首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
Platelet aggregation inducer and inhibitor were isolated from Echis carinatus snake venom. The venom inducer caused aggregation of washed rabbit platelets which could be inhibited completely by heparin or hirudin. The venom inducer also inhibit both the reversibility of platelet aggregation induced by ADP and the disaggregating effect of prostaglandin E1 on the aggregation induced by collagen in the presence of heparin. The venom inhibitor decreased the platelet aggregation induced by collagen, thrombin, ionophore A23187, arachidonate, ADP and platelet-activating factor (PAF) with an IC50 of around 10 μg/ml. It did not inhibit the agglutination of formaldehyde-treated platelets induced by polylysine. In the presence of indomethacin or in ADP-refractory platelets or thrombin-degranulated platelets, the venom inhibitor further inhibited the collagen-induced aggregation. Fibrinogen antagonized competitively the inhibitory action of the venom inhibitor in collagen-induced aggregation. In chymotrypsin-treated platelets, the venom inhibitor abolished the aggregation induced by fibrinogen. It was concluded that the venom inducer caused platelet aggregation indirectly by the conversion of prothrombin to thrombin, while the venom inhibitor inhibited platelet aggregation by interfering with the interaction between fibrinogen and platelets.  相似文献   

2.
Using DEAE-Sephadex A-50 column chromatography and gel filtration, a potent platelet aggregation inhibitor from Trimeresurus gramineus venom was purified. It was an acidic phospholipase a, rich in aspartic acid, glutamic acid and half-cystine, with an isoelectric point of 3.6. At a concentration of 10 μg/ml, the purified inhibitor showed a marked inhibitory effect on platelet aggregations induced by adenosine diphosphate, collagen, sodium arachidonate and ionophore A-23187 in rabbit platelet-rich plasma, washed platelet suspension, as well as in thrombin-degranulated platelet suspension. The ID50 of this venom inhibitor was about 2.5–5 μg/ml in platelet aggregations induced by all these aggregation inducers. The action of this inhibitor could be partially antagonized by phosphatidylethanolamine. High concentration of Ca2+ (5 mM) did not reverse the inhibitory action even in the presence of ionophore A-238187. The [14C]serotonin release induced by sodium arachidonate and thrombin was unaffected. Malonic dialdehyde formation induced by these aggregation inducers remained unchanged. Basal and prostaglandin E1-stimulated cAMP levels were not altered by this inhibitor. No lactate dehydrogenase was released even at a concentration of 62.5 μg/ml. Polylysine-induced platelet agglutination was not affected. β-Mercaptoethanol inactivated both its phospholiase A enzymatic and platelet inhibitory activities, while p-bromophenacyl bromide only inactivated the former activity. The possibility of acting on a common final step of platelet aggregation, i.e. the intercellular adhesion between the activated platelets, was proposed.  相似文献   

3.
Inhibition of the thrombin-platelet reactions by DuP 714   总被引:1,自引:0,他引:1  
The efficacy and specificity of a novel synthetic thrombin inhibitor, DuP 714, on thrombin-induced elevation of cytoplasmic calcium, fibrinogen binding and aggregation in human platelets were examined. Thrombin (0.5 U/ml) stimulated an increase in [125I]fibrinogen binding in gel-filtered platelets which was blocked by DuP 714 with an IC50 value of 2 nM. Thrombin (1 U/ml)-induced elevation of intracellular [Ca2+]i was also blocked by DuP 714 with an IC50 value of 67 nM. A much higher concentration of thrombin (25 U/ml) was used to stimulate aggregation with heparinized platelet-rich plasma. Under these conditions, micromolar concentrations of DuP 714 were needed to inhibit thrombin. In all of these preparations, DuP 714 at concentrations as high as 10(-5) M had no intrinsic effects and did not affect the responses induced by arachidonate, ADP, collagen, epinephrine, vasopressin and serotonin. These data indicate that DuP 714 is a potent and specific thrombin inhibitor capable of arresting the actions of thrombin on human fibrin formation and platelet aggregation and secretion. It may serve as a potential antithrombotic agent for various forms of thrombotic disorders.  相似文献   

4.
A basic phospholipase A was isolated from Vipera russellii snake venom. It induced a biphasic effect on washed rabbit platelets suspended in Tyrode's solution. The first phase was a reversible aggregation which was dependent on stirring and extracellular calcium. The second phase was an inhibitory effect on platelet aggregation, occurring 5 min after the addition of the venom phospholipase A without stirring or after a recovery from the reversible aggregation. The aggregating phase could be inhibited by indomethacin, tetracaine, papaverine, creatine phosphate/creatine phosphokinase, mepacrine, verapamil, sodium nitroprusside, prostaglandin E1 or bovine serum albumin. The venom phospholipase A released free fatty acids from synthetic phosphatidylcholine and intact platelets. p-Bromophenacyl bromide-modified venom phospholipase A lost its phospholipase A enzymatic and platelet-aggregating activities, but protected platelets from the aggregation induced by the native enzyme. The second phase of the venom phospholipase A action showed a different degree of inhibition on platelet aggregation induced by some activators in following order: arachidonic acid greater than collagen greater than thrombin greater than ionophore A23187. The longer the incubation time or the higher the concentration of the venom phospholipase A, the more pronounced was the inhibitory effect. The venom phospholipase A did not affect the thrombin-induced release reaction which was caused by intracellular Ca2+ mobilization in the presence of EDTA, but inhibited collagen-induced release reaction which was caused by Ca2+ influx from extracellular medium. The inhibitory effect of the venom phospholipase A and also lysophosphatidylcholine or arachidonic acid could be antagonized or reversed by bovine serum albumin. It was concluded that the first stimulatory phase of the venom phospholipase A action might be due to arachidonate liberation from platelet membrane. The second phase of inhibition of platelet aggregation and the release of ATP might be due to the inhibitory action of the split products produced by this venom phospholipase A.  相似文献   

5.
An antiplatelet peptide, gabonin, from Bitis gabonica snake venom.   总被引:2,自引:0,他引:2  
Interaction of fibrinogen with its receptors (glycoprotein IIb/IIIa complex) on platelet membranes leads to platelet aggregation. By means of gel filtration, CM-Sephadex C-50, and reverse-phase HPLC, an antiplatelet peptide, gabonin, was purified from the venom of Bitis gabonica. The purified protein migrates as a 21,100-Da polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions and as a 11,000-Da peptide in the presence of beta-mercaptoethanol, indicating that gabonin is a disulfide-linked dimer. It is a polypeptide consisting of about 84 amino acid residues, rich in Asp, Pro, and half-cystine. Gabonin dose-dependently inhibited human platelet aggregation stimulated by ADP, collagen, U46619, or thrombin in preparations of platelet-rich plasma and platelet suspension (IC50 = 340-1600 nM). It also blocked platelet aggregation of whole blood. However, it apparently did not affect the initial shape change and only slightly reduced ATP release caused by aggregation agonists. Gabonin did not inhibit the rise of cytosolic calcium in Quin-2-loaded platelets stimulated by thrombin. In addition, gabonin dose-dependently inhibited fibrinogen-induced aggregation of elastase-treated platelets. In conclusion, gabonin inhibits platelet aggregation mainly through the blockade of fibrinogen binding toward fibrinogen receptors of the activated platelets.  相似文献   

6.
In continuation of our studies with the oil of cloves--a common kitchen spice and a crude drug for home medicine--we have isolated yet another active component identified as acetyl eugenol (AE); the earlier reported active component being eugenol. The isolated material (IM) was found to be a potent platelet inhibitor; IM abolished arachidonate (AA)-induced aggregation at ca. 12 microM, a concentration needed to abolish the second phase of adrenaline-induced aggregation. Chemically synthesized acetyl eugenol showed similar effects on AA- and adrenaline-induced aggregation. A dose-dependent inhibition of collagen-induced aggregation was also observed. AE did not inhibit either calcium ionophore A23187- or thrombin-induced aggregation. Studies on aggregation and ATP release were done using whole blood (WB). AA-induced aggregation in WB was abolished at 3 micrograms/ml (14.6 microM) which persisted even after doubling the concentration of AA. ATP release was inhibited. Inhibition of aggregation appeared to be mediated by a combination of two effects: reduced formation of thromboxane and increased generation of 12-lipoxygenase product (12-HPETE). These effects were observed by exposing washed platelets to (14C)AA or by stimulating AA-labelled platelets with ionophore A23187. Acetyl eugenol inhibited (14C)TxB2 formation in AA-labelled platelets on stimulation with thrombin. AE showed no effect on the incorporation of AA into platelet phospholipids.  相似文献   

7.
Antiplatelet effect of butylidenephthalide   总被引:1,自引:0,他引:1  
Butylidenephthalide inhibited, in a dose-dependent manner, the aggregation and release reaction of washed rabbit platelets induced by collagen and arachidonic acid. Butylidenephthalide also inhibited slightly the platelet aggregation induced by PAF and ADP, but not that by thrombin or ionophore A23187. Thromboxane B2 formation caused by collagen, arachidonic acid, thrombin and ionophore A23187 was in each case markedly inhibited by butylidenephthalide. Butylidenephthalide inhibited the aggregation of ADP-refractory platelets, thrombin-degranulated platelets, chymotrypsin-treated platelets and platelets in the presence of creatine phosphate/creatine phosphokinase. Its inhibition of collagen-induced aggregation was more marked at lower Ca2+ concentrations in the medium. The aggregability of platelets inhibited by butylidenephthalide could be recovered after the washing of platelets. In human platelet-rich plasma, butylidenephthalide and indomethacin prevented the secondary aggregation and blocked ATP release from platelets induced by epinephrine. Prostaglandin E2 formed by the incubation of guinea-pig lung homogenate with arachidonic acid could be inhibited by butylidenephthalide, indomethacin and aspirin. It is concluded that the antiplatelet effect of butylidenephthalide is mainly due to an inhibitory effect on cyclo-oxygenase and may be due partly to interference with calcium mobilization.  相似文献   

8.
N-Ethylmaleimide dose dependently inhibited platelet aggregation induced by collagen or arachidonate but did not inhibit the aggregation by thrombin or ionophore A23187 within the concentrations tested. [3H]Arachidonate release from membrane phospholipids of the collagen-stimulated platelets was inhibited by N-ethylmaleimide in parallel with the inhibition of aggregation, but not in response to A23187. N-Ethylmaleimide prevented 45Ca2+ influx into platelet cells from outer medium induced by collagen, and also inhibited the increase in the concentration of cytoplasmic free Ca2+, which probably results from Ca2+ influx, as monitored by quin2 fluorescence, under stimulation with arachidonate. The concentration of N-ethylmaleimide giving a complete inhibition of Ca2+ influx was consistent with that required to inhibit collagen- or arachidonate-induced aggregation. Prostaglandin metabolism from arachidonate to thromboxane A2 was not disturbed by N-ethylmaleimide, while phosphatidate formation induced by arachidonate was slightly inhibited by it at concentrations at which aggregation was completely inhibited. These data suggest that N-ethylmaleimide preferentially suppresses increase in cytoplasmic free Ca2+ which is linked to thromboxane A2-receptor occupation in collagen- or arachidonate-stimulated platelets, probably due to blockage of Ca2+ influx through Ca2+-channel protein, thereby inhibiting aggregation induced by these agonists.  相似文献   

9.
Chelerythrine chloride is an antiplatelet agent isolated from Zanthoxylum simulans. Aggregation and ATP release of washed rabbit platelets caused by ADP, arachidonic acid, PAF, collagen, ionophore A23187 and thrombin were inhibited by chelerythrine chloride. Less inhibition was observed in platelet-rich plasma. The thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was decreased by chelerythrine chloride. Phosphoinositides breakdown caused by collagen and PAF was completely inhibited by chelerythrine chloride, while that of thrombin was only partially suppressed. Chelerythrine chloride inhibited the intracellular calcium increase caused by arachidonic acid, PAF, collagen and thrombin in quin-2/AM-loaded platelets. The cyclic AMP level of washed platelets did not elevated by chelerythrine chloride. The antiplatelet effect of chelerythrine chloride was not dependent on the incubation time and the aggregability of platelets inhibited by chelerythrine chloride was easily recovered after sedimenting the platelets by centrifugation and then the platelet pellets were resuspended. Chelerythrine chloride did not cause any platelet lysis, since lactate dehydrogenase activity was not found in the supernatant. These data indicate that the inhibitory effect of chelerythrine chloride on rabbit platelet aggregation and release reaction is due to the inhibition on thromboxane formation and phosphoinositides breakdown.  相似文献   

10.
KRDS (Lys-Arg-Asp-Ser), a tetrapeptide from human lactotransferrin, was tested in vitro on human platelet function, and its effects were compared to those of RGDS, a tetrapeptide from human fibrinogen. Both peptides had a high probability of initiating a beta-turn and were highly hydrophilic. KRDS inhibited ADP-induced platelet aggregation [median inhibitory concentration (IC50) 350 microM] and fibrinogen binding (IC50 360 microM) to a lesser extent than RGDS (IC50 75 microM and 20 microM, respectively). Different from RGDS, thrombin-induced serotonin release was inhibited by KRDS (750 microM) on normal platelets (55 +/- 10%) and type I Glanzmann's thrombasthenia platelets (43% +/- 1). However, KRDS had no effect on cytoplasmic Ca2+ mobilization, inositol phospholipid metabolism or protein phosphorylation (myosin light chain P20 and P43). In contrast to RGDS, KRDS does not inhibit the binding of monoclonal antibody PAC-1 to activated platelets. KRDS and RGDS inhibited 4 beta-phorbol-12-myristate-13-acetate (PMA)-induced aggregation and fibrinogen binding, while proteins were normally phosphorylated. Thus, the tetrapeptide KRDS is (a) an inhibitor of serotonin release by a mechanism independent of protein phosphorylation and (b) an inhibitor of fibrinogen binding and, hence, aggregation by a mechanism that may not necessarily involve its direct binding to the glycoprotein IIb-IIIa-complex.  相似文献   

11.
Soluble materials of salivary glands from Haemaphysalis longicornis were found to inhibit collagen, ADP, and thrombin-stimulated platelet aggregation. One inhibitory component was purified to salivary gland homogeneity by a combination of gel filtration, ion-exchange, and C_8 reverse phase HPLC. The purified activity, named longieornin, is a protein of moleeular weight 16 000 on SDS-PAGE under both reduced and nonredueed conditions. Collagen-mediated aggregation of platelets in plasma and of washed platelets (IC_(50) was approximately 60 nmol/L) was inhibited with the same efficacy. No inhibition of aggregation stimulated by other effeetors, including ADP, arachidonic acid, thrombin, ristocetin, calcium ionophore A23187, thromboxane A2 mimetic U46619 and 12-O-phorbol-13-myristate acetate, was observed. Longieonin had no effect on platelet adhension to collagen. Not only platelet aggregation but also release reaction, and increase of intraeellar Ca~(2 ) level of platelets in response to collagen were com  相似文献   

12.
Fibrinogenases, proteinases which release peptides from the carboxy-terminal end of fibrinogen, are classified as alpha-fibrinogenases or beta-fibrinogenases, based on their ability to preferentially attack the A alpha or B beta chain, respectively, of fibrinogen. alpha-Fibrinogenases have been shown to inhibit platelet aggregation whereas beta-fibrinogenases do not. We have studied the inhibition of platelet aggregation by proteinase F1, an alpha-fibrinogenase from Naja nigricollis venom. This proteinase inhibits whole blood aggregation in a dose-dependent manner, with an IC50 value of 145 micrograms. However, the proteinase fails to inhibit aggregation in washed platelet suspensions. Thus, proteinase F1 appears to require a plasma factor to cause inhibition. Since fibrinogen acts as an adhesive protein which links platelets during aggregation, and since proteinase F1 cleaves fibrinogen, we investigated the role of fibrinogen in the inhibition of platelet aggregation by proteinase F1. The degradation products of fibrinogen formed by the proteinase did not cause significant inhibition. Thus, the inhibition of platelet aggregation appears to be independent of the formation of fibrinogen degradation products. We also studied the effect of proteinase F1 on aggregation of platelets that were reconstituted with defibrinogenated plasma. The proteinase inhibited aggregation of platelets even in the absence of plasma fibrinogen. Proteinase F1 was about 4-fold more potent in inhibiting platelet aggregation in defibrinogenated blood. From these results, we conclude that the inhibition of platelet aggregation by proteinase F1 from N. nigricollis venom is independent of its action on fibrinogen.  相似文献   

13.
A protein that blocks collagen-stimulated platelet aggregation has been identified and isolated from the soluble fraction of salivary glands from Haementeria officinalis leeches. We have named this protein leech antiplatelet protein (LAPP). LAPP was isolated from soluble crude salivary gland extract by heparin-agarose, size exclusion, and C18 reverse phase high-performance chromatography. Its molecular weight is approximately 16,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reduced and nonreduced conditions. The sequences of peptides generated by V8 digestion of LAPP as well as its amino acid composition suggested no homology to other known proteins. The IC50 for LAPP to inhibit platelet aggregation was approximately 60 nM. This inhibitory activity is specific for collagen-induced aggregation. Platelet aggregation in response to ADP, arachidonic acid, U46619, thrombin, and ionophore A23187 was not inhibited by LAPP at a concentration that blocked platelet aggregation to collagen by 100%. In contrast, crude salivary gland-soluble extract contained activity(ies) which inhibited aggregation to all these agonists except thrombin at 1 unit/ml and 2 microM A23187. Thus, the H. officinalis leech has evolved multiple mechanisms to prevent hemostasis, including an inhibitor of collagen-stimulated platelet aggregation. The identification and isolation of LAPP demonstrates the existence of a new type of platelet inhibitor that should be useful to better understand the mechanism of collagen stimulation of platelets.  相似文献   

14.
The effects of procyanidins on platelet aggregation and arachidonate metabolism in platelets were studied. Nine procyanidins were used in this investigation. Procyanidins B-2-S, EEC and C-1 significantly induced the inhibition of platelet aggregation, and the potency of inhibition was comparable with aspirin. Procyanidin B-2-S was used as a representative of procyanidins for further studies on the effect on arachidonate metabolism. In arachidonate metabolism by fatty acid cyclooxygenase pathway, B-2-S inhibited TXB2 and HHT formation by intact platelets treated with exogenous arachidonic acid. It also inhibited TXB2 formation measured by a specific radioimmunoassay when the cells were challenged with calcium ionophore A23187. In cell-free system, B-2-S inhibited both TXB2 and 12-HETE bioxynthesis in platelet microsome and cytosol, respectively. The inhibitory effect on thromboxane biosynthesis might explain the inhibitory effect of procyanidins on platelet aggregation.  相似文献   

15.
Low concentrations of wheat germ agglutinin (4 micrograms/ml) have been shown to act synergistically to induce platelet aggregation with epinephrine, collagen, arachidonate and ionophore A23187. Aggregation ceased on the addition of the haptenic sugar N-acetylglucosamine at any time following the onset of aggregation with these agonists and a small degree of disaggregation was observed during the reversible first wave with the biphasic aggregating agents epinephrine and ADP. Cyclooxygenase inhibitors such as indomethacin and aspirin blocked the second wave of aggregation with the biphasic aggregating agents epinephrine and ADP but a synergistic response continued to be shown with the first wave in the presence of these inhibitors. Release of [14C]serotonin and the mobilization of [3H]arachidonate by epinephrine and collagen were markedly stimulated in the presence of wheat germ agglutinin but there was no increase of either radiolabel in the case of ADP. Platelet shape change, but not aggregation, occurred with low levels of wheat germ agglutinin and the synergistic response with ADP, collagen or ionophore A23187 occurred without further shape change. Wheat germ agglutinin did not affect the basal or stimulated levels of cyclic AMP. The membrane fluidity of platelets was not affected by the lectin or by thrombin as shown by the lack of change in fluorescence polarization with diphenylhexatriene. It is suggested that the binding of wheat germ agglutinin to the platelet surface induces platelet activation by mechanisms similar to those of other agonists and that it may affect the distribution of membrane-bound Ca2+ by a reversible perturbation of the platelet membrane.  相似文献   

16.
The effect of mepacrine (DL-quinacrine-HCI), a specific inhibitor of phospholipase C, on cyclic-GMP levels in human platelets was investigated. The concentrations of mepacrine producing 50% inhibition of human platelet aggregation induced by 5 microM ADP and 3 micrograms/ml of collagen were 50 +/- 8 and 70 +/- 15 microM, respectively. Addition of mepacrine to human platelet suspension resulted in increases in cyclic GMP. In contrast to cyclic-GMP levels, cyclic-AMP content was not affected by mepacrine. Mepacrine did not stimulate guanylate cyclase, but did specifically inhibit human platelet cyclic-GMP phosphodiesterase, separated from cyclic-AMP phosphodiesterase or other forms of phosphodiesterase on DEAE-cellulose columns. Stimulation by cyclic GMP of human platelet cyclic-GMP-stimulated cyclic-AMP phosphodiesterase activity was not inhibited by mepacrine. The IC50 value of the drug for cyclic-GMP phosphodiesterase was 40 microM, and IC50 for cyclic-AMP phosphodiesterase was 1.2 mM. Mepacrine was 30-times more potent as an inhibitor of human platelet cyclic GMP than of cyclic-AMP phosphodiesterase. Mepacrine blocks arachidonate release from human platelets by inhibiting phosphatidylinositol-specific phospholipase C. The increase in cyclic-GMP levels produced by addition of mepacrine will explain part of the pharmacological action of this drug.  相似文献   

17.
A basic phospholipase A was isolated from Vipera russellii snake venom. It induced a biphasic effect on washed rabbit platelets suspended in Tyrode's solution. The first phase was a reversible aggregation which was dependent on stirring and extracellular calcium. The second phase was an inhibitory effect on platelet aggregation, occurring 5 min after the addition of the venom phospholipase A without stirring or after a recovery from the reversible aggregation. The aggregating phase could be inhibited by indomethacin, tetracaine, papaverine, creatine phosphate/creatine phosphokinase, mepacrine, verapamil, sodium nitroprusside, prostaglandin E1 or bovine serum albumin. The venom phospholipase A released free fatty acids from synthetic phosphatidylcholine and intact platelets. p-Bromophenacyl bromide-modified venom phospholipase A lost its phospholipase A enzymatic and platelet-aggregating activities, but protected platelets from the aggregation induced by the native enzyme. The second phase of the venom phospholipase A action showed a different degree of inhibition on platelet aggregation induced by some activators in following order: arachidonic acid >collagen >thrombin >ionophore A23187. The longer the incubation time or the higher the concentration of the venom phospholipase A, the more pronounced was the inhibitory effect. The venom phospholipase A did not affect the thrombin-induced release reaction which was caused by intracellular Ca2+ mobilization in the presence of EDTA, but inhibited collagen-induced release reaction which was caused by Ca2+ influx from extracellular medium. The inhibitory effect of the venom phospholipase A and also lysophosphatidylcholine or arachidonic acid could be antagonized or reversed by bovine serum albumin. It was concluded that the first stimulatory phase of the venom phospholipase A action might be due to arachidonate liberation from platelet membrane. The second phase of inhibition of platelet aggregation and the release of ATP might be due to the inhibitory action of the split products produced by this venom phospholipase A.  相似文献   

18.
The effect of extracellular Na+ removal and replacement with other cations on receptor-mediated arachidonate release in platelets was studied to investigate the role of Na+/H+ exchange in this process. Replacement with choline+, K+, N-methylglucamine+ (which abolished the thrombin-induced pHi rise) or Li+ (which allowed a normal thrombin-induced pHi rise) significantly decreased arachidonate release in response to all concentrations (threshold to supra-maximal) of thrombin and collagen. This inhibition was not reversed by NH4Cl (10 mM) addition, which raised the pHi in the absence of Na+, but, on the contrary, NH4Cl addition further decreased the extent of thrombin- and collagen-induced arachidonate release, as well as decreasing 'weak'-agonist (ADP, adrenaline)-induced release and granule secretion in platelet-rich plasma. No detectable pHi rises were seen with collagen (1-20 micrograms/ml) and ADP (10 microM) in bis-(carboxyethyl)carboxyfluorescein-loaded platelets. Inhibition of thrombin-induced pHi rises was seen with 0.5-5 microM-5-NN-ethylisopropylamiloride (EIPA), but at these concentrations EIPA had little effect on thrombin-induced arachidonate release. At higher concentrations such as those used in previous studies (20-50 microM), EIPA inhibited aggregation/release induced by collagen and ADP in Na+ buffer as well as in choline+ buffer (where there was no detectable exchanger activity), suggesting that these concentrations of EIPA exert 'non-specific' effects at the membrane level. The results suggest that (i) Na+/H+ exchange and pHi elevations are not only necessary, but are probably inhibitory, to receptor-mediated arachidonate release in platelets, (ii) inhibition of receptor-mediated release in the absence of Na+ is most likely due to the absent Na+ ion itself, and (iii) caution should be exercised in the use of compounds such as EIPA, which, apart from inhibiting the Na+/H+ exchanger, have other undesirable and misleading effects in platelets.  相似文献   

19.
The role of glycoprotein IV (GPIV) in platelet activation processes has been examined by several different approaches: (i) Fab fragments of a monospecific polyclonal antibody to purified platelet GPIV (approximately 20 micrograms/ml) completely inhibited platelet shape change, aggregation, and secretion induced by collagen. Aggregation and secretion by ADP (but not shape change) and by epinephrine were also inhibited, but there was no effect on platelet activation induced by thrombin, arachidonate, or ionophore A23187. (ii) Purified GPIV was able to compete completely with membrane-bound GPIV to inhibit platelet activation induced by collagen, including shape change, but not in activation induced by any of the other platelet agonists. 50% inhibition of collagen-induced activation and secretion were obtained at GPIV concentrations of approximately 10 nM (1 micrograms/ml). (iii) Purified GPIV bound rapidly and reversibly to collagen Type I fibrils, and binding was not inhibited by adhesive proteins such as denatured collagen, fibronectin, fibrinogen, or von Willebrand factor. The direct binding of purified GPIV to collagen Type I fibrils fit best to a single site model with Kd 0.34 +/- 0.10 nM. (iv) Using a microtiter assay, platelet adhesion to collagen was shown to be inhibited by Fab fragments of monospecific polyclonal anti-GPIV antibodies, but adhesion to other adhesive proteins was unaffected. (v) When anti-GPIV was added at various times during adhesion the time dependence of inhibition was seen to be biphasic. Anti-GP antibody was able to reverse adhesion that occurred within the first 5-8 min and to inhibit adhesion occurring thereafter. These results demonstrate that GPIV mediates the early stages of platelet recognition by and attachment to collagen but that there may be a second GPIV-independent mechanism that mediates the subsequent anchorage of these adherent platelets.  相似文献   

20.
The stimulation by ADP or arachidonic acid of the aggregation of human platelets in plasma was inhibited by 4-hydroxynonenal (HNE). This reduction of aggregation was time related, and was increased by prolonged preincubation of the platelets with the aldehyde. HNE was more potent than its homologue 4-hydroxypentenal (HPE). HNE was less active in decreasing the aggregation induced by calcium ionophore A23187 or collagen in comparison with ADP. HNE was inactive against aggregation of platelet-rich plasma (PRP) stimulated by thrombin whereas it potently inhibited the aggregation of washed platelets in response to both thrombin and collagen. Platelets were found to degrade HNE, and mechanisms additional to covalent binding to glutathione are indicated by the results obtained. The aldehydes, including HNE, generated by platelets originated principally from arachidonic acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号