首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male rats castrated neonatally and treated with a combination of 0.5 μg estradiol benzoate (EB) plus 50μg dihydrotestosterone propionate (DHTP) for the next 14 days displayed normal sexual behavior when injected with testosterone propionate (TP) in adulthood. Neither EB nor DHTP alone had this developmental effect inasmuch as only 20–25% of the neonatal castrates treated with just 0.1, 0.5, or 10 μg EB, or 50 μg DHTP, displayed ejaculatory responses. The periodic application of mildly painful electric shock, which has been previously shown to markedly facilitate ejaculatory responding in normal male rats, failed to improve sexual performance in these latter subjects. This was true even of the castrates treated neonatally with DHTP which frequently intromitted. Castrates treated with EB or DHTP alone neonatally were subjected to spinal transection (after testing of sexual behavior) for examination of penile reflexes. Those treated with DHTP showed normal reflexes, characterized by numerous erections and flips, indicating the presumably nonaromatizable DHTP has developmental effects on penile reflexes similar to those of testosterone. Subjects treated with EB, including four animals that had ejaculated at least once, displayed very few, if any, erections on reflex tests and no flips. These results show that sometimes intromissive and ejaculatory patterns can occur even though the animal appears to have little or no capacity for penile reflexes.  相似文献   

2.
Male rats castrated on the second day after birth (Day 2) were, for the next 10 days, given daily injections of one of five steroids or steroid combinations: 200 μg of testosterone propionate (TP); 200 μg of dihydrotestosterone propionate (DHTP); 5 μg of estradiol benzoate (EB); 5 μg of estradiol benzoate plus 200 μg of dihydrotestosterone propionate; oil vehicle (VH). Control male rats castrated on Day 90 received a sham castration and oil vehicle in the neonatal period. All animals were given TP in adulthood and tested for male sexual behavior. There was no difference in mounting activity among the subjects. Day 2 DHTP subjects displayed intromissions but were incapable of ejaculating. The more frequent display of intromissions by Day 2 DHTP animals in comparison to Day 2 VH animals could be solely due to their larger and more highly developed penes. On the other hand, the ejaculatory failure of the Day 2 DHTP subjects was attributed to some deficiency in central neural processes controlling ejaculatory mechanisms rather than inadequate penile development. Equivocal results were obtained with the Day 2 EB and Day 2 EB-DHTP animals in that only a few animals in both groups showed an ejaculatory pattern.  相似文献   

3.

Background

Testosterone (T) controls male Syrian hamster sexual behavior, however, neither of T''s primary metabolites, dihydrotestosterone (DHT) and estradiol (E2), even in highly supraphysiological doses, fully restores sexual behavior in castrated hamsters. DHT and T apparently interact with androgen receptors differentially to control male sexual behavior (MSB), but whether these two hormones act synergistically or antagonistically to control MSB has received scant experimental attention and is addressed in the present study.

Methodology/Principal Findings

Sexually experienced male Syrian hamsters were gonadectomized and monitored 5 weeks later to confirm elimination of the ejaculatory reflex (week 0), at which time they received subcutaneous DHT-filled or empty capsules that remained in situ for the duration of the experiment. Daily injections of a physiological dose of 25 µg T or vehicle commenced two weeks after capsule implantation. MSB was tested 2, 4 and 5 weeks after T treatment began. DHT capsules were no more effective than control treatment for long-term restoration of ejaculation. Combined DHT + T treatment, however, restored the ejaculatory reflex more effectively than T alone, as evidenced by more rapid recovery of ejaculatory behavior, shorter ejaculation latencies, and a greater number of ejaculations in 30 minute tests.

Conclusions/Significance

DHT and T administered together restored sexual behavior to pre-castration levels more rapidly than did T alone, whereas DHT and vehicle were largely ineffective. The additive actions of DHT and T on MSB are discussed in relation to different effects of these androgens on androgen receptors in the male hamster brain mating circuit.  相似文献   

4.
Two experiments were performed with ovariectomized female rats in an attempt to determine whether estradiol and dihydrotestosterone work synergistically in the brain to activate mounting behavior. In Expt 1, performed in Göteborg, it was found that females treated daily with 2 μg estradiol benzoate (EB) combined with 500 μg dihydrotestosterone (DHT) displayed significantly more mounts with pelvic thrusting than other females treated with the oil vehicle, 500 μg DHT, or 2 μg EB. The behavior of rats receiving EB + DHT was indistinguishable from that of yet another group of females which received 200 μg testosterone propionate (TP). In Expt 2, performed in Rotterdam, it was found that ovariectomized female rats treated with either 200 μg TP or 2 μg EB + 200 μg dihydrotestosterone propionate (DHTP) mounted significantly more than females treated with 2 μg EB. Both clitoral size and the growth of cornified papillae on the glans clitoris were stimulated by the administration of TP or EB + DHTP. However, in no group was the frequency of mounting affected by anesthetization of the clitoris and external vagina with lidocaine paste. Lordosis quotients of females treated with EB + DHTP were significantly lower than in rats receiving either EB or TP, again regardless of whether or not the genital region was anesthetized. It is concluded that the effects of DHT on estradiol-induced mounting and receptivity most likely result from the action of this androgen on the brain, and not from the stimulatory effect which DHT may exert on genital sensory receptors.  相似文献   

5.
The purpose of the present investigation was to determine if estrogen, aromatizable androgen or nonaromatizable androgen is capable of (1) inducing copulatory behavior and (2) inhibiting the postcastration rise in plasma LH. Castrate male rats were injected daily with either 1 mg testosterone (T), androstenedione (A), dihydrotestosterone (DHT), or 25 μg estradiol benzoate (EB) or oil and tested weekly for masculine behavior and for lordosis behavior after 38 days of steroid treatment. On day 40 blood was collected for radioimmunoassay of plasma LH. At least 89% of the males treated with T, A, or EB and 55% of those treated with DHT displayed ejaculatory behavior whereas none of the oil-treated males showed male copulatory behavior. Only estrogen-treated males displayed lordosis behavior. T and to a lesser extent A treatment reduced high levels of plasma LH; however, DHT and EB further reduced plasma LH to undectable levels. The relative potency of the steroid effect in stimulating accessory sex tissues followed the order: DHT > T > A > EB = oil. Significant dissociation was observed between the effects of these steroids on peripheral morphology, negative feedback, and mating behavior. These results indicate that masculine behavior is facilitated to the greatest extent, although not exclusively, by centrally acting aromatizable androgen or estrogen, whereas under the present conditions only estrogen stimulates feminine behavior.  相似文献   

6.
The relative effectiveness of testosterone, androstenedione, and dihydrotestosterone in maintaining mating behavior following castration of male rats was studied. In Experiment 1 testosterone, but not dihydrotestosterone, was found to maintain mating. In Experiment 2 testosterone and androstenedione were found to be equally effective in maintaining mating. Dihydrotestosterone failed to maintain mating and was no more effective than no treatment at all. Testosterone, androstenedione, and dihydrotestosterone significantly enhanced seminal vesicle and penis weight. In Experiment 3 castrated male rats were administered radiolabeled testosterone, androstenedione, or dihydrotestosterone. Radioactivity was found in hypothalamic and seminal vesicle samples indicating that these steroids can be accumulated by brain as well as peripheral androgen-sensitive tissues. It was concluded that the peripherally active steroid dihydrotestosterone probably plays no role in the maintenance of sexual behavior.  相似文献   

7.
Sexually experienced male deer mice (Peromyscus maniculatus bairdi) were castrated and tested for male sexual behavior. In the weeks following castration male sexual behavior decreased. Ejaculation disappeared first, followed by intromission and, finally, mounting. Castrated males failing to copulate were assigned to one of four treatment groups: 200 μg testosterone propionate (TP); 200 μg dihydrotestosterone propionate (DHTP); 2 μg estradiol benzoate (EB); or sesame oil (OIL). TP and DHTP were equally effective in restoring the complete male sexual behavior pattern. In contrast, EB was effective in stimulating mounting and minimally effective in stimulating intromissions (vaginal penetration), but did not stimulate ejaculatory responses. These data indicate that in deer mice testosterone may mediate male sexual behavior through reduction to dihydrotestosterone rather than through aromatization to estradiol.  相似文献   

8.
Two experiments were conducted to determine whether unilateral implantation of dihydrotestosterone propionate (DHTP) into different brain regions of castrated rats, bearing silastic capsules containing estradiol, could augment sexual behavior without appreciable leakage of androgen into the peripheral circulation. In Experiment 1 implanation of pulverized crystalline DHTP (via 25-gauge, 1-mm-long pellets) facilitated mating significantly without stimulating penile spine growth, provided the pellets were positioned in the lateral septum or medial amygdala. Insertion of DHTP pellets into the preoptic area-anterior hypothalamus, caudate-putamen, or the border of the substantia nigra and ventral tegmental nucleus or of cholesterol pellets into lateral septum or medial amygdala had no behavioral effects. Implanation of DHTP into the lateral septum also failed to activate penile erections in rats restrained in a supine position. In Experiment 2 implantation of different bone wax dilutions of DHTP (via 25-gauge, 1-mm-long pellets) into the preoptic area-anterior hypothalamus augmented males' sexual performance only in that group in which penile spine growth was also significantly stimulated. The results sugggst that 5α-reduced androgen is capable of activating mating in the male rat by acting locally in the lateral septum and/ or medial amygdala.  相似文献   

9.
Male rats castrated at 30 days of age were treated with estradiol benzoate (dose range: 0.05–50 μg EB for 26 days) and dihydrotestosterone (1 mg DHT for 36 days) as adults. The combined EB and DHT treatments resulted in display of male sexual behavior which did not differ from the behavior shown by intact untreated males or castrated, testosterone propionate (1 mg TP for 26 days) treated males. EB alone or DHT alone were relatively ineffective in activating male behavior in castrated males.  相似文献   

10.
Castrated androgen-insensitive rats exhibited mounting and intromission patterns in response to testosterone propionate (TP), estradiol benzoate (EB), or EB combined with dihydrotestosterone (DHT) treatment in adulthood. Treatment with DHT alone was ineffective in stimulating male mating behavior in the mutant rats. Since androgen-insensitive rats, like normal males, have the potential to show mounting behavior following hormone treatment in adulthood, the neural substrate underlying this behavior must be masculinized during development. The effectiveness of gonadal hormones in activating the entire copulatory sequence in castrated littermate males (King-Holtzman) was also examined. TP treatment induced mating behavior in the control rats. DHT also stimulated the complete copulatory pattern, although it was not as effective as TP. The administration of EB, however, did not induce ejaculation in control rats. These results do not support the hypothesis that the activation of male mating behavior by testosterone requires its metabolite estrogen (aromatization hypothesis).  相似文献   

11.
When given peripherally, 5 alpha-dihydrotestosterone, the major androgenic metabolite of testosterone, is relatively less effective than testosterone in activating sexual behavior of castrated male rats. In order to test the possible central nervous system effects of dihydrotestosterone more directly, we castrated Long-Evans rats, gave them a behaviorally subthreshold dose of dihydrotestosterone placed subcutaneously in Silastic capsules (ScDHT), and then additionally treated the rats with intracranial implants of crystalline dihydrotestosterone (IcDHT, N = 12), testosterone (IcT, N = 12), or cholesterol (IcCHOL, N = 10) placed in the medial preoptic area. The peripheral ScDHT treatment maintained sexual organ weights of castrated males at levels comparable to those of intact males, but did not in itself significantly activate mating behavior. The addition of IcT or IcDHT to this treatment regimen significantly increased the number of males displaying mounting behavior, intromissions, and ejaculatory behavior (P less than 0.05) compared to males with IcCHOL implants. There were no significant differences between the group given IcT and the group given IcDHT. Results of this study support the hypothesis that the nonaromatizable androgen 5 alpha-dihydrotestosterone can act in the rat brain to influence male sexual behavior. In addition, these data lead us to suggest that the relative ineffectiveness of dihydrotestosterone versus testosterone when given systemically may reflect differences in bioavailability of these hormones to the brain following such treatment.  相似文献   

12.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone-filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system.  相似文献   

13.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone‐filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 502–510, 2003  相似文献   

14.
The effects were studied of long-term treatment with testosterone metabolites (dihydrotestosterone, DHT, and estradiol, E2, in sc Silastic implants) on preference behavior of ovariectomized female rats for an estrous female over a non-estrous female. For measuring this behavior a residential plus-maze was used which harbored two ovariectomized “stimulus” females on the top of peripheral boxes, one of which was made estrus by injection of estradiol benzoate and progesterone. When both steroids (DHT plus E2) were circulating simultaneously they evoked preference for an estrous female, while neither steroid by itself sufficed. In earlier work with adult male rats castrated on the day of birth, E2 was effective in the absence of DHT. This sex difference, therefore, seems to have arisen before birth. Further, administration of DHT alone caused a profound lack of interest in both “stimulus” females, which cannot be fully explained by the reduced locomotor activity which has been found to be induced by DHT in earlier Studies.  相似文献   

15.
Eight weeks after gonadectomy male, female, and androgenized [10 μg testosterone propionate (TP), 24 hr after birth] female hamsters were given daily treatment with: 150 μg dihydrotestosterone (DHT), 5 μg estradiol benzoate (EB), 150 μg DHT + 5 μg EB, 150 μg DHT + 1 μg EB, 30 μg DHT + 5 μg EB, 30 μg DHT + 1 μg EB, or the oil vehicle. Treatment of castrated male hamsters with 5 μg EB fully restored mounting but relatively few of these animals intromitted and none ejaculated. Treatment with 150 μg DHT restored all components of male sexual behavior but only in a small proportion of the males. Combined treatment with EB and DHT restored mounts, intromissions, and ejaculations in the majority of the males. Although as little as 30 μg DHT + 1 μg EB restored the full complement of male behavior, the males which received 150 μg DHT + 5 μg EB or 150 μg DHT + 1 μg EB required fewer intromissions to achieve ejaculation than the males which received 30 μg DHT + either dose of EB. The response of the androgenized females was similar to that of the males except that the androgenized females had lower intromission rates and none ejaculated. Relatively few of the nonandrogenized females responded to EB and DHT treatment and those that did mounted only a few times each test. These results demonstrate that both EB and DHT can stimulate male sexual behavior in the hamster and that the sensitivity to EB and DHT for copulatory behavior is determined by early postnatal androgen exposure.  相似文献   

16.
We studied the expression of type 1 (5α-R1) and type 2 (5α-R2) 5α-reductase isozymes (5α-R) and their regulation by dihydrotestosterone (DHT) in the prefrontal cortex of male and female rats during postnatal sexual differentiation of the central nervous system (CNS), using one-step quantitative RT-PCR coupled with laser-induced fluorescence capillary electrophoresis. We found a higher expression of 5α-R2, which is considered a masculinizing enzyme, in the female versus male CNS, and observed sexual dimorphism in the regulation of both 5α-R isozymes by DHT. These results open up a new research line that could improve understanding of the role of 5α-R isozymes in the physiology of the CNS.  相似文献   

17.
Adult ovariectomized guinea pigs were tested for aggressive behavior during treatments with estradiol benzoate (EB), testosterone propionate (TP), dihydrotestosterone propionate (DHTP), or with DHTP + EB. Aggression was not influenced by EB, but was augmented by all other steroid treatments. DHTP given by itself was not as effective as TP, but was significantly potentiated by the concurrent administration of EB. When tested for mounting behavior, ovariectomized guinea pigs were refractory to DHTP and to DHTP + EB, whereas they mounted when given TP. The findings suggest that the hormone-sensitive neural systems which mediate aggression in female guinea pigs have in part different steroid requirements from those subserving the activation of mounting. In addition, the findings emphasize that DHTP + EB administration does not always duplicate the effects of TP for behavioral endpoints, since DHTP + EB and TP had similar effects on aggression, but quite different effects on mounting in female guinea pigs. These results stand in contrast to those obtained with male guinea pigs, in which DHTP has been reported to be as effective as TP for the activation of mounting. It is hypothesized that both sex-specific and hormone-specific activational phenomena may be genetically regulated by factors separate from those responsible for the establishment of prenatal hormonal conditions.  相似文献   

18.
The objectives of these studies were to evaluate the influence of testosterone propionate (TP), estradiol cypionate (EC), dihydrotestosterone propionate (DHTP), EC + TP, EC + DHTP, and TP + DHTP on traits of masculine sexual behavior in castrated adult male pigs of different breeds. Masculine sexual behavior was restored and maintained by TP, whereas EC initially activated sexual behavior, including copulation and ejaculation, but was unable to sustain copulatory behavior for the 8- to 18-week periods that were evaluated. Treatment with DHTP was ineffective for stimulation of sexual behavior; thus, it is suggested that testosterone promotes some aspects of masculine sexual behavior in male pigs via aromatization to estrogen, but both androgen and estrogen are required for maintenance of the full complement of masculine sexual behavior traits.  相似文献   

19.
Testosterone propionate (TP) has a quantitative influence on sexual reflexes mediated at the spinal level in male rats. The possibility that this influence reflects the direct action of androgen on neural elements in the cord, rather than on sensory receptors in the penis was examined indirectly by the use of dihydrotestosterone (DHT). Spinal castrated male rats maintained initially on TP and then switched to DHT showed a significant decline in sexual reflexes paralleling the decline of another group of spinal rats receiving no hormone after initial TP treatment. Yet the number of penile papillae and weight of the penile shaft for the DHT subjects were not significantly different from these measures of penile morphology in a third group of subjects receiving continuous TP and in which reflexes did not decline. These and other observations are consistent with the hypothesis that neural elements within the spinal cord, related to the mediation of the ejaculatory pattern in intact male rats, are directly influenced by gonadal androgen.  相似文献   

20.
Castrated adult male rats were administered 3H-testosterone or 3H-dihydrotestosterone and were sacrificed 30 min. later. Steroids were extracted from three brain samples: anterior hypothalamus, posterior hypothalamus and the remainder of the brain. Thin layer chromatography was used to separate the metabolites. Following 3H-testosterone, testosterone, dihydrotestosterone and androstenedione were found. Following 3H-DHT, DHT androstanediol and androstanedione were found. Acetylation of the dihydrotestosterone zone following DHT treatment revealed that the radioactivity rechromatographed primarily as DHT. The findings are related to the behavioral effects of DHT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号