首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Retinal cGMP phosphodiesterase (PDE6) is a key enzyme in vertebrate phototransduction. Rod PDE contains two homologous catalytic subunits (Palphabeta) and two identical regulatory subunits (Pgamma). Biochemical studies have shown that amphibian Palphabeta has high affinity, cGMP-specific, non-catalytic binding sites and that Pgamma stimulates cGMP binding to these sites. Here we show by molecular cloning that each catalytic subunit in amphibian PDE, as in its mammalian counterpart, contains two homologous tandem GAF domains in its N-terminal region. In Pgamma-depleted membrane-bound PDE (20-40% Pgamma still present), a single type of cGMP-binding site with a relatively low affinity (K(d) approximately 100 nm) was observed, and addition of Pgamma increased both the affinity for cGMP and the level of cGMP binding. We also show that mutations of amino acid residues in four different sites in Pgamma reduced its ability to stimulate cGMP binding. Among these, the site involved in Pgamma phosphorylation by Cdk5 (positions 20-23) had the largest effect on cGMP binding. However, except for the C terminus, these sites were not involved in Pgamma inhibition of the cGMP hydrolytic activity of Palphabeta. In addition, the Pgamma concentration required for 50% stimulation of cGMP binding was much greater than that required for 50% inhibition of cGMP hydrolysis. These results suggest that the Palphabeta heterodimer contains two spatially and functionally distinct types of Pgamma-binding sites: one for inhibition of cGMP hydrolytic activity and the second for activation of cGMP binding to GAF domains. We propose a model for the Palphabeta-Pgamma interaction in which Pgamma, by binding to one of the two sites in Palphabeta, may preferentially act either as an inhibitor of catalytic activity or as an activator of cGMP binding to GAF domains in frog PDE.  相似文献   

2.
Two classes of high affinity, cGMP-specific binding sites have been found in association with a peripheral membrane protein in rod outer segments. [3H]cGMP and a photoaffinity label, 8-N3-[32P]cIMP, have been used to study these cGMP binding sites. The cGMP binding sites co-migrated with rod outer segment phosphodiesterase (EC 3.1.4.17) upon Bio-Gel A-0.5m column chromatography, sucrose density gradient centrifugation, and isoelectric focusing (pI 5.35). Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 8-N3-[32P]cIMP-labeled protein also migrated in a position identical with that of purified phosphodiesterase. Scatchard analysis, using purified phosphodiesterase, revealed the presence of two classes of cGMP binding sites with apparent KD values of 0.16 and 0.83 microM. A number of observations indicated that these high affinity, cGMP-specific binding sites are distinct from the phosphodiesterase catalytic site. cAMP, which is a substrate for phosphodiesterase, did not bind to the high affinity cGMP specific sites. Limited tryptic proteolysis of phosphodiesterase resulted in a striking activation of the catalytic activity and a 96% loss of cGMP binding. 1-Methyl-3-isobutylxanthine inhibited phosphodiesterase activity and enhanced the specific binding of cGMP. Mg2+ was necessary for phosphodiesterase activity, but not for high affinity cGMP binding. Finally, phosphodiesterase activity and the cGMP-specific high affinity sites showed different stabilities on storage in phosphate buffer. These specific high affinity cGMP binding sites may be involved in the regulation of phosphodiesterase activity.  相似文献   

3.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.  相似文献   

4.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activated, soluble PDE (PDE-S, alpha beta gamma2 delta) can release and bind cGMP at both noncatalytic sites; the delta subunit is likely responsible for this difference in cGMP exchange rates. Removal of the delta and/or gamma subunits yields a catalytic alphabeta dimer with identical catalytic and binding properties for both PDE-M and PDE-S as follows: high affinity cGMP binding is abolished at one site (KD >1 microM); cGMP binding affinity at the second site (KD approximately 60 nM) is reduced 3-4-fold compared with the nonactivated enzyme; the kinetics of cGMP exchange to activated PDE-M and PDE-S are accelerated to similar extents. The properties of nonactivated PDE can be restored upon addition of gamma subunit. Occupancy of the noncatalytic sites by cGMP may modulate the interaction of the gamma subunit with the alphabeta dimer and thereby regulate cytoplasmic cGMP concentration and the lifetime of activated PDE during visual transduction in photoreceptor cells.  相似文献   

5.
The central effector of visual transduction in retinal rod photoreceptors, cGMP phosphodiesterase (PDE6), is a catalytic heterodimer (alphabeta) to which low molecular weight inhibitory gamma subunits bind to form the nonactivated PDE holoenzyme (alphabetagamma(2)). Although it is known that gamma binds tightly to alphabeta, the binding affinity for each gamma subunit to alphabeta, the domains on gamma that interact with alphabeta, and the allosteric interactions between gamma and the regulatory and catalytic regions on alphabeta are not well understood. We show here that the gamma subunit binds to two distinct sites on the catalytic alphabeta dimer (K(D)(1) < 1 pm, K(D)(2) = 3 pm) when the regulatory GAF domains of bovine rod PDE6 are occupied by cGMP. Binding heterogeneity of gamma to alphabeta is absent when cAMP occupies the noncatalytic sites. Two major domains on gamma can interact independently with alphabeta with the N-terminal half of gamma binding with 50-fold greater affinity than its C-terminal, inhibitory region. The N-terminal half of gamma is responsible for the positive cooperativity between gamma and cGMP binding sites on alphabeta but has no effect on catalytic activity. Using synthetic peptides, we identified regions of the amino acid sequence of gamma that bind to alphabeta, restore high affinity cGMP binding to low affinity noncatalytic sites, and retard cGMP exchange with both noncatalytic sites. Subunit heterogeneity, multiple sites of gamma interaction with alphabeta, and positive cooperativity of gamma with the GAF domains are all likely to contribute to precisely controlling the activation and inactivation kinetics of PDE6 during visual transduction in rod photoreceptors.  相似文献   

6.
The structure of cyclic GMP (cGMP)-binding (cGB), cGMP specific phosphodiesterase (PDE5) comprises several domains. We have used RT-PCR methods to clone the noncatalytic cGB domains of PDE5 from human colon cancer cell RNA and constructed glutathione-S-transferase (GST) fusion proteins to express and study the domains. One fragment showed 94% identity to bovine PDE5 and coded for the high affinity cGB domain of PDE5 (Val(156)-Asp(394), cGB-I). Another cloned fragment showed 92% identity to bovine PDE5 and coded for the phosphorylation site plus both high and low affinity cGB domains of PDE5 (Val(36)-Glu(529), cGB-II). Both fragments expressed as GST-cGB fusion proteins bound cGMP specifically, as determined by competitive [3H]-cGMP ligand binding. We found that cGB-I showed high affinity cGMP binding with K(d)=0.33 microM. cGB-II showed two cGMP binding sites with similar affinities and specificity to the native enzyme. cGB-II was phosphorylated by cGMP-dependent protein kinase (PKG) as reported for bovine PDE5. These data show that recombinant regulatory regions of PDE5 form cGB sites similar to native enzyme sites and confirm proposed domain functions. These results establish that recombinant fusion proteins of PDE5 domains may be used to further characterize the structure of PDE5.  相似文献   

7.
A specific cGMP receptor protein has been identified and separated from the cAMP receptor protein by chromatography on 8-(6-aminohexyl)-amino-cAMP-Sepharose. Scatchard analysis of cGMP binding indicates a single affinity class of receptor sites with KD = 1.4 × 10?8 M. The specificity of the cGMP receptor site has been defined by using a number of nucleotides as competitors for cGMP binding. The cGMP receptor protein sediments at 7S in glycerol density gradients.  相似文献   

8.
The specificity of the two intrasubunit cGMP binding sites of cGMP-dependent protein kinase was determined by measuring the ability of 46 cGMP analogs to compete with [3H]cGMP. Both sites of the enzyme exhibited high specificity for the ribose cyclic phosphate moiety, and lower specificity for the guanine moiety. Effects of modifications in the ribose cyclic phosphate moiety suggested that cGMP is bound at both sites by three hydrogen bonds at 2'-OH, 3'-O, and 5'-O. A negative charge in the cyclic phosphate is apparently required. Modifications of the pyrimidine part of guanine, particularly at C-1, generally caused selectivity for the rapidly exchanging site while modifications of the imidazole part of guanine at C-7 and C-8 caused selectivity for the slowly exchanging site. These increases in selectivity for a site were mainly due to losses in affinity of the other site. There was an apparent requirement of the intact amino group at C-2, particularly for the slowly exchanging site. Comparison of the molecular interactions of cAMP and cGMP with their specific protein kinases showed that both nucleotides are bound by similar forces in the 2', 3' and 5' region, both bases may be bound in syn conformation, but that each base moiety is bound by different molecular interaction, thus leading to the selectivity of the two enzymes. cGMP analogs which possessed strong selectivity for the rapidly exchanging site, but not those selective for the slowly exchanging site, stimulated the binding of [3H]cGMP. Only a few cGMP analogs were more potent than cGMP in stimulating protein kinase activity. The potency of cGMP analogs as stimulators of kinase activity correlated better with the mean binding affinity for both binding sites than with the affinity for either site alone. Two analogs added in combination were synergistic in kinase activation, particularly if one analog was selective for the slowly exchanging site and the other for the rapidly exchanging site. These observations are suggestive that cGMP binding at the rapidly exchanging site stimulates cGMP binding at the slowly exchanging site and that both sites are involved in the activation process.  相似文献   

9.
The allosteric regulation of binding to and the activation of cGMP-dependent protein kinase (cGMP kinase) was studied under identical conditions at 30 degrees C using three forms of cGMP-kinase which differed in the amino-terminal segment, e.g. native cGMP kinase, phosphorylated cGMP kinase which contained 1.4 +/- 0.4 mol phosphate/subunit and constitutively active cGMP kinase which lacked the amino-terminal dimerization domain. These three enzyme forms have identical kinetic constants, e.g. number of cGMP-binding sites, Km values for MgATP and the heptapeptide kemptide, and Vmax values. In the native enzyme, MgATP decreases the affinity for binding site 1. This effect is abolished by 1 M NaCl. In contrast, high concentrations of Kemptide increase the affinity of binding site 2 about fivefold. Under the latter conditions, identical Kd values of 0.2 microM were obtained for sites 1 and 2. Salt, MgATP and Kemptide do not affect the binding kinetics of the phosphorylated or the constitutively active enzyme, suggesting that allosteric regulation depends solely on the presence of a native amino-terminal segment. Cyclic GMP activates the native enzyme at Ka values which are identical with the Kd values for both binding sites. The activation of cGMP-dependent protein kinase is noncooperative but the Ka value depends on the substrate peptide concentration. These results show that the activity of cGMP kinase is primarily regulated by conformational changes within the amino-terminal domain.  相似文献   

10.
Cyclic-GMP-dependent protein kinase contains two binding sites for cGMP, which have different affinities for cGMP. Autophosphorylation of the enzyme affects mainly the binding of cGMP to the 'high'-affinity site (site 1). The enzyme binds cAMP and cAMP stimulates the phosphotransferase activity of the native enzyme half-maximally at 44 microM. Autophosphorylation of the enzyme decreases the apparent Ka value to 7 microM. Autophosphorylation does not affect the catalytic rate of the enzyme if measured at a saturating concentration of ATP. Tritiated cAMP apparently binds at 4 degrees C to one site with a Kd value of 3 microM. Binding to the second site is not measurable. Autophosphorylation of the enzyme increases the affinity of the high-affinity site for cAMP sixfold (Kd 0.46 microM) and allows the detection of a second site. In accordance with these data the dissociation rate of [3H]cAMP from the high-affinity site is decreased from 4.5 min-1 to 1.2 min-1 by autophosphorylation. Experiments in which unlabeled cAMP competes with [3H] cGMP for the two binding sites confirmed these results. Recalculation of the competition curves by a computer program for two binding sites indicated that autophosphorylation decreases the Kd value for binding of cAMP to the high-affinity site from 1.9 microM to 0.17 microM. Autophosphorylation does not affect significantly the affinity for the second site. Kd values for site 2 varied from 17 microM to 40 microM. These results suggest that autophosphorylation of cGMP-dependent protein kinase increases the affinity of the enzyme for cAMP by affecting mainly the properties of binding site 1.  相似文献   

11.
Discrimination between cAMP and cGMP is a critical feature of cAMP- and cGMP-dependent protein kinases. An alanine/threonine difference in the cyclic nucleotide-binding sites has been proposed to provide a structural basis for this functional distinction. Site-directed mutagenesis of this alanine to a threonine in a cAMP-binding site of cAMP kinase produced a mutant with markedly increased cGMP affinity as determined by cGMP binding and protein kinase activation assays. Studies of other mutants at this position support the role of the threonine hydroxyl group as the component that enhances cGMP binding affinity.  相似文献   

12.
The cAMP-dependent protein kinase contains two different cAMP-binding sites referred to as the slow and fast sites. Mutation of Ala-334 to a threonine in the slow site of the bovine type I regulatory subunit created a site with marked increase in cGMP affinity without changing cAMP affinity (Shabb, J. B., Ng. L., Corbin, J. D. (1990) J. Biol. Chem. 265, 16031-16034). The corresponding fast site residue (Ala-210) was changed to a threonine by oligonucleotide-directed mutagenesis, and a double mutant containing a threonine in each site was also made. Holoenzymes were formed from native catalytic subunit and each recombinant regulatory subunit. The fast site mutant holoenzyme exhibited an improved cGMP activation constant and an impaired cAMP activation constant. The double mutant cGMP/cAMP selectivity was 200-fold greater than that of wild-type holoenzyme, making it as responsive to cGMP as native cGMP-dependent protein kinase. The increased intrinsic binding energies of mutated sites for cGMP were 2.7-3.0 kcal mol-1, consistent with the presence of an extra hydrogen bond. Cyclic nucleotide analog studies implied that this hydrogen bond was between the threonine hydroxyl and the 2-amino of cGMP. Comparisons of amino acid sequences and cyclic nucleotide specificities suggested that the Ala/Thr difference may also impart cAMP/cGMP binding selectivity to related proteins such as cyclic nucleotide-gated ion channels.  相似文献   

13.
Native phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band. Two point mutations (G659A and G659P) near the catalytic site that reduced affinity for cGMP substrate retained allosteric cGMP-binding affinity like that of WT PDE5 but displayed cGMP-induced gel shift only to the middle-band position. The upper band could represent a form produced by cGMP binding to the catalytic site, while the middle band could represent a form produced by cGMP binding to the allosteric site. Millimolar cGMP was required for gel shift of PDE5 when added to the pre-incubation before Native PAGE, presumably due to removal of most of the cGMP during electrophoresis, but micromolar cGMP was sufficient for this effect if cGMP was included in the native gel buffer. cGMP-induced gel shift was associated with stimulation of PDE5 catalytic activity, and the rates of onset and reversibility of this effect suggested that it was due to cGMP binding to the allosteric site. Incubation of PDE5 with non-hydrolyzable, catalytic site-specific, substrate analogs such as the inhibitors sildenafil and tadalafil, followed by dilution, did not produce activation of catalytic activity like that obtained with cGMP, although both inhibitors produced a similar gel shift to the upper band as that obtained with cGMP. This implied that occupation of the catalytic site alone can produce a gel shift to the upper band. PDE5 activation or gel shift was reversed by lowering cGMP with dilution followed by at least 1 h of incubation. Such slow reversibility could prolong effects of cGMP on PDE5 in cells after decline of this nucleotide. Reversal was also achieved by Mg++ addition to the pre-incubation mixture to promote cGMP degradation, but Mg++ addition did not reverse the gel shift caused by sildenafil, which is not hydrolyzed by PDE5. Upon extensive dilution, the effect of tadalafil, a potent PDE5 inhibitor, to enhance catalytic-site affinity for this inhibitor was rapidly reversed. Thus, kinetic effect of binding of a high-affinity PDE5 inhibitor to the catalytic site is more readily reversible than that obtained by cGMP binding to the allosteric site. It is concluded that cGMP or PDE5 inhibitor binding to the catalytic site, or ligand binding to both the catalytic site and allosteric site simultaneously, changes PDE5 to a similar physical form; this form is distinct from that produced by cGMP binding to the allosteric site, which activates the enzyme and reverses more slowly.  相似文献   

14.
Substrate binding to the phosphodiesterase-5 (PDE5) catalytic site increases cGMP binding to the regulatory domain (R domain). The latter promotes PDE5 phosphorylation by cyclic nucleotide-dependent protein kinases, which activates catalysis, enhances allosteric cGMP binding, and causes PDE5A1 to apparently elongate. A human PDE5A1 R domain fragment (Val(46)-Glu(539)) containing the phosphorylation site (Ser(102)) and allosteric cGMP-binding sites was studied. The rate, cGMP dependence, and stoichiometry of phosphorylation of the PDE5 R domain by the catalytic subunit of cAMP-dependent protein kinase are comparable with that of the holoenzyme. Migration in native polyacrylamide gels suggests that either cGMP binding or phosphorylation produces distinct conformers of the R domain. Phosphorylation of the R domain increases affinity for cGMP approximately 10-fold (K(D) values 97.8 +/- 17 and 10.0 +/- 0.5 nm for unphospho- and phospho-R domains, respectively). [(3)H]cGMP dissociates from the phospho-R domain with a single rate (t(12) = 339 +/- 30 min) compared with the biphasic pattern of the unphospho-R domain (t(12) = 39.0 +/- 4.8 and 265 +/- 28 min, for the fast and slow components, respectively). Thus, cGMP-directed regulation of PDE5 phosphorylation and the resulting increase in cGMP binding affinity occur largely within the R domain. Conformational change(s) elicited by phosphorylation of the R domain within the PDE5 holoenzyme may also cause or participate in stimulating catalysis.  相似文献   

15.
The regulatory domain of the cGMP-binding cGMP-specific 3':5'-cyclic nucleotide phosphodiesterase (PDE5) contains two homologous segments of amino acid sequence that encode allosteric cyclic nucleotide-binding sites, referred to as site a and site b, which are highly selective for cGMP over cAMP. The possibility that the state of protonation in these sites contributes to cyclic nucleotide selectivity was investigated. The binding of cGMP or cAMP was determined using saturation and competition kinetics at pH values between 5.2 and 9.5. The total cGMP binding by PDE5 was unchanged by variation in pH, but the relative affinity for cGMP versus cAMP progressively decreased as the pH was lowered. Using site-directed mutagenesis, a conserved residue, Asp-289, in site a of PDE5 has been identified as being important for cyclic nucleotide discrimination in this site. It is proposed that deprotonation of Asp-289 enhances the number and strength of bonds formed with cGMP, while concomitantly decreasing the interactions with cAMP.  相似文献   

16.
To date, relative cellular levels of cGMP and cGMP-binding proteins have not been considered important in the regulation of smooth muscle or any other tissue. In rabbit penile corpus cavernosum, intracellular cGMP was determined to be 18 +/- 4 nM, whereas the cGMP-binding sites of types Ialpha and Ibeta cGMP-dependent protein kinase (PKG) and cGMP-binding cGMP-specific phosphodiesterase (PDE5) were 58 +/- 14 nM and 188 +/- 6 nM, respectively, as estimated by two different methods for each protein. Thus, total cGMP-binding sites (246 nM) greatly exceed total cGMP. Given this excess of cGMP-binding sites and the high affinities of PKG and PDE5 for cGMP, it is likely that a large portion of intracellular cGMP is associated with these proteins, which could provide a dynamic reservoir for cGMP. Phosphorylation of PDE5 by PKG is known to increase the affinity of PDE5 allosteric sites for cGMP, suggesting the potential for regulation of a reservoir of cGMP bound to this protein. Enhanced binding of cGMP by phosphorylated PDE5 could reduce the amount of cGMP available for activation of PKG, contributing to feedback inhibition of smooth muscle relaxation or other processes. This introduces a new concept for cyclic nucleotide signaling.  相似文献   

17.
For the type I cGMP-dependent protein kinases (cGKIalpha and cGKIbeta), a high affinity interaction exists between the C2 amino group of cGMP and the hydroxyl side chain of a threonine conserved in most cGMP binding sites. To examine the effect of this interaction on ligand binding and kinase activation in the type II isozyme of cGMP-dependent protein kinase (cGKII), alanine was substituted for the conserved threonine or serine. cGKII was found to require the C2 amino group of cGMP and its cognate serine or threonine hydroxyl for efficient cGMP activation. Of the two binding sites, disruption of cGMP-specific binding in the NH(2)-terminal binding site had the greatest effect on cGMP-dependent kinase activation, like cGKI. However, ligand dissociation studies showed that the location of the rapid and slow dissociation sites of cGKII was reversed relative to cGKI. Another set of mutations that prevented cyclic nucleotide binding demonstrated the necessity of the NH(2)-terminal, rapid dissociation binding site for cyclic nucleotide-dependent activation of cGKII. These findings suggest distinct mechanisms of activation for cGKII and cGKI isoforms. Because cGKII mediates the effects of heat-stable enterotoxins via the cystic fibrosis transmembrane regulator Cl(-) channel, these findings define a structural target for drug design.  相似文献   

18.
The effect of synthetic porcine brain natriuretic peptide (pBNP), a novel brain peptide with sequence homology to alpha-human atrial natriuretic peptide (hANP), on receptor binding and cGMP generation, was studied in cultured rat vascular smooth muscle cells (VSMC) and compared with that of alpha-hANP. 125I-pBNP bound to the cells in a time-dependent manner similar to that of 125I-alpha-hANP. Scatchard analysis indicated a single class of binding sites for pBNP with affinity and capacity identical to those of alpha-hANP. pBNP and alpha-hANP were almost equipotent in inhibiting the binding of either radioligand and stimulating intracellular cGMP generation. These data indicate that BNP and ANP interact with the same receptor sites to activate guanylate cyclase in rat VSMC.  相似文献   

19.
The diverse biological actions of endothelins (ET) appear to be mediated by specific cell-surface receptors. Autoradiography and membrane binding studies have shown abundant ET binding sites in the kidney. However, their expression in specific types of renal cells is unclear. We studied the binding of 125I-labelled endothelin-1 in freshly isolated cell suspensions from canine inner medullary collecting duct. Competition binding experiments revealed the presence of specific high-affinity binding sites: unlabelled ET-1 and ET-2 compared with the radioligand with an IC50 of 135 and 83 pM, respectively, while the IC50 of ET-3 and big ET-1 were 2 and 4 orders of magnitude higher, indicating the presence of ETA-type receptor. Angiotensin II, vasopressin, and atrial natriuretic peptide (ANP) did not compete for ET binding even at a concentration of 10(-6) M. Saturation binding experiments showed a single class of binding sites of high density (Bmax = 56.7 +/- 10.3 fmol/10(6) cells) and high affinity (Kd = 69.8 +/- 10 pM). In contrast, ANP receptors in the same cell preparations appeared as two classes of binding sites with widely different affinity and density. The high-affinity ANP site (Kd = 311 +/- 48 pM) was compatible with ANP-B (guanylate cyclase-coupled) receptor. ET-1 did not compete for this receptor. ET-1 (10(-7) M) did not alter ANP-induced cGMP generation in these cells (3.8-fold increase at 10(-7) M ANP), nor basal levels of cGMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
N Bennett  A Clerc 《Biochemistry》1989,28(18):7418-7424
The mechanism of activation of cGMP phosphodiesterase by the GTP-binding protein in the disc membrane of retinal rods has been investigated by measuring the light-induced phosphodiesterase activity in reconstituted systems where the concentration of either the GTP-binding protein or the phosphodiesterase is varied. The results are consistent with the existence of two activator sites per phosphodiesterase functional unit: binding of one G alpha GTP (alpha subunit of the G-protein with GTP bound) with high affinity (100 +/- 50 nM) partially activates the enzyme (Vmax1 approxmately 0.05 Vmax to 0.10V max to trypsin-activated phosphodiesterase); binding of a second G alpha GTP with lower affinity (600 +/- 100 nM) induces maximal activation (Vmax2 approximately Vmax of trypsin-activated phosphodiesterase). The two different states of activated phosphodiesterase have the same Km for cGMP and the same pH dependence; they differ in their sensitivity to GMP. Micromolar concentration of protamines increases the affinity of the two activator sites and slightly increases Vmax1. When G-protein is activated with GTP-gamma S instead of GTP, the affinities of the two activator sites are not significantly modified, while Vmax1 appears to be increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号