydrolysis were used in SSF for ethanol production. The ethanol concentration was 42.1 g/L and the ethanol productivity was 28.7 g/100 g CDDG. After the experiment, approximately 80.6% of the fermentable sugars in WDG was converted to ethanol.  相似文献   

16.
Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.  相似文献   

17.
Native aspen (Populus tremuloides) was pretreated using sulfuric acid and sodium bisulfite (SPORL) and dilute sulfuric acid alone (DA). Simultaneous enzymatic saccharification and fermentation (SSF) was conducted at 18% solids using commercial enzymes with cellulase loadings ranging from 6 to 15 FPU/g glucan and Saccharomyces cerevisiae Y5. Compared with DA pretreatment, the SPORL pretreatment reduced the energy required for wood chip size-reduction, and reduced mixing energy of the resultant substrate for solid liquefaction. Approximately 60% more ethanol was produced from the solid SPORL substrate (211 L/ton wood at 59 g/L with SSF efficiency of 76%) than from the solid DA substrate (133 L/ton wood at 35 g/L with SSF efficiency 47%) at a cellulase loading of 10 FPU/g glucan after 120 h. When the cellulase loading was increased to 15 FPU/g glucan on the DA substrate, the ethanol yield still remained lower than the SPORL substrate at 10 FPU/g glucan.  相似文献   

18.
Using standard laboratory equipment, thermochemically pretreated oat straw was enzymatically saccharified and fermented to ethanol, and after removal of ethanol the remaining material was subjected to biogas digestion. A detailed mass balance calculation shows that, for steam explosion pretreatment, this combined ethanol fermentation and biogas digestion converts 85-87% of the higher heating value (HHV) of holocellulose (cellulose and hemicellulose) in the oat straw into biofuel energy. The energy (HHV) yield of the produced ethanol and methane was 9.5-9.8 MJ/(kg dry oat straw), which is 28-34% higher than direct biogas digestion that yielded 7.3-7.4 MJ/(kg dry oat straw). The rate of biogas formation from the fermentation residues was also higher than from the corresponding pretreated but unfermented oat straw, indicating that the biogas digestion could be terminated after only 24 days. This suggests that the ethanol process acts as an additional pretreatment for the biogas process.  相似文献   

19.
The simultaneous saccharification and fermentation (SSF) of pretreated sugar cane leaves to produce ethanol using a cellulolytic enzyme complex from Trichoderma reesei QM 9414 and Saccharomyces cerevisiae NRRL-Y-132 was optimized. Enzymic saccharification parameters were evaluated prior to SSF studies. A 92% conversion of 2·5% substrate (alkaline hydrogen peroxide pretreated) to sugars was achieved at 50°C and pH 4·5, using T. reesei cellulase (40 FPU/g substrate), in 48 h. The pretreated substrate was then subjected to an SSF process using the cellulase complex and S. cerevisiae cells. Optimization of the SSF system is described.  相似文献   

20.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号