首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chrysin (5,7-dihydroxylflavone, Chry) is a natural product extracted from plants, honey, and propolis. In this work, a novel chrysin–organogermanium(IV) complex (Chry–Ge) with enhanced anticancer activities was synthesized, and its potential anticancer effects against cancer cells were measured using various methods. MTT results showed that Chry–Ge had significant inhibition effects on the proliferation of MCF-7, HepG2 and Colo205 human cancer cell lines in a dose-dependent manner while had little cytotoxic effects on MCF-10A human normal cells (MCF-10A cells) with the same treatment of Chry–Ge. These results suggested that Chry–Ge possessed enhanced anticancer effects and high selectivity between cancer cells and normal cells. The immuno-staining results showed that the nuclei of MCF-7 cells represented a total fragmented morphology and a disorganized cytoskeletal network in MCF-7 cells after Chry–Ge treatment. Besides, atomic force microscopy (AFM) was applied to detect the changes of ultrastructural and biomechanical properties of MCF-7 cellular membrane induced by Chry–Ge. The AFM data indicated that Chry–Ge treatment directly caused the decrease of cell rigidity and adhesion force of MCF-7 cells, suggesting that membrane toxicity might be one of the targets for Chry–Ge in MCF-7 cells. Moreover, the fluorescence-based flow cytometric analysis demonstrated that Chry–Ge could induce apoptosis in MCF-7 cells in ROS-dependent mitochondrial pathway. All results collectively showed that Chry–Ge could be as a promising anticancer drug for cancer therapy.  相似文献   

2.
This study aimed to investigate the role of fatty acid synthase (FASN) in the epithelial-mesenchymal transition (EMT) of breast cancer cells. MCF-7 cells and MCF-7 cells overexpressing mitogen-activated protein kinase 5 (MCF-7-MEK5) were used in this study. MCF-7-MEK5 cells showed stable EMT characterized by increased vimentin and decreased E-cadherin expression. An In vivo animal model was established using the orthotopic injection of MCF-7 or MCF-7-MEK5 cells. Real-time quantitative PCR and western blotting were used to detect the expression levels of FASN and its downstream proteins liver fatty acid-binding protein (L-FABP) and VEGF/VEGFR-2 in both in vitro and in vivo models (nude mouse tumor tissues). In MCF-7-MEK5 cells, significantly increased expression of FASN was associated with increased levels of L-FABP and VEGF/VEGFR-2. Cerulenin inhibited MCF-7-MEK5 cell migration and EMT, and reduced FASN expression and down-stream proteins L-FABP, VEGF, and VEGFR-2. MCF-7-MEK5 cells showed higher sensitivity to Cerulenin than MCF-7 cells. Immunofluorescence revealed an increase of co-localization of FASN with VEGF on the cell membrane and with L-FABP within MCF-7-MEK5 cells. Immunohistochemistry further showed that increased percentage of FASN-positive cells in the tumor tissue was associated with increased percentages of L-FABP- and VEGF-positive cells and the Cerulenin treatment could reverse the effect. Altogether, our results suggest that FASN is essential to EMT possibly through regulating L-FABP, VEGF and VEGFR-2. This study provides a theoretical basis and potential strategy for effective suppression of malignant cells with EMT.  相似文献   

3.
The occurrence and the novel function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the extracellular space were studied. The extracellular GAPDH with the same molecular mass as the intracellular GAPDH was detected in the conditioned medium of mammalian cultured cell lines such as COS-7, HEK293, MCF-7, HepG2, PC-12, and Neuro-2a cells. Western blot analysis represented the occurrence of GAPDH, but not alpha-tubulin (an intracellular marker protein), in the conditioned medium of COS-7 cells. Furthermore, GAPDH was found in rat serum. These results indicate that GAPDH was secreted outside of the cells. Addition of GAPDH to the cultured medium of COS-7, HEK293, and HepG2 cells allowed cells to undergo morphological changes. In COS-7 cells, the extracellular GAPDH inhibited cell spreading without influencing the cell growth. Western blot and immunofluorescent microscopy analyses revealed that the extracellular GAPDH bound to COS-7 cells in time- and dose-dependent manners. However, a mutant substituting Ser for Cys at position 151 of GAPDH resulted in no binding to the cells, no decreased cell-spreading efficiency and no cell morphological changes. These results indicate that the Cys151 was involved in the binding of GAPDH to cells and the GAPDH-inhibited cell spreading.  相似文献   

4.
The transport of l-leucine by two human breast cancer cell lines has been examined. l-Leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+-independent pathway. l-Leucine uptake by both cell lines was inhibited by l-alanine, d-leucine and to a lesser extent by l-lysine but not by l-proline. Estrogen (17β-estradiol) stimulated l-leucine uptake by MCF-7 but not by MDA-MB-231 cells. l-Leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on l-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 °C. There was, however, a significant efflux of l-leucine under zero-trans conditions which was also temperature-sensitive. l-Glutamine, l-leucine, d-leucine, l-alanine, AIB and l-lysine all trans-stimulated l-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, d-alanine and l-proline had little or no effect. The anti-cancer agent melphalan inhibited l-leucine uptake by MDA-MB-231 cells but had no effect on l-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for l-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

5.
The influence of 2-methoxyestradiol (2ME) was investigated on cell growth, morphology and spindle formation in a tumorigenic (MCF-7) and non-tumorigenic (MCF-12A) epithelial breast cell line. Inhibition of cell growth was more pronounced in the MCF-7 cells compared to the MCF-12A cells following 2ME treatment. Dose-dependent studies (10(-5)-10(-9) M) revealed that 10(-6) M 2ME inhibited cell growth by 44% in MCF-12A cells and by 84% in MCF-7 cells (p-value < 0.05). 2ME-treated MCF-7 cells showed abnormal metaphase cells, membrane blebbing, apoptotic cells and disrupted spindle formation. These observations were either absent or less prominent in MCF-12A cells. 2ME had no effect on the length of the cell cycle between S-phase and the time a mitotic peak was reached in either cell line but MCF-7 cells were blocked in mitosis with no statistically significant alterations in the phosphorylation status of Cdc25C. Nevertheless, Cdc2 activity was significantly increased in MCF-7 cells compared to MCF-12A cells (p-value < 0.05). The results indicate that 2ME disrupts mitotic spindle formation and enhances Cdc2 kinase activity, leading to persistence of the spindle checkpoint and thus prolonged metaphase arrest that may result in the induction of apoptosis. The tumorigenic MCF-7 cells were especially sensitive to 2ME treatment compared to the normal MCF-12A cells. Therefore, differential mechanism(s) of growth inhibition are evident between the normal and tumorigenic cells.  相似文献   

6.
目的:建立-种基于分泌型萤光素酶的实时定量检测实验动物体内肿瘤大小的方法。方法:以分泌型Gaussia萤光素酶(Gluc)为报告基因,以嘌呤霉素为筛选基因,将两者用T2A元件连接后克隆到慢病毒载体,包装慢病毒后感染乳腺癌MCF-7细胞,经嘌呤霉素筛选得到稳定转染细胞MCF-7-Gluc,并检测细胞上清中Gluc活性随时问和细胞数目的变化;将MCF-7-Gluc扩大培养后经皮下注射到雌性BALB/c裸鼠前肢腋下,待肿瘤形成后,检测外周血液中Gluc活性与肿瘤体积的相关性。结果:体外实验显示稳定转染细胞MCF-7-Gluc分泌到细胞上清的Gluc活性与时间和细胞数量在-定范围内均呈现良好的线性关系,体内实验显示裸鼠血液中的Gluc活性与肿瘤体积呈正相关。结论:Gluc技术可作为-种灵活、方便、实时定量检测活体动物体内肿瘤大小的有效工具。  相似文献   

7.
Sophora interrupta belongs to the family of Fabaceae and the species in this genus have a diverse medicinal importance as a folk medicine for preventing many ailments including cancer. In order to evaluate the anticancer activity of S.interrupta, we have performed in vitro anti-oxidant, anti-inflammatory, anti-proliferative, and cell based anticancer activity in MCF-7 and PC-3 cell lines. Secondary metabolites of S.interrupta were used to identify anticancer compounds using Open Eye software. The antioxidant activity of the S.interrupta root ethylacetate (SEA) extract at 100 µg/ml is equal to that of ascorbic acid at 50 µg/ml. The antiinflammatory activity of SEA is half of that of diclofenac at 50 µg/ml. Anticancer activity was detected by measuring the mitochondrial dehydrogenase activity (MTT assay). The half maximal inhibitory concentrations (IC50) for MCF-7 and PC-3 cell lines are 250 and 700 µg/ml respectively. This was supported by the morphological changes such as membrane blebbing, cell detachment and rounded cell morphology when compared to the parental cells. In addition, we observed few green cells (live) over red cells (dead) based on the uptake of acridine orange and ethidium bromide dyes. Kaempferol-3-O-b-D-glucopyranoside, a Secondary metabolite of S.interrupta form 6 hydrogen bond interactions with Arg 202, Gln 207, Gly 227, Gly 229, Thr 231 and Ala 232 human DEAD box RNA helicase, DDX3 protein and is equivalent to crystal structure of adenosine mono phosphate to DDX3. Overall, it suggests that the SEA extract has anticancer compounds, and it can be used to enhance death receptor mediated cancer cell death.  相似文献   

8.
目的观察鲨鱼软骨提取物(SCE)对MCF-7细胞凋亡的诱导作用,并进一步研究在此过程中BCL-2和Caspase-3的表达.方法将不同浓度的SCE作用于MCF-7细胞,观察其作用的时间效应及剂量效应;在光镜和电镜下观察其形态变化;用流式细胞术分析细胞DNA含量的改变;用免疫组织化学法观察在此过程中BCL-2和Caspase-3的表达.结果 SCE 能抑制MCF-7细胞生长,在一定剂量和时间范围内引起细胞凋亡,并显示剂量和时间效应, 在此过程中BCL-2蛋白表达减弱.结论 SCE 能明显抑制MCF-7细胞体外生长,并可诱导MCF-7细胞凋亡,其作用机制可能与下调Bcl-2蛋白的表达水平有关.  相似文献   

9.
Quinidine inhibits proliferation and promotes cellular differentiation in human breast tumor epithelial cells. Previously we showed quinidine arrested MCF-7 cells in G(1) phase of the cell cycle and led to a G(1) to G(0) transition followed by apoptotic cell death. The present experiments demonstrated that MCF-7, MCF-7ras, T47D, MDA-MB-231, and MDA-MB-435 cells transiently differentiate before undergoing apoptosis in response to quinidine. The cells accumulated lipid droplets, and the cytokeratin 18 cytoskeleton was reorganized. Hyperacetylated histone H4 appeared within 2 h of the addition of quinidine to the medium, and levels were maximal by 24 h. Quinidine-treated MCF-7 cells showed elevated p21(WAF1), hypophosphorylation and suppression of retinoblastoma protein, and down-regulation of cyclin D1, similar to the cell cycle response observed with cells induced to differentiate by histone deacetylase inhibitors, trichostatin A, and trapoxin. Quinidine did not show evidence for direct inhibition of histone deacetylase enzymatic activity in vitro. HDAC1 was undetectable in MCF-7 cells 30 min after addition of quinidine to the growth medium. The proteasome inhibitors MG-132 and lactacystin completely protected HDAC1 from the action of quinidine. We conclude that quinidine is a breast tumor cell differentiating agent that causes the loss of HDAC1 via a proteasomal sensitive mechanism.  相似文献   

10.
The aim of the present study is to clarify some aspects of the mechanisms of regulation of mitochondrial metabolism in neuroblastoma (NB) cells. Experiments were performed on murine Neuro-2a (N2a) cell line, and the same cells differentiated by all-trans-retinoic acid (dN2a) served as in vitro model of normal neurons. Oxygraphy and Metabolic Control Analysis (MCA) were applied to characterize the function of mitochondrial oxidative phosphorylation (OXPHOS) in NB cells. Flux control coefficients (FCCs) for components of the OXPHOS system were determined using titration studies with specific non-competitive inhibitors in the presence of exogenously added ADP. Respiration rates of undifferentiated Neuro-2a cells (uN2a) and the FCC of Complex-II in these cells were found to be considerably lower than those in dN2a cells. Our results show that NB is not an exclusively glycolytic tumor and could produce a considerable part of ATP via OXPHOS. Two important enzymes - hexokinase-2 and adenylate kinase-2 can play a role in the generation of ATP in NB cells. MCA has shown that in uN2a cells the key sites in the regulation of OXPHOS are complexes I, II and IV, whereas in dN2a cells complexes II and IV. Results obtained for the phosphate and adenine nucleotide carriers showed that in dN2a cells these carriers exerted lower control over the OXPHOS than in undifferentiated cells. The sum of FCCs for both types of NB cells was found to exceed significantly that for normal cells suggesting that in these cells the respiratory chain was somehow reorganized or assembled into large supercomplexes.  相似文献   

11.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with α5β1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

12.
The in vitro anti-cancer effect of Cassia auriculata leaf extract (CALE) was evaluated in human breast adenocarcinoma MCF-7 and human larynx carcinoma Hep-2 cell lines. CALE preferentially inhibited the growth of both the cell lines in a dose-dependent manner with IC50 values of 400 and 500 μg for MCF-7 and Hep-2 cells, respectively. The results showed the anti-cancer action is due to nuclear fragmentation and condensation, associated with the appearance of A0 peak in cell cycle analysis that is indicative of apoptosis. In addition, CALE treated MCF-7 and Hep-2 cells had decreased expression of anti-apoptotic Bcl-2 protein and increased expression of pro-apoptotic Bax protein, eventually leading a decrease in the Bcl-2/Bax ratio. These results demonstrated that CALE inhibits the proliferation of MCF-7 and Hep-2 cells through induction of apoptosis, making CALE a candidate as new anti-cancer drug.  相似文献   

13.
BACKGROUND: The fluorochrome-labeled inhibitors of caspases (FLICA) were recently used as markers of activation of these enzymes in live cells during apoptosis (Bedner et al.: Exp Cell Res 259:308-313, 2000). The aims of this study were to (a) explore if FLICA can be used to study intracellular localization of caspases; (b) combine the detection of caspase activation with analysis of the changes with cell morphology detected by microscopy and laser scanning cytometry (LSC); and (c) adapt the assay to fixed cells that would enable correlation, by multiparameter analysis, of caspase activation with the cell attributes that require cell permeabilization in order to be measured. METHODS: Apoptosis of human MCF-7, U-937, or HL-60 cells was induced by camptothecin (CPT) or tumor necrosis factor-alpha (TNF-alpha) combined with cycloheximide (CHX). Binding of FLICA to apoptotic versus nonapoptotic cells was studied in live cells as well as following their fixation and counterstaining of DNA. Intensity of cell labeling with FLICA and DNA-specific fluorochromes was measured by LSC. RESULTS: Exposure of live cells to FLICA led to selective labeling of cells that had morphological changes characteristic of apoptosis. The FLICA labeling withstood cell fixation and permeabilization, which made it possible to stain DNA and measure its content for identification of the cell cycle position of labeled cells. When fixed cells were treated with FLICA, both apoptotic and nonapoptotic cells became strongly labeled and the labeling pattern was consistent with the localization of caspases as reported in the literature. A translocation of the FLICA binding targets from mitochondria to cytosol was seen in the MCF-7 cells treated with CPT. FLICA binding was largely (> 90%) prevented by the substrates of the caspases or by the unlabeled caspase inhibitors having the same peptide moiety as the respective FLICA. CONCLUSIONS: The detection of caspase activation combined with cell permeabilization requires exposure of live cells to FLICA followed by their fixation. Cell reactivity with the respective FLICA, under these conditions, identifies the activated caspases and makes it possible to correlate their activation with the cell cycle position and other cell attributes that can be measured only after cell fixation/permeabilization. FLICA can also be used to study intracellular localization of caspases, including their translocation.  相似文献   

14.
Taxanes remain first line chemotherapy in management of metastatic breast cancer and have a key role in epithelial ovarian cancer, with increasingly common use of weekly paclitaxel dosing regimens. However, their clinical utility is limited by the development of chemoresistance. To address this, we modelled in vitro paclitaxel resistance in MCF-7 cells. We show that at clinically relevant drug doses, emerging paclitaxel resistance is associated with profound changes in cell death responses and a switch from apoptosis to autophagy as the principal mechanism of drug-induced cytotoxicity. This was characterised by a complete absence of caspase-mediated apoptotic cell death (using the pan-caspase-inhibitor Z-VAD) in paclitaxel-resistant MCF-7TaxR cells, compared with parent MCF-7 or MDA-MB-231 cell lines on paclitaxel challenge, downregulation of caspase-7, caspase-9 and BCl2-interacting mediator of cell death (BIM) expression. Silencing with small interfering RNA to BIM in MCF-7 parental cells was sufficient to confer paclitaxel resistance, inferring the significance in downregulation of this protein in contributing to the resistant phenotype of the MCF-7TaxR cell line. Conversely, there was an increased autophagic response in the MCF-7TaxR cell line with reduced phospho-mTOR and relative resistance to the mTOR inhibitors rapamycin and RAD001. In conclusion, we show for the first time that paclitaxel resistance is associated with profound changes in cell death response with deletion of multiple apoptotic factors balanced by upregulation of the autophagic pathway and collateral sensitivity to platinum.  相似文献   

15.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

16.
The adhesiveness of cancerous cells to their neighboring cells significantly contributes to tumor progression and metastasis. The single-cell force spectroscopy (SCFS) approach was implemented to survey the cell–cell adhesion force between cancerous cells in three cancerous breast cell lines (MCF-7, T47D, and MDA-MB-231). The gene expression levels of two dominant cell adhesion markers (E-cadherin and N-cadherin) were quantified by real-time PCR. Additionally, the local stiffness of the cell bodies was measured by atomic force microscopy (AFM), and the actin cytoskeletal organization was examined by confocal microscopy. Results indicated that the adhesion force between cells was conversely correlated with their invasion potential. The highest adhesion force was observed in the MCF-7 cells. A reduction in cell–cell adhesion, which is required for the detachment of cells from the main tumor during metastasis, is partly due to the loss of E-cadherin expression and the enhanced expression of N-cadherins. The reduced adhesion was accompanied by the softening of cells, as described by the rearrangement of actin filaments through confocal microscopy observations. The softening of the cell body and the reduced cellular adhesiveness are two adaptive mechanisms through which malignant cells achieve the increased deformability, motility, and strong metastasis potential necessary for passage through endothelial junctions and positioning in host tissue. This study presented application of SCFS to survey cell phenotype transformation during cancer progression. The results can be implemented as a platform for further investigations that target the manipulation of cellular adhesiveness and stiffness as a therapeutic choice.  相似文献   

17.
Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.  相似文献   

18.

Objective

The aim of this study was to explore the therapeutic effect of natural killer (NK) cells on human doxorubicin-sensitive and resistant breast adenocarcinoma.

Methods

Human doxorubicin-sensitive and resistant breast cancer cell lines (MCF-7 and MCF-7/ADR) were tagged with renilla luciferase (Rluc) (MCF-7/RC and MCF-7/ADR/RC). NK cells were tagged with enhanced firefly luciferase (effluc) using a recombinant retrovirus transfection (NKF). Expression of Rluc, effluc, and NK cell surface markers CD16, CD56 as well as death receptors, DR4 and DR5, were assessed by using flow cytometry. In vitro cytotoxic effect of NK to MCF-7 and MCF-7/ADR was measured and in vivo bioluminescence imaging was also performed to visualize MCF-7/RC, MCF-7/ADR, and NKF in an animal model.

Results

NK92-MI, MCF-7, and MCF-7/ADR cells were successfully labeled with Rluc or effluc. Both the target breast cancer cells (with Rluc) and therapeutic NK cells (with effluc) were noninvasively visualized in nude mice. Doxorubicin-resistant breast cancer cells (MCF-7/ADR) presented a higher expression of DR5 and were more sensitive to NK cells compared with doxorubicin-sensitive breast cancer cells (MCF-7).

Conclusion

The results of present study suggest that NK cell therapy has a therapeutic effect on doxorubicin-sensitive and resistant breast cancer cells.  相似文献   

19.
To understand epigenetic regulation of neurotrophins in Neuro-2a mouse neuroblastoma cells, we investigated the alteration of CpG methylation of brain-derived neurotrophic factor (BDNF) promoter I and neurotrophin-3 (NT-3) promoter IB and that of histone modification in Neuro-2a cells. Bisulfite genomic sequencing showed that the CpG sites of BDNF promoter I were methylated in non-treated Neuro-2a cells and demethylated following 5-aza-2′-deoxycytidine (5-aza-dC) treatment. In contrast, methylation status of the NT-3 promoter IB did not change by 5-aza-dC treatment in Neuro-2a cells. Furthermore, we demonstrated that BDNF exon I-IX mRNA was induced by trichostatin A (TSA) treatment. However, NT-3 exon IB-II mRNA was not induced by TSA treatment. Chromatin immunoprecipitation assays showed that the levels of acetylated histones H3 and H4 on BDNF promoter I were increased by TSA. These results demonstrate that DNA methylation and/or histone modification regulate BDNF gene expression, but do not regulate NT-3 gene expression in Neuro-2a cells.  相似文献   

20.
软骨多糖诱导MCF-7乳腺癌细胞凋亡的实验研究   总被引:1,自引:0,他引:1  
研究软骨多糖诱导MCF-7乳腺癌细胞凋亡及其作用机理。方法:选用MCF-7人类乳腺癌细胞系体外培养,应用MTT法检测细胞生长抑制率,TUNEL法检测细胞凋亡率,HE染色法观察细胞形态学改变,流式细胞仪检测细胞周期的变化,免疫荧光方法检测BCL-2BAD及波形蛋白Vimentin的表达率。结果:软骨多糖对MCF-7细胞体外生长具有明显的抑制作用,且呈时间和浓度依赖性;软骨多糖可诱导MCF-7细胞发生凋亡并伴随有凋亡小体出现等形态学变化;软骨多糖促进BCL-2蛋白的表达水平下降,BAD表达水平上升,及Vimentin的降解。结论:软骨多糖能够在体外诱导MCF-7细胞凋亡,是一种新型的抗乳腺癌活性物质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号