首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plants and algae have developed multiple protective mechanisms to survive under high light conditions. Thermal dissipation of excitation energy in the membrane-bound chlorophyll-antenna of photosystem II (PSII) decreases the energy arriving at the reaction center and thus reduces the generation of toxic photo-oxidative species. This process results in a decrease of PSII-related fluorescence emission, known as non-photochemical quenching (NPQ). It has always been assumed that cyanobacteria, the progenitor of the chloroplast, lacked an equivalent photoprotective mechanism. Recently, however, evidence has been presented for the existence of at least three distinct mechanisms for dissipating excess absorbed energy in cyanobacteria. One of these mechanisms, characterized by a blue-light-induced fluorescence quenching, is related to the phycobilisomes, the extramembranal antenna of cyanobacterial PSII. In this photoprotective mechanism the soluble carotenoid-binding protein (OCP) encoded by the slr1963 gene in Synechocystis sp. PCC 6803, of previously unknown function, plays an essential role. The amount of energy transferred from the phycobilisomes to the photosystems is reduced and the OCP acts as the photoreceptor and as the mediator of this antenna-related process. These are novel roles for a soluble carotenoid protein.  相似文献   

2.
Photosynthetic organisms have developed multiple protective mechanisms to survive under high-light conditions. In plants, one of these mechanisms is the thermal dissipation of excitation energy in the membrane-bound chlorophyll antenna of photosystem II. The question of whether or not cyanobacteria, the progenitor of the chloroplast, have an equivalent photoprotective mechanism has long been unanswered. Recently, however, evidence was presented for the possible existence of a mechanism dissipating excess absorbed energy in the phycobilisome, the extramembrane antenna of cyanobacteria. Here, we demonstrate that this photoprotective mechanism, characterized by blue light-induced fluorescence quenching, is indeed phycobilisome-related and that a soluble carotenoid binding protein, ORANGE CAROTENOID PROTEIN (OCP), encoded by the slr1963 gene in Synechocystis PCC 6803, plays an essential role in this process. Blue light is unable to quench fluorescence in the absence of phycobilisomes or OCP. The fluorescence quenching is not DeltapH-dependent, and it can be induced in the absence of the reaction center II or the chlorophyll antenna, CP43 and CP47. Our data suggest that OCP, which strongly interacts with the thylakoids, acts as both the photoreceptor and the mediator of the reduction of the amount of energy transferred from the phycobilisomes to the photosystems. These are novel roles for a soluble carotenoid protein.  相似文献   

3.
Two mechanisms of photoprotective dissipation of the excessively absorbed energy by photosynthetic apparatus of cyanobacteria are described that divert energy from reaction centers. Energy dissipation, monitored as nonphotochemical fluorescence quenching, occurs at different steps of energy transfer within the phycobilisomes or core antenna of photosystem I. Although these mechanisms differ significantly, in both cases, energy dissipates mainly from terminal emitters: allophycocyanin B or core membrane linker protein (LCM) in phycobilisomes, or the longest-wavelength chlorophylls in photosystem I antenna. It is supposed that carotenoid-induced energy dissipation in phycobilisomes is triggered by light-induced transformation of the nonquenched state of antenna into quenched state due to conformation changes caused by orange carotinoid-binding protein (OCP)–phycobilisome interaction. Fluorescence of the longest-wavelength chlorophylls of photosystem I antenna is strongly quenched by P700 cation radical or by P700 triplet state, dependent on redox state of the acceptor side cofactors of photosystem I.  相似文献   

4.
Nonphotochemical quenching (NPQ) of excitation energy is a well-established phenomenon in green plants, where it serves to protect the photosynthetic apparatus from photodamage under excess illumination. The induction of NPQ involves a change in the function of the light-harvesting apparatus, with the formation of quenching centers that convert excitation energy into heat. Recently, a comparable phenomenon was demonstrated in cyanobacteria grown under iron-starvation. Under these conditions, an additional integral membrane chlorophyll-protein, IsiA, is synthesized, and it is therefore likely that IsiA is required for NPQ in cyanobacteria. We have previously used fluorescence recovery after photobleaching to show that phycobilisomes diffuse rapidly on the membrane surface, but are immobilized when cells are immersed in high-osmotic strength buffers, apparently because the interaction between phycobilisomes and reaction centers is stabilized. Here, we show that when cells of the cyanobacterium Synechocystis sp. PCC 6803 subjected to prolonged iron-deprivation are immersed in 1 m phosphate buffer, NPQ can still be induced as normal by high light. However, the formation of the quenched state is irreversible under these conditions, suggesting that it involves the coupling of free phycobilisomes to an integral-membrane complex, an interaction that is stabilized by 1 m phosphate. Fluorescence spectra are consistent with this idea. Fluorescence recovery after photobleaching measurements confirm that the induction of NPQ in the presence of 1 m phosphate is accompanied by immobilization of the phycobilisomes. We propose as a working hypothesis that a major component of the fluorescence quenching observed in iron-starved cyanobacteria arises from the coupling of free phycobilisomes to IsiA.  相似文献   

5.
The pathways of energy dissipation of excessive absorbed energy in cyanobacteria in comparison with that in higher plants are discussed. Two mechanisms of non-photochemical quenching in cyanobacteria are described. In one case this quenching occurs as light-induced decrease of the fluorescence yield of long-wavelength chlorophylls of the photosystem I trimers induced by inactive reaction centers: P700 cation-radical or P700 in triplet state. In the other case, non-photochemical quenching in cyanobacteria takes place with contribution of water-soluble protein OCP (containing 3′-hydroxyechinenone) that induces reversible quenching of allophycocyanin fluorescence in phycobilisomes. The possible evolutionary pathways of the involvement of carotenoid-binding proteins in non-photochemical quenching are discussed comparing the cyanobacterial OCP and plant PsbS protein. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 10, pp. 1385–1395.  相似文献   

6.
High light poses a threat to oxygenic photosynthetic organisms. Similar to eukaryotes, cyanobacteria evolved a photoprotective mechanism, non-photochemical quenching (NPQ), which dissipates excess absorbed energy as heat. An orange carotenoid protein (OCP) has been implicated as a blue-green light sensor that induces NPQ in cyanobacteria. Discovered in vitro, this process involves a light-induced transformation of the OCP from its dark, orange form (OCP(o)) to a red, active form, however, the mechanisms of NPQ in vivo remain largely unknown. Here we show that the formation of the quenching state in vivo is a multistep process that involves both photoinduced and dark reactions. Our kinetic analysis of the NPQ process reveals that the light induced conversion of OCP(o) to a quenching state (OCP(q)) proceeds via an intermediate, non-quenching state (OCP(i)), and this reaction sequence can be described by a three-state kinetic model. The conversion of OCP(o) to OCP(i) is a photoinduced process with the effective absorption cross section of 4.5 × 10(-3)?2 at 470 nm. The transition from OCP(i) to OCP(q) is a dark reaction, with the first order rate constant of approximately 0.1s(-1) at 25°C and the activation energy of 21 kcal/mol. These characteristics suggest that the reaction rate may be limited by cis-trans proline isomerization of Gln224-Pro225 or Pro225-Pro226, located at a loop near the carotenoid. NPQ decreases the functional absorption cross-section of Photosystem II, suggesting that formation of the quenched centers reduces the flux of absorbed energy from phycobilisomes to the reaction centers by approximately 50%.  相似文献   

7.
Excess light is harmful for photosynthetic organisms. The cyanobacterium Synechocystis PCC 6803 protects itself by dissipating the excess of energy absorbed by the phycobilisome, the water-soluble antenna of Photosystem II, into heat decreasing the excess energy arriving to the reaction centers. Energy dissipation results in a detectable decrease of fluorescence. The soluble Orange Carotenoid Protein (OCP) is essential for this blue-green light induced mechanism. OCP genes appear to be highly conserved among phycobilisome-containing cyanobacteria with few exceptions. Here, we show that only the strains containing a whole OCP gene can perform a blue-light induced photoprotective mechanism under both iron-replete and iron-starvation conditions. In contrast, strains containing only N-terminal and/or C-terminal OCP-like genes, or no OCP-like genes at all lack this light induced photoprotective mechanism and they were more sensitive to high-light illumination. These strains must adopt a different strategy to longer survive under stress conditions. Under iron starvation, the relative decrease of phycobiliproteins was larger in these strains than in the OCP-containing strains, avoiding the appearance of a population of dangerous, functionally disconnected phycobilisomes. The OCP-containing strains protect themselves from high light, notably under conditions inducing the appearance of disconnected phycobilisomes, using the energy dissipation OCP-phycobilisome mechanism.  相似文献   

8.
In conditions of fluctuating light, cyanobacteria thermally dissipate excess absorbed energy at the level of the phycobilisome, the light-collecting antenna. The photoactive Orange Carotenoid Protein (OCP) and Fluorescence Recovery Protein (FRP) have essential roles in this mechanism. Absorption of blue-green light converts the stable orange (inactive) OCP form found in darkness into a metastable red (active) form. Using an in vitro reconstituted system, we studied the interactions between OCP, FRP, and phycobilisomes and demonstrated that they are the only elements required for the photoprotective mechanism. In the process, we developed protocols to overcome the effect of high phosphate concentrations, which are needed to maintain the integrity of phycobilisomes, on the photoactivation of the OCP, and on protein interactions. Our experiments demonstrated that, whereas the dark-orange OCP does not bind to phycobilisomes, the binding of only one red photoactivated OCP to the core of the phycobilisome is sufficient to quench all its fluorescence. This binding, which is light independent, stabilizes the red form of OCP. Addition of FRP accelerated fluorescence recovery in darkness by interacting with the red OCP and destabilizing its binding to the phycobilisome. The presence of phycobilisome rods renders the OCP binding stronger and allows the isolation of quenched OCP-phycobilisome complexes. Using the in vitro system we developed, it will now be possible to elucidate the quenching process and the chemical nature of the quencher.  相似文献   

9.

Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10?5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.

  相似文献   

10.
Cyanobacteria have previously been considered to differ fundamentally from plants and algae in their regulation of light harvesting. We show here that in fact the ecologically important marine prochlorophyte, Prochlorococcus, is capable of forming rapidly reversible non-photochemical quenching of chlorophyll a fluorescence (NPQf or qE) as are freshwater cyanobacteria when they employ the iron stress induced chlorophyll-based antenna, IsiA. For Prochlorococcus, the capacity for NPQf is greater in high light-adapted strains, except during iron starvation which allows for increased quenching in low light-adapted strains. NPQf formation in freshwater cyanobacteria is accompanied by deep Fo quenching which increases with prolonged iron starvation.  相似文献   

11.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE(-) mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with--presumably--allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

12.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

13.
In high light conditions, cyanobacteria dissipate excess absorbed energy as heat in the light-harvesting phycobilisomes (PBs) to protect the photosynthetic system against photodamage. This process requires the binding of the red active form of the Orange Carotenoid Protein (OCP(r)), which can effectively quench the excited state of one of the allophycocyanin bilins. Recently, an in vitro reconstitution system was developed using isolated OCP and isolated PBs from Synechocystis PCC 6803. Here we have used spectrally resolved picosecond fluorescence to study wild-type and two mutated PBs. The results demonstrate that the quenching for all types of PBs takes place on an allophycocyanin bilin emitting at 660 nm (APC(Q)(660)) with a molecular quenching rate that is faster than (1 ps)(-1). Moreover, it is concluded that both the mechanism and the site of quenching are the same in vitro and in vivo. Thus, utilization of the in vitro system should make it possible in the future to elucidate whether the quenching is caused by charge transfer between APC(Q)(660) and OCP or by excitation energy transfer from APC(Q)(660) to the S(1) state of the carotenoid--a distinction that is very hard, if not impossible, to make in vivo.  相似文献   

14.
In many natural habitats, growth of cyanobacteria may be limited by a low concentration of iron. Cyanobacteria respond to this condition by expressing a number of iron-stress-inducible genes, of which the isiA gene encodes a chlorophyll-binding protein known as IsiA or CP43'. IsiA monomers assemble into ring-shaped polymers that encircle trimeric or monomeric photosystem I (PSI), or are present in supercomplexes without PSI, in particular upon prolonged iron starvation. In this report, we present steady-state and time-resolved fluorescence measurements of isolated IsiA aggregates that have been purified from an iron-starved psaFJ-minus mutant of Synechocystis PCC 6803. We show that these aggregates have a fluorescence quantum yield of approximately 2% compared to that of chlorophyll a in acetone, and that the dominating fluorescence lifetimes are 66 and 210 ps, more than 1 order of magnitude shorter than that of free chlorophyll a. Comparison of the temperature dependence of the fluorescence yields and spectra of the isolated aggregates and of the cells from which they were obtained suggests that these aggregates occur naturally in the iron-starved cells. We suggest that IsiA aggregates protect cyanobacterial cells against the deleterious effects of light.  相似文献   

15.
R. Kaňa 《Photosynthetica》2018,56(1):132-138
The light-induced nonphotochemical quenching (NPQ) can safely dissipate excess of absorbed light to heat. Here we describe an application of spectrally resolved fluorescence induction (SRFI) method for studying spectral variability of NPQ. The approach allows detection of spectrally-resolved nonphotochemical quenching (NPQλ) representing NPQ dependency on fluorescence emission wavelength in the whole spectral range of fluorescence emission. The experimental approach is briefly described and NPQλ is studied for the cryptophyte alga Rhodomonas salina and for green alga Chlorella sp. We confirm presence of NPQλ only in membrane-bound antennae (chlorophyll a/c antennae) and not in phycobiliproteins in lumen in cryptophyte and show that NPQλ is inhibited in the whole spectral range by NPQ inhibitors in Chlorella sp. We discuss variability in the quenching in the particular spectral ranges and applicability of the NPQλ parameter to study quenching locus in vivo.  相似文献   

16.
Photosynthesis starts with absorption of light energy by light-harvesting antenna complexes with subsequent production of energy-rich organic compounds. However, all photosynthetic organisms face the challenge of excess photochemical conversion capacity. In cyanobacteria, non-photochemical quenching (NPQ) performed by the orange carotenoid protein (OCP) is one of the most important mechanisms to regulate the light energy captured by light-harvesting antennas. This regulation permits the cell to meet its cellular energy requirements and at the same time protects the photosynthetic apparatus under fluctuating light conditions. Several reports have revealed that thermal dissipation increases under excess copper in plants. To explore the effects and mechanisms of copper on cyanobacteria NPQ, photoactivation and relaxation of OCP in the presence of copper were examined in this communication. When OCPo (OCP at orange state) is converted into OCPr(OCP at red state), copper ion has no effect on the photoactivation kinetics. Relaxation of OCPr to OCPo, however, is largely delayed—almost completely blocked, in the presence of copper. Even the addition of the fluorescence recovery protein (FRP) cannot activate the relaxation process. Native polyacrylamide gel electrophoresis (PAGE) analysis result indicates the heterogeneous population of Cu2+-locked OCPr. The Cu2+-OCP binding constant was estimated using a hyperbolic binding curve. Functional roles of copper-binding OCP in vivo are discussed.  相似文献   

17.
18.
《BBA》2022,1863(7):148580
Photosystem (PS) II is prone to photodamage both as a direct consequence of light, and indirectly by producing reactive oxygen species. Engineering high-light tolerance in cyanobacteria with minimal impact on PSII function is desirable in synthetic biology. IsiA, a CP43 homolog found exclusively in cyanobacteria, can dissipate excess light energy. We have recently determined that the sole cysteine residue of IsiA in Synechocystis sp. PCC 6803 has a critical role in non-photochemical quenching. Similar cysteine-mediated energy quenching has also been observed in green?sulfur bacteria. Sequence analysis of IsiA and CP43 aligns cysteine 260 of IsiA with valine 277 of CP43 in Synechocystis sp. PCC 6803. In the current study, we explore the impact of replacing valine 277 of CP43 to a cysteine on growth, PSII activity and high-light tolerance. Our results imply a decline in the PSII output for the mutant (CP43V277C) presumably due to the dissipation of absorbed light energy by cysteine. Spectroscopic analysis of isolated PSII from this mutant strain also suggests a delayed transfer of excitation energy from CP43-associated chlorophyll a to PSII reaction center. The mutation makes the PSII high-light tolerant and provides a small advantage in growth under high-light conditions. This previously unexplored strategy to engineer high-light tolerance could be a step further towards developing cyanobacterial cells as biofactories.  相似文献   

19.
We are using fluorescence recovery after photobleaching (FRAP) to probe the dynamics of thylakoid membranes in vivo in cells of the cyanobacterium Synechococcus sp. PCC7942. We have shown previously that the light-harvesting phycobilisomes diffuse quite rapidly on the thylakoid membrane surface. However, the photosystem II core complexes appear completely immobile. This raises the possibility that all of the membrane integral protein complexes in the thylakoid membrane are locked into a rather rigid array. Alternatively, it is possible that photosystem II is specifically anchored in the membrane, with other membrane proteins able to diffuse around it. We have now resolved this question by studying the diffusion of a second integral membrane protein, the IsiA chlorophyll-binding protein. IsiA is induced under iron starvation and some other stress conditions. In iron-stressed cyanobacterial cells, a high proportion of chlorophyll fluorescence comes from IsiA. This makes it straightforward to examine the diffusion of IsiA by FRAP. We find that the complex is mobile with a mean diffusion coefficient of approximately 3 x 10(-11) cm(2) s(-1). Thus it is clear that some thylakoid membrane proteins are mobile and that there must be a specific anchor that prevents photosystem II diffusion. We discuss the implications for the structure and function of the cyanobacterial thylakoid membrane.  相似文献   

20.
As high-intensity solar radiation can lead to extensive damage of the photosynthetic apparatus, cyanobacteria have developed various protection mechanisms to reduce the effective excitation energy transfer (EET) from the antenna complexes to the reaction center. One of them is non-photochemical quenching (NPQ) of the phycobilisome (PB) fluorescence. In Synechocystis sp. PCC6803 this role is carried by the orange carotenoid protein (OCP), which reacts to high-intensity light by a series of conformational changes, enabling the binding of OCP to the PBs reducing the flow of energy into the photosystems. In this paper the mechanisms of energy migration in two mutant PB complexes of Synechocystis sp. were investigated and compared. The mutant CK is lacking phycocyanin in the PBs while the mutant ΔPSI/PSII does not contain both photosystems. Fluorescence decay spectra with picosecond time resolution were registered using a single photon counting technique. The studies were performed in a wide range of temperatures — from 4 to 300 K. The time course of NPQ and fluorescence recovery in darkness was studied at room temperature using both steady-state and time-resolved fluorescence measurements. The OCP induced NPQ has been shown to be due to EET from PB cores to the red form of OCP under photon flux densities up to 1000 μmol photons m− 2 s− 1. The gradual changes of the energy transfer rate from allophycocyanin to OCP were observed during the irradiation of the sample with blue light and consequent adaptation to darkness. This fact was interpreted as the revelation of intermolecular interaction between OCP and PB binding site. At low temperatures a significantly enhanced EET from allophycocyanin to terminal emitters has been shown, due to the decreased back transfer from terminal emitter to APC. The activation of OCP not only leads to fluorescence quenching, but also affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra. The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号