首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae, DNA double-strand breaks (DSBs) initiate meiotic recombination at open sites in chromatin, which display a meiosis-specific increase in micrococcal nuclease (MNase) sensitivity. The arg4 promoter contains such a DSB site. When arg4 sequences are placed in a pBR322-derived insert at HIS4 (his4 :: arg4 ), the presence of strong DSB sites in pBR322 sequences leads to an almost complete loss of breaks from the insert-borne arg4 promoter region. Most of the MNase-sensitive sites occurred at similar positions in insert-borne and in normal ARG4 sequences, indicating that hotspot inactivation is not a consequence of changes in nucleosome positioning. However, a meiosis-specific increase in MNase hypersensitivity was no longer detected at the inactive insert-borne arg4 DSB site. Elimination of pBR322 sequences restored DSBs to the insert-borne arg4 promoter region and also restored the meiotic induction of MNase hypersensitivity. Thus, the meiotic induction of MNase hypersensitivity at the DSB sites is suppressed and activated in parallel to DSBs themselves, without changes in the underlying DNA sequence or nucleosome positioning. We suggest that meiosis-specific changes in chromatin at a DSB site are a signal reflecting a pivotal step in DSB formation.  相似文献   

2.
T. C. Wu  M. Lichten 《Genetics》1995,140(1):55-66
Double-strand DNA breaks (DSBs) initiate meiotic recombination in Saccharomyces cerevisiae. DSBs occur at sites that are hypersensitive in nuclease digests of chromatin, suggesting a role for chromatin structure in determining DSB location. We show here that the frequency of DSBs at a site is not determined simply by DNA sequence or by features of chromatin structure. An arg4-containing plasmid was inserted at several different locations in the yeast genome. Meiosis-induced DSBs occurred at similar sites in pBR322-derived portions of the construct at all insert loci, and the frequency of these breaks varied in a manner that mirrored the frequency of meiotic recombination in the arg4 portion of the insert. However, DSBs did not occur in the insert-borne arg4 gene at a site that is frequently broken at the normal ARG4 locus, even though the insert-borne arg4 gene and the normal ARG4 locus displayed similar DNase I hypersensitivity patterns. Deletions that removed active DSB sites from an insert at HIS4 restored breaks to the insert-borne arg4 gene and to a DSB site in flanking chromosomal sequences. We conclude that the frequency of DSB at a site can be affected by sequences several thousands nucleotides away and suggest that this is because of competition between DSB sites for locally limited factors.  相似文献   

3.
4.
D. D. Sears  P. Hieter    G. Simchen 《Genetics》1994,138(4):1055-1065
Heterologous yeast artificial chromosomes (YACs) do not recombine with each other and missegregate in 25% of meiosis I events. Recombination hot spots in the yeast Saccharomyces cerevisiae have previously been shown to be associated with sites of meiosis-induced double-strand breaks (DSBs). A 6-kb fragment containing a recombination hot spot/DSB site was implanted onto two heterologous human DNA YACs and was shown to cause the YACs to undergo meiotic recombination in 5-8% of tetrads. Reciprocal exchanges initiated and resolved within the 6-kb insert. Presence of the insert had no detectable effect on meiosis I nondisjunction. Surprisingly, the recombination hot spots acted in cis to significantly reduce precocious sister-chromatid segregation. This novel observation suggests that DSBs are instrumental in maintaining cohesion between sister chromatids in meiosis I. We propose that this previously unknown function of DSBs is mediated by the stimulation of sister-chromatid exchange and/or its intermediates.  相似文献   

5.
The DNA double-strand breaks (DSBs) that initiate meiotic recombination in Saccharomyces cerevisiae are preceded first by DNA replication and then by a chromatin transition at DSB sites. This chromatin transition, detected as a quantitative increase in micrococcal nuclease (MNase) sensitivity, occurs specifically at DSB sites and not at other MNase-sensitive sites. Replication and DSB formation are directly linked: breaks do not form if replication is blocked, and delaying replication of a region also delays DSB formation in that region. We report here experiments that examine the relationship between replication, the DSB-specific chromatin transition and DSB formation. Deleting replication origins (and thus delaying replication) on the left arm of one of the two parental chromosomes III affects DSBs specifically on that replication-delayed arm and not those on the normally replicating arm. Thus, replication timing determines DSB timing in cis. Delaying replication on the left arm of chromosome III also delays the chromatin transition at DSB sites on that arm but not on the normally replicating right arm. Since the chromatin transition precedes DSB formation and requires the function of many genes necessary for DSB formation, these results suggest that initial events for DSB formation in chromatin are coupled with premeiotic DNA replication.  相似文献   

6.
Meiotic recombination in yeast is initiated by DNA double-strand breaks (DSBs) that occur at preferred sites, distributed along the chromosomes. These DSB sites undergo changes in chromatin structure early in meiosis, but their common features at the level of DNA sequence have not been defined until now. Alignment of 1 kb sequences flanking six well-mapped DSBs has allowed us to define a flexible sequence motif, the CoHR profile, which predicts the great majority of meiotic DSB locations. The 50 bp profile contains a poly(A) tract in its centre and may have several gaps of unrelated sequences over a total length of up to 250 bp. The major exceptions to the correlation between CoHRs and preferred DSB sites are at telomeric regions, where DSBs do not occur. The CoHR sequence may provide the basis for understanding meiosis-induced chromatin changes that enable DSBs to occur at defined chromosomal sites.  相似文献   

7.
Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and H3K79me3; and GC content. Previous studies have associated H3K4me3, H3K36me3, and GC content with areas of mitotic recombination. H3K14ac and H3K79me3 are novel predictions and thus represent good candidates for further experimental study. We also show nucleosome occupancy maps produced using next generation sequencing exhibit a bias at DSB hot spots and this bias is strong enough to obscure biologically relevant information. A computational approach using feature selection can productively be used to identify promising biological associations. H3K14ac and H3K79me3 are novel predictions of chromatin marks associated with meiotic DSBs. Next generation sequencing can exhibit a bias that is strong enough to lead to incorrect conclusions. Care must be taken when interpreting high throughput sequencing data where systematic biases have been documented.  相似文献   

8.
9.
For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.  相似文献   

10.
In Saccharomyces cerevisiae, meiotic recombination is initiated by DNA double-strand breaks (DSBs). DSBs usually occur in intergenic regions that display nuclease hypersensitivity in digests of chromatin. DSBs are distributed nonuniformly across chromosomes; on chromosome III, DSBs are concentrated in two "hot" regions, one in each chromosome arm. DSBs occur rarely in regions within about 40 kb of each telomere and in an 80-kb region in the center of the chromosome, just to the right of the centromere. We used recombination reporter inserts containing arg4 mutant alleles to show that the "cold" properties of the central DSB-deficient region are imposed on DNA inserted in the region. Cold region inserts display DSB and recombination frequencies that are substantially less than those seen with similar inserts in flanking hot regions. This occurs without apparent change in chromatin structure, as the same pattern and level of DNase I hypersensitivity is seen in chromatin of hot and cold region inserts. These data are consistent with the suggestion that features of higher-order chromosome structure or chromosome dynamics act in a target sequence-independent manner to control where recombination events initiate during meiosis.  相似文献   

11.
Yeast artificial chromosomes (YACs) that contain human DNA backbone undergo DNA double-strand breaks (DSBs) and recombination during yeast meiosis at rates similar to the yeast native chromosomes. Surprisingly, YACs containing DNA covering a recombination hot spot in the mouse major histocompatibility complex class III region do not show meiotic DSBs and undergo meiotic recombination at reduced levels. Moreover, segregation of these YACs during meiosis is seriously compromised. In meiotic yeast cells carrying the mutations sir2 or sir4, but not sir3, these YACs show DSBs, suggesting that a unique chromatin structure of the YACs, involving Sir2 and Sir4, protects the YACs from the meiotic recombination machinery. We speculate that the paucity of DSBs and recombination events on these YACs during yeast meiosis may reflect the refractory nature of the corresponding region in the mouse genome.  相似文献   

12.
B de Massy  V Rocco    A Nicolas 《The EMBO journal》1995,14(18):4589-4598
Initiation of meiotic recombination in the yeast Saccharomyces cerevisiae occurs by localized DNA double-strand breaks (DSBs) at several locations in the genome, corresponding to hot spots for meiotic gene conversion and crossing over. The meiotic DSBs occur in regions of chromatin that are hypersensitive to nucleases. To gain insight into the molecular mechanism involved in the formation of these DSBs, we have determined their positions at the nucleotide level at the CYS3 hot spot of gene conversion on chromosome I. We found four major new features of these DSBs: (i) sites of DSBs are multiple with varying intensities and spacing within the promoter region of the CYS3 gene; (ii) no consensus sequence can be found at these sites, indicating that the activity involved in DSB formation has little or no sequence specificity; (iii) the breaks are generated by blunt cleavages; and (iv) the 5' ends are modified in rad50S mutant strains, where the processing of these ends is known to be prevented. We present a model for the initiation of meiotic recombination taking into account the implications of these results.  相似文献   

13.
Meiotic recombination is initiated by programmed DNA double-strand break (DSB) formation mediated by Spo11. DSBs occur with frequency in chromosomal regions called hot domains but are seldom seen in cold domains. To obtain insights into the determinants of the distribution of meiotic DSBs, we examined the effects of inducing targeted DSBs during yeast meiosis using a UAS-directed form of Spo11 (Gal4BD-Spo11) and a meiosis-specific endonuclease, VDE (PI-SceI). Gal4BD-Spo11 cleaved its target sequence (UAS) integrated in hot domains but rarely in cold domains. However, Gal4BD-Spo11 did bind to UAS and VDE efficiently cleaved its recognition sequence in either context, suggesting that a cold domain is not a region of inaccessible or uncleavable chromosome structure. Importantly, self-association of Spo11 occurred at UAS in a hot domain but not in a cold domain, raising the possibility that Spo11 remains in an inactive intermediate state in cold domains. Integration of UAS adjacent to known DSB hotspots allowed us to detect competitive interactions among hotspots for activation. Moreover, the presence of VDE-introduced DSB repressed proximal hotspot activity, implicating DSBs themselves in interactions among hotspots. Thus, potential sites for Spo11-mediated DSB are subject to domain-specific and local competitive regulations during and after DSB formation.  相似文献   

14.
Meiotic recombination is initiated by large numbers of developmentally programmed DNA double-strand breaks (DSBs), ranging from dozens to hundreds per cell depending on the organism. DSBs formed in single-copy sequences provoke recombination between allelic positions on homologous chromosomes, but DSBs can also form in and near repetitive elements such as retrotransposons. When they do, they create a risk for deleterious genome rearrangements in the germ line via recombination between non-allelic repeats. A prior study in budding yeast demonstrated that insertion of a Ty retrotransposon into a DSB hotspot can suppress meiotic break formation, but properties of Ty elements in their most common physiological contexts have not been addressed. Here we compile a comprehensive, high resolution map of all Ty elements in the rapidly and efficiently sporulating S. cerevisiae strain SK1 and examine DSB formation in and near these endogenous retrotransposable elements. SK1 has 30 Tys, all but one distinct from the 50 Tys in S288C, the source strain for the yeast reference genome. From whole-genome DSB maps and direct molecular assays, we find that DSB levels and chromatin structure within and near Tys vary widely between different elements and that local DSB suppression is not a universal feature of Ty presence. Surprisingly, deletion of two Ty elements weakened adjacent DSB hotspots, revealing that at least some Ty insertions promote rather than suppress nearby DSB formation. Given high strain-to-strain variability in Ty location and the high aggregate burden of Ty-proximal DSBs, we propose that meiotic recombination is an important component of host-Ty interactions and that Tys play critical roles in genome instability and evolution in both inbred and outcrossed sexual cycles.  相似文献   

15.
16.
Meiosis is a specialized cell division that gives rise to genetically distinct gametic cells. Meiosis relies on the tightly controlled formation of DNA double-strand breaks (DSBs) and their repair via homologous recombination for correct chromosome segregation. Like all forms of DNA damage, meiotic DSBs are potentially harmful and their formation activates an elaborate response to inhibit excessive DNA break formation and ensure successful repair. Previous studies established the protein kinase ATM as a DSB sensor and meiotic regulator in several organisms. Here we show that Arabidopsis ATM acts at multiple steps during DSB formation and processing, as well as crossover (CO) formation and synaptonemal complex (SC) organization, all vital for the successful completion of meiosis. We developed a single-molecule approach to quantify meiotic breaks and determined that ATM is essential to limit the number of meiotic DSBs. Local and genome-wide recombination screens showed that ATM restricts the number of interference-insensitive COs, while super-resolution STED nanoscopy of meiotic chromosomes revealed that the kinase affects chromatin loop size and SC length and width. Our study extends our understanding of how ATM functions during plant meiosis and establishes it as an integral factor of the meiotic program.

Arabidopsis ATM acts at multiple steps during DSB formation and processing, as well as crossover formation and synaptonemal complex organization, all vital for the successful completion of meiosis.  相似文献   

17.
J Liu  T C Wu    M Lichten 《The EMBO journal》1995,14(18):4599-4608
We have determined the precise location and structure of the double-strand DNA breaks (DSBs) formed during Saccharomyces cerevisiae meiosis. Breaks were examined at two recombination hot spots in both wild-type and rad50S mutant cells. At both loci, breaks occurred at multiple, irregularly spaced sites in a approximately 150 nucleotide interval contained within an area of nuclease-hypersensitive chromatin. No consensus sequence could be discerned at or around break sites. Patterns of cleavage observed on individual strands indicated that breaks initially form with a two nucleotide 5' overhang. Broken strands from rad50S mutant cells contained tightly bound protein at their 5' ends. We suggest that, in S.cerevisiae, meiotic recombination is initiated by a DSB-forming activity that creates a covalently linked protein-DNA intermediate.  相似文献   

18.
DNA double-strand breaks (DSBs) are introduced into the genome to initiate meiotic recombination. Their accurate repair is monitored by the meiotic recombination checkpoint that prevents nuclear division until completion of meiotic DSB repair. We show that the Saccharomyces cerevisiae Sae2 protein, known to be involved in processing meiotic DSBs, is phosphorylated periodically during the meiotic cycle. Sae2 phosphorylation occurs at the onset of premeiotic S phase, is maximal at the time of meiotic DSB generation and decreases when DSBs are repaired by homologous recombination. Hyperactivation of the meiotic recombination checkpoint caused by the failure to repair DSBs results in accumulation and persistence of phosphorylated Sae2, indicating a possible link between checkpoint activation and meiosis-induced Sae2 phosphorylation. Accordingly, Sae2 phosphorylation depends on the checkpoint kinases Mec1 and Tel1, whose simultaneous deletion also impairs meiotic DSB repair. Moreover, replacing with alanines the Sae2 serine and threonine residues belonging to Mec1/Tel1-dependent putative phosphorylation sites impairs not only Sae2 phosphorylation during meiosis, but also meiotic DSB repair. Thus,checkpoint-mediated phosphorylation of Sae2 is important to support its meiotic recombinationfunctions.  相似文献   

19.
Homologous recombination in meiosis is initiated by the programmed induction of double strand breaks (DSBs). Although the Drosophila Spo11 ortholog Mei-W68 is required for the induction of DSBs during meiotic prophase, only one other protein (Mei-P22) has been shown to be required for Mei-W68 to exert this function. We show here that the chromatin-associated protein Trade Embargo (Trem), a C2H2 zinc finger protein, is required to localize Mei-P22 to discrete foci on meiotic chromosomes, and thus to promote the formation of DSBs, making Trem the earliest known function in the process of DSB formation in Drosophila oocytes. We speculate that Trem may act by either directing the binding of Mei-P22 to preferred sites of DSB formation or by altering chromatin structure in a manner that allows Mei-P22 to form foci.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号