首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly mercury-resistant strain Acidithiobacillus ferrooxidans MON-1, was isolated from a culture of a moderately mercury-resistant strain, A. ferrooxidans SUG 2-2 (previously described as Thiobacillus ferrooxidans SUG 2-2), by successive cultivation and isolation of the latter strain in a Fe2+ medium with increased amounts of Hg2+ from 6 microM to 20 microM. The original stain SUG 2-2 grew in a Fe2+ medium containing 6 microM Hg2+ with a lag time of 22 days, but could not grow in a Fe2+ medium containing 10 microM Hg2+. In contrast, strain MON-1 could grow in a Fe2+ medium containing 20 microM Hg2+ with a lag time of 2 days and the ability of strain MON-1 to grow rapidly in a Fe2+ medium containing 20 microM Hg2+ was maintained stably after the strain was cultured many times in a Fe2+ medium without Hg2+. A similar level of NADPH-dependent mercury reductase activity was observed in cell extracts from strains SUG 2-2 and MON-1. By contrast, the amounts of mercury volatilized for 3 h from the reaction mixture containing 7 microM Hg2+ using a Fe(2+)-dependent mercury volatilization enzyme system were 5.6 nmol for SUG 2-2 and 67.5 nmol for MON-1, respectively, indicating that a marked increase of Fe(2+)-dependent mercury volatilization activity conferred on strain MON-1 the ability to grow rapidly in a Fe2+ medium containing 20 microM Hg2+. Iron oxidizing activities, 2,3,5,6-tetramethyl-p-phenylenediamine (TMPD) oxidizing activities and cytochrome c oxidase activities of strains SUG 2-2 and MON-1 were 26.3 and 41.9 microl O2 uptake/mg/min, 15.6 and 25.0 microl O2 uptake/mg/min, and 2.1 and 6.1 mU/mg, respectively. These results indicate that among components of the iron oxidation enzyme system, especially cytochrome c oxidase activity, increased by the acquisition of further mercury resistance in strain MON-1. Mercury volatilized by the Fe(2+)-dependent mercury volatilization enzyme system of strain MON-1 was strongly inhibited by 1.0 mM sodium cyanide, but was not by 50 nM rotenone, 5 microM 2-n-heptyl-4-hydroxy-quinoline-N-oxide (HQNO), 0.5 microM antimycin A, or 0.5 microM myxothiazol, indicating that cytochrome c oxidase plays a crucial role in mercury volatilization of strain MON-1 in the presence of Fe2+.  相似文献   

2.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.  相似文献   

3.
Volatilization of mercury under acidic conditions from soil polluted with mercuric chloride (1.5 mg Hg/kg soil) was studied with resting cells of a mercury-resistant strain, Acidithiobacillus ferrooxidans SUG 2-2. When resting cells of SUG 2-2 (0.01 mg of protein) were incubated for 10 d at 30 degrees C in 20 ml of 1.6 mM sulfuric acid (pH 2.5) with ferrous sulfate (3%) and mercury-polluted soil (1 g), which contained 7.5 nmol of Hg, approximately 4.1 nmol of mercury was volatilized, indicating that 54% of the total mercury in the soil was volatilized. The amount of mercury volatilized from the soil was dependent on the concentration of Fe2+ added to the medium. When elemental sulfur, sodium tetrathionate, and pyrite were used as an electron donor for the mercury reduction, 16, 2.4 and 0.84%, respectively, of the total mercury added to the solution were volatilized. The optimum pH and temperature for mercury volatilization were 2.5 and 30 degrees C. Approximately 92% of the total mercury in a salt solution (pH 2.5) with resting cells of SUG 2-2 (0.01 mg of protein), ferrous sulfate (3%) and mercury-polluted soil (1 g) was volatilized by further addition of both resting cells and Fe2+ and by incubating for 30 d at 30 degrees C.  相似文献   

4.
Cell-free mercury volatilization activity (mercuric reductase) was obtained from a mercury-volatilizing Thiobacillus ferrooxidans strain, and the properties of intact-cell and cell-free activities were compared with those determined by plasmid R100 in Escherichia coli. Intact cells of T. ferrooxidans volatilized mercury at pH 2.5, whereas cells of E. coli did not. Cell-free enzyme preparations from both bacteria functioned best at or above neutral pH and not at all at pH 2.5. The T. ferrooxidans mercuric reductase was a soluble enzyme that was dependent upon added NAD(P)H. The enzyme activity was stable at 80 degrees C, required an added thiol compound, and was stimulated by EDTA. Antisera against purified mercuric reductases from transposon Tn501 and plasmid R831 (which inactivated mercuric reductases from a wide range of enteric and pseudomonad strains) did not inactivate the enzyme from T. ferrooxidans.  相似文献   

5.
The effect of iron on the activity of the plasma membrane H(+)-ATPase (PMA) from corn root microsomal fraction (CRMF) was investigated. In the presence of either Fe(2+) or Fe(3+) (100-200 microM of FeSO(4) or FeCl(3), respectively), 80-90% inhibition of ATP hydrolysis by PMA was observed. Half-maximal inhibition was attained at 25 microM and 50 microM for Fe(2+) and Fe(3+), respectively. Inhibition of the ATPase activity was prevented in the presence of metal ion chelators such as EDTA, deferoxamine or o-phenanthroline in the incubation medium. However, preincubation of CRMF in the presence of 100 microM Fe(2+), but not with 100 microM Fe(3+), rendered the ATPase activity (measured in the presence of excess EDTA) irreversibly inhibited. Inhibition was also observed using a preparation further enriched in plasma membranes by gradient centrifugation. Addition of 0.5 mM ATP to the preincubation medium, either in the presence or in the absence of 5 mM MgCl(2), reduced the extent of irreversible inhibition of the H(+)-ATPase. Addition of 40 microM butylated hydroxytoluene and/or 5 mM dithiothreitol, or deoxygenation of the incubation medium by bubbling a stream of argon in the solution, also caused significant protection of the ATPase activity against irreversible inhibition by iron. Western blots of CRMF probed with a polyclonal antiserum against the yeast plasma membrane H(+)-ATPase showed a 100 kDa cross-reactive band, which disappeared in samples previously exposed to 500 microM Fe(2+). Interestingly, preservation of the 100 kDa band was observed when CRMF were exposed to Fe(2+) in the presence of either 5 mM dithiothreitol or 40 microM butylated hydroxytoluene. These results indicate that iron causes irreversible inhibition of the corn root plasma membrane H(+)-ATPase by oxidation of sulfhydryl groups of the enzyme following lipid peroxidation.  相似文献   

6.
Deng X  Jia P 《Bioresource technology》2011,102(3):3083-3088
A recombinant photosynthetic bacterium, Rhodopseudomonas palustris, was constructed to simultaneously express mercury transport system and metallothionein for Hg(2+) removal from heavy metal wastewater. The effects of essential process parameters, including pH, ionic strength and presence of co-ions on Hg(2+) uptake were evaluated. The results showed that compared with wild type R. palustris, recombinant strain displayed stronger resistance to toxic Hg(2+), and its Hg(2+) binding capacity was enhanced threefolds. In the range of pH 4-10, recombinant R. palustris maintained effective accumulation of Hg(2+). The presence of 10 mg L(-1) Mg(2+), Ca(2+), Zn(2+) or Ni(2+) did not significantly influence Hg(2+) bioaccumulation by recombinant R. palustris from solutions containing 0.2 mg L(-1) Hg(2+), while Na(+) and Cd(2+) posed serious adverse effect on Hg(2+) uptake. Furthermore, EDTA treatment experiment confirmed that different from wild type R. palustris that mainly absorbed Hg(2+) on the cell surface, recombinant R. palustris transported most of the bound Hg(2+) into the cells.  相似文献   

7.
The impact of mercuric ions (Hg(2+)) on prawn oocytes was examined. Prawn oocytes constitute an unusual system in that they are activated at spawning by seawater Mg(2+), which mediates correlated dynamic changes in intracellular free calcium concentration [(Ca(2+))(i)] and membrane conductance associated with the meiosis resumption. Using a voltage clamp technique and intracellular calcium measurements, we observed that treatment with Hg(2+) (5, 10, and 20 microM) resulted in simultaneous impairments of both (Ca(2+))(i) and membrane current responses to external Mg(2+). Treatment with Hg(2+) also resulted in a gradual dose-dependent slow increase in the baseline level of both (Ca(2+))(i) and membrane conductance, independent of stimulation with external Mg(2+). The effect of Hg(2+) on (Ca(2+))(i) and membrane conductance changes resulted from a block of the signal transduction pathway at some point before the InsP(3) receptor channel involved in Ca(2+) release from the endoplasmic reticulum (ER) stocks. The Hg(2+)-dependent gradual increase in both (Ca(2+))(i) and membrane conductance baseline levels may potentially result from a slow permeabilization of the ER membrane, resulting in Ca(2+) leaking into the cytosol. Indeed, this effect could be blocked with the cell permeable Hg(2+) competitor dithiothreitol, which was able to displace Hg(2+) from its intracellular target regardless of whether external Ca(2+) was present or not.  相似文献   

8.
He YK  Sun JG  Feng XZ  Czakó M  Márton L 《Cell research》2001,11(3):231-236
INTRODUCTIONEnvironmental pollution is an increasing prob-lem both fOr developing and developed countries.Mercury, both in organic and ionic fOrm, is one of themost hazardous pollutants among the heavy met-als[l]and its accumuIation in human body results ininactivation of metabolic enzymes and structuralproteins[2, 3] giving rise to serious health problems(Minamatasyndrome).Usually mercury pollution is caused by indus-trial and agricultural activities, releasing mercuryinto air, water an…  相似文献   

9.
When Acidithiobacillus ferrooxidans ATCC23270 cells, grown for many generations on sulfur were grown in sulfur medium with and without Fe(3+), the bacterium markedly increased not only in iron oxidase activity but also in Fe(2+)-producing sulfide:ferric ion oxidoreductase (SFORase) activity during the early log phase, and retained part of these activities during the late log phase. The activity of SFORase, which catalyzes the production of Fe(2+) from Fe(3+) and sulfur, of sulfur-grown cells was approximately 10-20 fold higher than that of iron-grown cells. aa(3) type cytochrome c oxidase, an important component of iron oxidase in A. ferrooxidans, was partially purified from sulfur-grown cells. A. ferrooxidans ATCC23270 cells grown for many generations on sulfur had the ability to grow on iron as rapidly as that did iron-grown cells. These results suggest that both iron oxidase and Fe(2+)-producing SFORase have a role in the energy generation of A. ferrooxidans ATCC23270 from sulfur.  相似文献   

10.
Monolayers of porcine kidney cells (LLC-PK) were grown in a series of Nu-Serum-supplemented media containing different Mg(2+) concentrations (480, 250, 25, 6.3 or 2.6 microM) to study the effect of Mg(2+) depletion on cellular phospholipid changes and the consequent effect on the membrane permeability to Ca(2+). Cells grown on 6.3 or 2.6 microM Mg(2+) showed a decrease in PE, PS, Sph, PI and an increase of PC. These changes were attributed mainly to the decreased rate of Sph synthesis through the transfer of phosphocholine from PC to ceramide, or due to the increase of PE N-methylation as found in Mg(2+)-deficient cells. The (45)Ca uptake was increased in cells grown on 25.0 microM Mg(2+), while it was decreased in cells grown on 6.3 or 2.6 microM Mg(2+). These changes in Ca(2+) uptake were related to changes of cellular phospholipids and fatty acids which affect adenylate cyclase activity in the membrane, as well as the membrane fluidity.  相似文献   

11.
Three mercury-resistant marine Caulobacter strains showed an inducible mercury volatilization activity. Cell-free mercury volatilization (mercuric reductase) from these three marine Caulobacter strains was characterized and compared with enzyme activities determined by plasmids of Escherichia coli and Staphylococcus aureus. The temperature sensitivity of the Caulobacter mercuric reductase was greater than that of mercuric reductase from other gram-negative sources. Cell-free enzyme activity required NADH or NADPH, with NADPH functioning much better at lower concentrations than NADH. The Km for the Caulobacter enzyme was 4 microM Hg2+. Ag+ was a competitive inhibitor of Caulobacter mercuric reductase (Ki = 0.2 microM Ag+), as with previously studied enzymes. Arsenite was a noncompetitive inhibitor of the Caulobacter enzyme with a Ki of 75 microM AsO2-.  相似文献   

12.
Three mercury-resistant marine Caulobacter strains showed an inducible mercury volatilization activity. Cell-free mercury volatilization (mercuric reductase) from these three marine Caulobacter strains was characterized and compared with enzyme activities determined by plasmids of Escherichia coli and Staphylococcus aureus. The temperature sensitivity of the Caulobacter mercuric reductase was greater than that of mercuric reductase from other gram-negative sources. Cell-free enzyme activity required NADH or NADPH, with NADPH functioning much better at lower concentrations than NADH. The Km for the Caulobacter enzyme was 4 microM Hg2+. Ag+ was a competitive inhibitor of Caulobacter mercuric reductase (Ki = 0.2 microM Ag+), as with previously studied enzymes. Arsenite was a noncompetitive inhibitor of the Caulobacter enzyme with a Ki of 75 microM AsO2-.  相似文献   

13.
A simple, cost-effective and rapid colorimetric method for any or all of Hg(2+), Pb(2+) and Cu(2+) detection using papain-functionalized gold nanoparticles (P-AuNPs) has been developed. Papain is a protein with seven cystein residues, which can selectively bind with Hg(2+), Pb(2+) and Cu(2+). We functionalized gold nanoparticles with papain. The P-AuNPs could be used to simultaneously detect Hg(2+), Pb(2+) and Cu(2+), and showed different responses to the three ions in an aqueous solution based on the aggregation-induced color change of gold nanoparticles. The P-AuNPs displayed the most obvious response to mercury ions in water in contrast to lead and copper ions, and the real water sample analysis verified the conclusion. The sensitivity of the detection system was influenced by the pH of the P-AuNPs solution, the concentration of P-AuNPs and the size of gold nanoparticles, and we found that larger gold nanoparticles contributed to more sensitive results. The detection system can detect as low as 200 nM Hg(2+), Pb(2+) or Cu(2+) using 42 nm gold nanoparticles. We expect our approach to have wide-ranging applications in the developing region for monitoring water quality in some areas.  相似文献   

14.
We have shown previously that electrophoretically and immunologically homogeneous polyclonal IgGs from the sera of autoimmune-prone MRL mice possess DNase activity. Here we have analyzed for the first time activation of DNase antibodies (Abs) by different metal ions. Polyclonal DNase IgGs were not active in the presence of EDTA or after Abs dialysis against EDTA, but could be activated by several externally added metal (Me(2+)) ions, with the level of activity decreasing in the order Mn(2+)> or =Mg(2+)>Ca(2+)> or =Cu(2+)>Co(2+)> or =Ni(2+)> or =Zn(2+), whereas Fe(2+) did not stimulate hydrolysis of supercoiled plasmid DNA (scDNA) by the Abs. The dependencies of the initial rate on the concentration of different Me(2+) ions were generally bell-shaped, demonstrating one to four maxima at different concentrations of Me(2+) ions in the 0.1-12 mM range, depending on the particular metal ion. In the presence of all Me(2+) ions, IgGs pre-dialyzed against EDTA produced only the relaxed form of scDNA and then sequence-independent hydrolysis of relaxed DNA followed. Addition of Cu(2+), Zn(2+), or Ca(2+) inhibited the Mg(2+)-dependent hydrolysis of scDNA, while Ni(2+), Co(2+), and Mn(2+) activated this reaction. The Mn(2+)-dependent hydrolysis of scDNA was activated by Ca(2+), Ni(2+), Co(2+), and Mg(2+) ions but was inhibited by Cu(2+) and Zn(2+). After addition of the second metal ion, only in the case of Mg(2+) and Ca(2+) or Mn(2+) ions an accumulation of linear DNA (single strand breaks closely spaced in the opposite strands of DNA) was observed. Affinity chromatography on DNA-cellulose separated DNase IgGs into many subfractions with various affinities to DNA and very different levels of the relative activity (0-100%) in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. In contrast to all human DNases having a single pH optimum, mouse DNase IgGs demonstrated several pronounced pH optima between 4.5 and 9.5 and these dependencies were different in the presence of Mn(2+), Ca(2+), and Mg(2+) ions. These findings demonstrate a diversity of the ability of IgG to function at different pH and to be activated by different optimal metal cofactors. Possible reasons for the diversity of polyclonal mouse abzymes are discussed.  相似文献   

15.
Cyanobacteria as a biosorbent for mercuric ion   总被引:2,自引:0,他引:2  
The biosorption of Hg(2+) by two strains of cyanobacteria, Spirulina platensis and Aphanothece flocculosa, was studied under a batch stirred reaction system. Essential process parameters, including pH, biomass concentration, initial metal concentration, and presence of co-ions were shown to influence the Hg(2+) uptake. Hg(2+) uptake was optimal at pH 6.0 for both strains. The maximum loading capacities per gram of dry biomass were found to be 456 mg Hg(2+) for A. flocculosa and 428 mg Hg(2+) for S. platensis. At an initial concentration of 10 ppm Hg(2+), A. flocculosa was able to remove more than 98% of the mercury ion from solution. The biosorption kinetics of both strains showed that the metal uptake is bi-phasic, exhibiting a rapid initial uptake followed by a slower absorption process. The presence of dissolved Co(2+), Ni(2+), and Fe(3+) were found to play a synergistic role for Hg(2+) uptake by both strains. Regeneration of the biomass was examined by treating Hg(2+)-loaded samples with HCl and NH(4)Cl over four cycles of sorption and desorption.  相似文献   

16.
1. A sarcolemmal fraction was isolated from hamster hind-leg skeletal muscles by successive treatment with lithium bromide and potassium chloride. The membranous fraction was observed to contain a highly active Ca(2+)-stimulated ATPase (adenosine triphosphatase), a Mg(2+)-stimulated ATPase, and an Na(+)+K(+)-stimulated Mg(2+)-dependent ouabain-sensitive ATPase. 2. The Ca(2+)-stimulated ATPase activity was pH-dependent, the optimum being pH7.6. 3. Optimum activation of this enzyme was obtained with 3-4mm-Ca(2+) when 4mm-ATP was present as a substrate, and was not influenced by Na(+), K(+) or ouabain, whereas 2,4-dinitrophenol, sodium azide, oligomycin, sodium fluoride and ethanedioxybis(ethylamine)tetra-acetate were inhibitory. 4. The Ca(2+)-stimulated ATPase was markedly inhibited by thiol-blocking reagents, and cysteine was able to reverse this inhibition. 5. Various bivalent cations stimulated ATP hydrolysis by the sarcolemmal fraction in the following decreasing order of potency: Mg(2+), Ca(2+), Mn(2+), Co(2+), Sr(2+), Ba(2+), Zn(2+), Cu(2+).  相似文献   

17.
Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 muM and 5 muM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 muM, and 70% by 10 muM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.  相似文献   

18.
Yuan A  Siu CH  Chia CP 《Cell calcium》2001,29(4):229-238
Extracellular EDTA suppressed in a dose-dependent manner the phagocytosis of yeast particles by Dictyostelium discoideum cells. Activity was restored fully by the addition of Ca(2+), and partially by the addition of Mn(2+)or Zn(2+), but Mg(2+)was ineffective. The pH-sensitive, Ca(2+)-specific chelator EGTA also inhibited phagocytosis at pH 7.5, but not at pH 5, and Ca(2+)restored the inhibited phagocytosis. In contrast, pinocytosis was unaffected by EDTA. Consistent with the idea that Ca(2+)was required for phagocytosis, D. discoideum growth on bacteria was inhibited by EDTA, which was then restored by the addition of Ca(2+). It is concluded that Ca(2+)was needed for efficient phagocytosis by D. discoideum amoebae. A search for Ca(2+)-dependent membrane proteins enriched in phagosomes revealed the presence of p24, a Ca(2+)-dependent cell-cell adhesion molecule-1 (DdCAD-1) that could be the target of the observed EDTA and EGTA inhibition. DdCAD-1-minus cells, however, had normal phagocytic activity. Furthermore, phagocytosis was inhibited by EDTA and rescued by Ca(2+)in the mutant just as in wild type. Thus, DdCAD-1 was not responsible for the observed Ca(2+)-dependence of phagocytosis, indicating that one or more different Ca(2+)-dependent molecule(s) was involved in the process.  相似文献   

19.
Mercury and organomercurial resistance determined by genes on ten Pseudomonas aeruginosa plasmids and one Pseudomonas putida plasmid have been studied with regard to the range of substrates and the range of inducers. The plasmidless strains were sensitive to growth inhibition by Hg(2+) and did not volatilize Hg(0) from Hg(2+). A strain with plasmid RP1 (which does not confer resistance to Hg(2+)) similarly did not volatilize mercury. All 10 plasmids determine mercury resistance by way of an inducible enzyme system. Hg(2+) was reduced to Hg(0), which is insoluble in water and rapidly volatilizes from the growth medium. Plasmids pMG1, pMG2, R26, R933, R93-1, and pVS1 in P. aeruginosa and MER in P. putida conferred resistance to and the ability to volatilize mercury from Hg(2+), but strains with these plasmids were sensitive to and could not volatilize mercury from the organomercurials methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids, in addition, conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate. The other plasmids, FP2, R38, R3108, and pVS2, determined resistance to and decomposition of a range of organomercurials, including methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids also conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate by a mechanism not involving degradation. In all cases, organomercurial decomposition and mercury volatilization were induced by exposure to Hg(2+) or organomercurials. The plasmids differed in the relative efficacy of inducers. Hg(2+) resistance with strains that are organomercurial sensitive appeared to be induced preferentially by Hg(2+) and only poorly by organomercurials to which the cells are sensitive. However, the organomercurials p-hydroxymercuribenzoate, merbromin, and fluorescein mercuric acetate were strong gratuitous inducers but not substrates for the Hg(2+) volatilization system. With strains resistant to phenylmercury and thimerosal, these organomercurials were both inducers and substrates.  相似文献   

20.
A constitutively expressed aliphatic amidase from a Rhodococcus sp. catalyzing acrylamide deamination was purified to electrophoretic homogeneity. The molecular weight of the native enzyme was estimated to be 360,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified preparation yielded a homogeneous protein band having an apparent molecular weight of about 44,500. The amidase had pH and temperature optima of 8.5 and 40 degrees C, respectively, and its isoelectric point was pH 4.0. The amidase had apparent K(m) values of 1.2, 2.6, 3.0, 2.7, and 5.0 mM for acrylamide, acetamide, butyramide, propionamide, and isobutyramide, respectively. Inductively coupled plasma-atomic emission spectometry analysis indicated that the enzyme contains 8 mol of iron per mol of the native enzyme. No labile sulfide was detected. The amidase activity was enhanced by, but not dependent on Fe(2+), Ba(2+), and Cr(2+). However, the enzyme activity was partially inhibited by Mg(2+) and totally inhibited in the presence of Ni(2+), Hg(2+), Cu(2+), Co(2+), specific iron chelators, and thiol blocking reagents. The NH2-terminal sequence of the first 18 amino acids displayed 88% homology to the aliphatic amidase of Brevibacterium sp. strain R312.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号