首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Purinergic signaling mediated by P2 receptors (P2Rs) plays important roles in embryonic and stem cell development. However, how it mediates Ca2+ signals in human embryonic stem cells (hESCs) and derived cardiovascular progenitor cells (CVPCs) remains unclear. Here, we aimed to determine the role of P2Rs in mediating Ca2+ mobilizations of these cells. hESCs were induced to differentiate into CVPCs by our recently established methods. Gene expression of P2Rs and inositol 1,4,5-trisphosphate receptors (IP3Rs) was analyzed by quantitative/RT-PCR. IP3R3 knockdown (KD) or IP3R2 knockout (KO) hESCs were established by shRNA- or TALEN-mediated gene manipulations, respectively. Confocal imaging revealed that Ca2+ responses in CVPCs to ATP and UTP were more sensitive and stronger than those in hESCs. Consistently, the gene expression levels of most P2YRs except P2Y1 were increased in CVPCs. Suramin or PPADS blocked ATP-induced Ca2+ transients in hESCs but only partially inhibited those in CVPCs. Moreover, the P2Y1 receptor-specific antagonist MRS2279 abolished most ATP-induced Ca2+ signals in hESCs but not in CVPCs. P2Y1 receptor-specific agonist MRS2365 induced Ca2+ transients only in hESCs but not in CVPCs. Furthermore, IP3R2KO but not IP3R3KD decreased the proportion of hESCs responding to MRS2365. In contrast, both IP3R2 and IP3R3 contributed to UTP-induced Ca2+ responses while ATP-induced Ca2+ responses were more dependent on IP3R2 in the CVPCs. In conclusion, a predominant role of P2Y1 receptors in hESCs and a transition of P2Y-IP3R coupling in derived CVPCs are responsible for the differential Ca2+ mobilization between these cells.  相似文献   

2.
Adenosine 5′-triphosphate (ATP) is an extracellular signal that regulates various cellular functions. Cellular secretory activities are enhanced by ATP as well as by cholinergic and adrenergic stimuli. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in the intracellular concentration of calcium ions ([Ca2+]i) and in the fine structure of acinar cells of rat lacrimal glands. ATP induced exocytotic structures, vacuolation and an increase in [Ca2+]i in acinar cells. The removal of extracellular Ca2+ or the use of Ca2+ channel blockers partially inhibited the ATP-induced [Ca2+]i increase. U73122 (an antagonist of PLC) and heparin (an antagonist of IP3 receptors) did not completely inhibit the ATP-induced [Ca2+]i increase. P1 purinoceptor agonists did not induce any changes in [Ca2+]i, whereas suramin (an antagonist of P2 receptors) completely inhibited ATP-induced changes in [Ca2+]i. A P2Y receptor agonist, 2-MeSATP, induced a strong increase in [Ca2+]i, although UTP (a P2Y2,4,6 receptor agonist) had no effect, and reactive blue 2 (a P2Y receptor antagonist) resulted in partial inhibition. The potency order of ATP analogs (2-MeSATP > ATP ⋙ UTP) suggested that P2Y1 played a significant role in the cellular response to ATP. BzATP (a P2X7 receptor agonist) induced a small increase in [Ca2+]i, but α,β-meATP (a P2X1,3 receptor agonist) had no effect. RT-PCR indicated that P2X2,3,4,5,6,7 and P2Y1,2,4,12,14 are expressed in acinar cells. In conclusion, the response of acinar cells to ATP is mediated by P2Y (especially P2Y1) as well as by P2X purinoceptors.  相似文献   

3.
In the present study, we show that the extracellular addition of nicotinamide adenine dinucleotide (NAD+) induces a transient rise in [Ca2+]i in human monocytes caused by an influx of extracellular calcium. The NAD+-induced Ca2+ response was prevented by adenosine triphosphate (ATP), suggesting the involvement of ATP receptors. Of the two subtypes of ATP receptors (P2X and P2Y), the P2X receptors were considered the most likely candidates. By the use of subtype preferential agonists and antagonists, we identified P2X1, P2X4, and P2X7 receptors being engaged in the NAD+-induced rise in [Ca2+]i. Among the P2X receptor subtypes, the P2X7 receptor is unique in facilitating the induction of nonselective pores that allow entry of ethidium upon stimulation with ATP. In monocytes, opening of P2X7 receptor-dependent pores strongly depends on specific ionic conditions. Measuring pore formation in response to NAD+, we found that NAD+ unlike ATP lacks the ability to induce this pore-forming response. Whereas as little as 100 μM ATP was sufficient to activate the nonselective pore, NAD+ at concentrations up to 2 mM had no effect. Taken together, these data indicate that despite similarities in the action of extracellular NAD+ and ATP there are nucleotide-specific variations. So far, common and distinct features of the two nucleotides are only beginning to be understood.  相似文献   

4.
ATP stimulates [Ca2+]i increases in midbrain synaptosomes via specific ionotropic receptors (P2X receptors). Previous studies have demonstrated the implication of P2X3 subunits in these responses, but additional P2X subunits must be involved. In the present study, ATP and BzATP proved to be able to induce intrasynaptosomal calcium transients in the midbrain synaptosomes, their effects being potentiated when assayed in a Mg2+-free medium. Indeed, BzATP was shown to be more potent than ATP, and their effects could be inhibited by PPADS and KN-62, but not by suramin. This activity profile is consistent with the presence of functional P2X7 receptors in the midbrain terminals. The existence of presynaptic responses to selective P2X7 agonists could be confirmed by means of a microfluorimetric technique allowing [Ca2+]i measurements in single synaptic terminals. Additionally, the P2X7 receptor protein could be identified in the midbrain synaptosomes and in axodendritic prolongations of cerebellar granule cells by immunochemical staining.  相似文献   

5.
Extracellular nicotinamide adenine dinucleotide (NAD+) is known to increase the intracellular calcium concentration [Ca2+]i in different cell types and by various mechanisms. Here we show that NAD+ triggers a transient rise in [Ca2+]i in human monocytes activated with lipopolysaccharide (LPS), which is caused by a release of Ca2+ from IP3-responsive intracellular stores and an influx of extracellular Ca2+. By the use of P2 receptor-selective agonists and antagonists we demonstrate that P2 receptors play a role in the NAD+-induced calcium response in activated monocytes. Of the two subclasses of P2 receptors (P2X and P2Y) the P2Y receptors were considered the most likely candidates, since they share calcium signaling properties with NAD+. The identification of P2Y1 and P2Y11 as receptor subtypes responsible for the NAD+-triggered increase in [Ca2+]i was supported by several lines of evidence. First, specific P2Y1 and P2Y11 receptor antagonists inhibited the NAD+-induced increase in [Ca2+]i. Second, NAD+ was shown to potently induce calcium signals in cells transfected with either subtype, whereas untransfected cells were unresponsive. Third, NAD+ caused an increase in [cAMP]i, prevented by the P2Y11 receptor-specific antagonist NF157.  相似文献   

6.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

7.

Background

Extracellular ATP may modulate airway responsiveness. Studies on ATP-induced contraction and [Ca2+]i signalling in airway smooth muscle are rather controversial and discrepancies exist regarding both ATP effects and signalling pathways. We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways.

Methods

Isometric contraction was measured on rat trachea, EPB and IPB isolated rings and human IPB isolated rings. [Ca2+]i was monitored fluorimetrically using indo 1 in freshly isolated and cultured tracheal myocytes. Statistical comparisons were done with ANOVA or Student''s t tests for quantitative variables and χ2 tests for qualitative variables. Results were considered significant at P < 0.05.

Results

In rat airways, extracellular ATP (10-6–10-3 M) induced an epithelium-independent and concentration-dependent contraction, which amplitude increased from trachea to IPB. The response was transient and returned to baseline within minutes. Similar responses were obtained with the non-hydrolysable ATP analogous ATP-γ-S. Successive stimulations at 15 min-intervals decreased the contractile response. In human IPB, the contraction was similar to that of rat IPB but the time needed for the return to baseline was longer. In isolated myocytes, ATP induced a concentration-dependent [Ca2+]i response. The contractile response was not reduced by thapsigargin and RB2, a P2Y receptor inhibitor, except in rat and human IPB. By contrast, removal of external Ca2+, external Na+ and treatment with D600 decreased the ATP-induced response. The contraction induced by α-β-methylene ATP, a P2X agonist, was similar to that induced by ATP, except in IPB where it was lower. Indomethacin and H-89, a PKA inhibitor, delayed the return to baseline in extrapulmonary airways.

Conclusion

Extracellular ATP induces a transient contractile response in human and rat airways, mainly due to P2X receptors and extracellular Ca2+ influx in addition with, in IPB, P2Y receptors stimulation and Ca2+ release from intracellular Ca2+ stores. Extracellular Ca2+ influx occurs through L-type voltage-dependent channels activated by external Na+ entrance through P2X receptors. The transience of the response cannot be attributed to ATP degradation but to purinoceptor desensitization and, in extrapulmonary airways, prostaglandin-dependent PKA activation.  相似文献   

8.
HKC‐8 cells are a human‐derived renal proximal tubular cell line and provide a useful model system for the study of human renal cell function. In this study, we aimed to determine [Ca2+]i signalling mediated by P2 receptor in HKC‐8. Fura‐2 and a ratio imaging method were employed to measure [Ca2+]i in HKC‐8 cells. Our results showed that activation of P2Y receptors by ATP induced a rise in [Ca2+]i that was dependent on an intracellular source of Ca2+, while prolonged activation of P2Y receptors induced a rise in [Ca2+]i that was dependent on intra‐ and extracellular sources of Ca2+. Pharmacological and molecular data in this study suggests that TRPC4 channels mediate Ca2+ entry in coupling to activation of P2Y in HKC‐8 cells. U73221, an inhibitor of PI‐PLC, did not inhibit the initial ATP‐induced response; whereas D609, an inhibitor of PC‐PLC, caused a significant decrease in the initial ATP‐induced response, suggesting that P2Y receptors are coupled to PC‐PLC. Although P2X were present in HKC‐8, The P2X agonist, α,β me‐ATP, failed to cause a rise in [Ca2+]i. However, PPADS at a concentration of 100 µM inhibits the ATP‐induced rise in [Ca2+]i. Our results indicate the presence of functional P2Y receptors in HKC‐8 cells. ATP‐induced [Ca2+]i elevation via P2Y is tightly associated with PC‐PLC and TRP channel. J. Cell. Biochem. 109: 132–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Reactive oxygen species (ROS) stimulate cytoplasmic [Ca2+] ([Ca2+]c) signaling, but the exact role of the IP3 receptors (IP3R) in this process remains unclear. IP3Rs serve as a potential target of ROS produced by both ER and mitochondrial enzymes, which might locally expose IP3Rs at the ER-mitochondrial associations. Also, IP3Rs contain multiple reactive thiols, common molecular targets of ROS. Therefore, we have examined the effect of superoxide anion (O2) on IP3R-mediated Ca2+ signaling. In human HepG2, rat RBL-2H3, and chicken DT40 cells, we observed [Ca2+]c spikes and frequency-modulated oscillations evoked by a O2 donor, xanthine (X) + xanthine oxidase (XO), dose-dependently. The [Ca2+]c signal was mediated by ER Ca2+ mobilization. X+XO added to permeabilized cells promoted the [Ca2+]c rise evoked by submaximal doses of IP3, indicating that O2 directly sensitizes IP3R-mediated Ca2+ release. In response to X+XO, DT40 cells lacking two of three IP3R isoforms (DKO) expressing either type 1 (DKO1) or type 2 IP3Rs (DKO2) showed a [Ca2+]c signal, whereas DKO expressing type 3 IP3R (DKO3) did not. By contrast, IgM that stimulates IP3 formation, elicited a [Ca2+]c signal in every DKO. X+XO also facilitated the Ca2+ release evoked by submaximal IP3 in permeabilized DKO1 and DKO2 but was ineffective in DKO3 or in DT40 lacking every IP3R (TKO). However, X+XO could also facilitate the effect of suboptimal IP3 in TKO transfected with rat IP3R3. Although in silico studies failed to identify a thiol missing in the chicken IP3R3, an X+XO-induced redox change was documented only in the rat IP3R3. Thus, ROS seem to specifically sensitize IP3Rs through a thiol group(s) within the IP3R, which is probably inaccessible in the chicken IP3R3.  相似文献   

11.
Extracellular nucleotides exert autocrine/paracrine effects on ion transport by activating P2 receptors. We studied the effects of extracellular ATP and UTP on the cystic fibrosis transmembrane conductance regulator (CFTR) channel stably expressed in Chinese Hamster Ovary cells (CHO-BQ1 cells). CFTR activity was measured using the (125I) iodide efflux technique and whole-cell patch-clamp recording in response to either forskolin or xanthine derivatives. Using RT-PCR and intracellular calcium concentration ([Ca2+]i) measurement, we showed that CHO-BQ1 cells express P2Y2 but not P2Y4 receptors. While ATP and UTP induced similar increases in [Ca2+]i, pre-addition by one of these two agonists desensitized the response for the other, suggesting that ATP- and UTP-induced [Ca2+]i increases were mediated by a common receptor, which was identified as the P2Y2 subtype. CFTR activity was reduced by ATP and UTP but not by ADP or adenosine applications. This inhibitory effect of ATP on CFTR activity was not due to a change in cAMP level. Furthermore, CFTR activation by forskolin or IBMX failed to promote [Ca2+]i increase, suggesting that CFTR activation did not generate an ATP release large enough to stimulate P2Y2 receptors. Taken together, our results show that endogenous P2Y2 receptor activation downregulates CFTR activity in a cAMP-independent manner in CHO cells. B. Marcet and V. Chappe contributed equally to this work.  相似文献   

12.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) serve to discharge Ca2+ from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca2+-dependent apoptosis. In particular we focus on the regulation of IP3Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP3Rs in apoptosis may be independent of their ion-channel function. The role of IP3Rs in delivering Ca2+ to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.  相似文献   

13.
Salivary glands express multiple isoforms of P2X and P2Y nucleotide receptors, but their in vivo physiological roles are unclear. P2 receptor agonists induced salivation in an ex vivo submandibular gland preparation. The nucleotide selectivity sequence of the secretion response was BzATP ≫ ATP > ADP ≫ UTP, and removal of external Ca2+ dramatically suppressed the initial ATP-induced fluid secretion (∼85%). Together, these results suggested that P2X receptors are the major purinergic receptor subfamily involved in the fluid secretion process. Mice with targeted disruption of the P2X7 gene were used to evaluate the role of the P2X7 receptor in nucleotide-evoked fluid secretion. P2X7 receptor protein and BzATP-activated inward cation currents were absent, and importantly, purinergic receptor agonist-stimulated salivation was suppressed by more than 70% in submandibular glands from P2X7-null mice. Consistent with these observations, the ATP-induced increases in [Ca2+]i were nearly abolished in P2X7–/– submandibular acinar and duct cells. ATP appeared to also act through the P2X7 receptor to inhibit muscarinic-induced fluid secretion. These results demonstrate that the ATP-sensitive P2X7 receptor regulates fluid secretion in the mouse submandibular gland.Salivation is a Ca2+-dependent process (1, 2) primarily associated with the neurotransmitters norepinephrine and acetylcholine, release of which stimulates α-adrenergic and muscarinic receptors, respectively. Both types of receptors are coupled to G proteins that activate phospholipase Cβ (PLCβ) during salivary gland stimulation. PLCβ activation cleaves phosphatidylinositol 1,4-bisphosphate resulting in diacylglycerol and inositol 1,4,5-trisphosphate (InsP3) production. Activation of Ca2+-selective InsP3 receptor channels localized to the endoplasmic reticulum of salivary acinar cells increases the intracellular free calcium concentration ([Ca2+]i).4 Depletion of the endoplasmic reticulum Ca2+ pool triggers extracellular Ca2+ influx and a sustained elevation in [Ca2+]i. This increase in [Ca2+]i activates Ca2+-dependent K+ and Cl channels promoting Cl secretion across the apical membrane and a lumen negative, electrochemical gradient that supports Na+ efflux into the lumen. The accumulation of NaCl creates an osmotic gradient which drives water movement into the lumen, thus generating isotonic primary saliva. This primary fluid is then modified by the ductal system, which reabsorbs NaCl and secretes KHCO3 producing a final saliva that is hypotonic (1, 2).Salivation also has a non-cholinergic, non-adrenergic component, the origin of which is unclear (3). In addition to muscarinic and α-adrenergic receptors, salivary acinar cells express other receptors that are coupled to an increase in [Ca2+]i such as purinergic P2 and substance P receptors. Like muscarinic and α-adrenergic receptors, P2 receptor activation leads to a sustained increase in [Ca2+]i in salivary acinar cells (4). In contrast, substance P receptor activation rapidly desensitizes and therefore generates only a relatively transient increase in [Ca2+]i (5) that is unlikely to appreciably contribute to fluid secretion. The purinergic P2 receptor family is comprised of G protein-coupled P2Y and ionotropic P2X receptors activated by extracellular di- and triphosphate nucleotides. Activation of both subfamilies of P2 receptors causes an increase in [Ca2+]i. P2Y receptors increase [Ca2+]i via InsP3-induced Ca2+ mobilization from intracellular stores (similar to α-adrenergic and muscarinic receptors) while P2X receptors act as ligand-gated, non-selective cation channels that mediate extracellular Ca2+ influx (6). Salivary gland tissues express at least four isoforms of P2X (P2X4 and P2X7) and P2Y (P2Y1 and P2Y2) subtypes; however, their in vivo physiological significance has yet to be characterized (711).Our results revealed that ATP acts in isolation to stimulate fluid secretion from the mouse submandibular gland, but secretion is inhibited when ATP is simultaneously presented with a muscarinic receptor agonist. Ablation of the P2X7 gene had no effect on the salivary flow rate evoked by muscarinic receptor activation, but markedly reduced ATP-mediated fluid secretion and rescued the inhibitory effects of ATP on muscarinic receptor activation. Submandibular gland acinar cells from P2X7–/– animals had dramatically impaired ATP-activated Ca2+ signaling, consistent with this being the mechanism responsible for the reduction in ATP-mediated fluid secretion in these mice. Together, these results demonstrated that ATP regulates salivation, acting mainly through the P2X7 receptor. Activation of the P2X7 receptor may play a major role in non-adrenergic, non-cholinergic stimulated fluid secretion.  相似文献   

14.
HL-1 cells are the adult cardiac cell lines available that continuously divide while maintaining an atrial phenotype. Here we examined the expression and localization of inositol 1,4,5-trisphosphate receptor (IP3R) subtypes, and investigated how pattern of IP3-induced subcellular local Ca2+ signaling is encoded by multiple IP3R subtypes in HL-1 cells. The type 1 IP3R (IP3R1) was expressed in the perinucleus with a diffuse pattern and the type 2 IP3R (IP3R2) was expressed in the cytosol with a punctate distribution. Extracellular ATP (1 mM) elicited transient intracellular Ca2+ releases accompanied by a Ca2+ oscillation, which was eliminated by the blocker of IP3Rs, 2-APB, and attenuated by ryanodine. Direct introduction of IP3 into the permeabilized cells induced Ca2+ transients with Ca2+ oscillations at ⩾ 20 μM of IP3, which was removed by the inhibition of IP3Rs using 2-APB and heparin. IP3-induced local Ca2+ transients contained two distinct time courses: a rapid oscillation and a monophasic Ca2+ transient. The magnitude of Ca2+ oscillation was significantly larger in the cytosol than in the nucleus, while the monophasic Ca2+ transient was more pronounced in the nucleus. These results provide evidence for the molecular and functional expression of IP3R1 and IP3R2 in HL-1 cells, and suggest that such distinct local Ca2+ signaling may be correlated with the punctate distribution of IP3R2s in the cytosol and the diffuse localization of IP3R1 in the peri-nucleus.  相似文献   

15.
Extracellular ATP triggers changes in intracellular Ca2+, ion channel function, and membrane trafficking in adipocytes. The aim of the present study was to determine which P2 receptors might mediate the Ca2+ signaling and membrane trafficking responses to ATP in brown fat cells. RT-PCR was used to determine which P2 receptors are expressed in brown fat cells. Responses to nucleotide agonists and antagonists were characterized using fura-2 fluorescence imaging of Ca2+ responses, and FM 1-43 fluorescence imaging and membrane capacitance measurements to assess membrane trafficking. The pharmacology of the Ca2+ responses fits the properties of the P2Y receptors for which mRNA is expressed, but the agonist and antagonist sensitivity of the membrane-trafficking response was not consistent with any P2 receptor described to date. Brown adipocytes expressed mRNA for P2Y2, P2Y6, and P2Y12 metabotropic receptors and P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 ionotropic receptors. The agonists ATP, ADP, UTP, UDP and 2′, 3′-(benzoylbenzoyl) ATP (BzATP) increased intracellular Ca2+, while 100 μM suramin, pyridoxal-phosphate-6-azophenyl-2′ 4′-disulfonic acid (PPADS), or Reactive Blue 2 partially blocked Ca2+ responses. ATP, but not ADP, UTP, UDP or BzATP activated membrane trafficking. The membrane response could be blocked completely with 1 μM PPADS but not by the antagonist MRS2179. We conclude that multiple P2 receptors mediate the ATP responses of brown fat cells, and that membrane trafficking is regulated by a P2 receptor showing unusual properties.  相似文献   

16.
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca2+ mobilization. Based on a mathematical model of purinergic Ca2+ signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y2 and P2Y4 receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca2+. Cellular responses versus concentration of BzATP, a P2Y2 agonist and a P2Y4 antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y2 and P2Y11 are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y2/P2Y4 homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y2 and P2Y4 receptors operative mostly in the dimeric form.  相似文献   

17.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Their regulation by both IP3 and Ca2+ allows interactions between IP3Rs to generate a hierarchy of intracellular Ca2+ release events. These can progress from openings of single IP3R, through near-synchronous opening of a few IP3Rs within a cluster to much larger signals that give rise to regenerative Ca2+ waves that can invade the entire cell. We have used patch-clamp recording from excised nuclear membranes of DT40 cells expressing only IP3R3 and shown that low concentrations of IP3 rapidly and reversibly cause IP3Rs to assemble into small clusters. In addition to bringing IP3Rs close enough to allow Ca2+ released by one IP3R to regulate the activity of its neighbors, clustering also retunes the regulation of IP3Rs by IP3 and Ca2+. At resting cytosolic [Ca2+], lone IP3R are more sensitive to IP3 and the mean channel open time (~10ms) is twice as long as for clustered IP3R. When the cytosolic free [Ca2+] is increased to 1µM, to mimic the conditions that might prevail when an IP3R within a cluster opens, clustered IP3R are no longer inhibited and their gating becomes coupled. IP3, by dynamically regulating IP3R clustering, both positions IP3R for optimal interactions between them and it serves to exaggerate the effects of Ca2+ within a cluster. During the course of these studies, we have observed that nuclear IP3R stably express one of two single channel K + conductances (γK ~120 or 200pS). Here we demonstrate that for both states of the IP3R, the effects of IP3 on clustering are indistinguishable. These observations reinforce our conclusion that IP3 dynamically regulates assembly of IP3Rs into clusters that underlie the hierarchical recruitment of elementary Ca2+ release events.  相似文献   

18.
Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum inositol trisphosphate receptors (IP3Rs) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetic needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293 and HeLa) with stable KOs of all three IP3R isoforms (triple KO [TKO]) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely because of adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.  相似文献   

19.
Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.  相似文献   

20.
ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X1–P2X7) and seven heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7) have been described. ATP treatment of Leydig cells leads to an increase in [Ca2+]i and testosterone secretion, supporting the hypothesis that Ca2+ signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X2. In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X2, P2X4, P2X6, and P2X7 subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 μM ivermectin induced an increase (131.2 ± 5.9%) and 3 μM ivermectin a decrease (64.2 ± 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X4 subunits. P2X7 receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X2/4/6, is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X2 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号