首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Analysis of the 18S rDNA sequences of five species of the family Dugesiidae (phylum Platyhelminthes, suborder Tricladida, infraorder Paludicola) and eight species belonging to families Dendrocoelidae and Planaridae and to the infraorder Maricola showed that members of the family Dugesiidae have two types of 18S rDNA genes, while the rest of the species have only one. The duplication event also affected the ITS-1, 5.8S, ITS-2 region and probably the 28S gene. The mean divergence value between the type I and the type II sequences is 9% and type II 18S rDNA genes are evolving 2.3 times more rapidly than type I. The evolutionary rates of type I and type II genes were calibrated from biogeographical data, and an approximate date for the duplication event of 80–120 million years ago was calculated. The type II gene was shown, by RT-PCR, to be transcribed in adult individuals of Schmidtea polychroa, though at very low levels. This result, together with the fact that most of the functionally important positions for small-subunit rRNA in prokaryotes have been conserved, indicates that the type II gene is probably functional. Received: 24 March 1998 / Accepted: 17 March 1999  相似文献   

3.
We report the cloning and structural characterization of two Adh loci of the olive fruit fly, Bactrocera oleae. Each of the two genes, named Adh1 and Adh2, consists of three exons and two introns for a total length of 1981 and 988 nucleotides, respectively. Their deduced amino acid sequences of 257 and 258 residues exhibit a 77% identity and display the characteristics of the insect ADH enzymes, which belong to the short-chain dehydrogenases/reductases family. The Adh genes of B. oleae are compared to the two genes of the Mediterranean fly, Ceratitis capitata, the only other species of the Tephritidae family in which the Adh genes have been studied. On the basis of amino acid divergence the four genes form two clusters each containing one gene from each species, as expected if there was one duplication event before speciation. On the basis of nucleotide sequence the four sequences form two clusters each containing the two sequences from the same species, as expected if there was a separate duplication event in each species. To help decide between the two alternatives, we compared at both the amino acid and DNA level the Adh genes of five Drosophila species that are known to carry two such genes and observed that, with only one exception at the amino acid level, conspecific loci cluster together. We conclude that the information we have at present does not allow a firm choice between the hypothesis of a single duplication event that occurred before the split of Bactrocera and Ceratitis from their common ancestor and the hypothesis of two independent duplication events, one in each of the two genera. Received: 30 May 2000 / Accepted: 17 August 2000  相似文献   

4.
In this paper we analyzed 49 lactate dehydrogenase (LDH) sequences, mostly from vertebrates. The amino acid sequence differences were found to be larger for a human–killifish pair than a human–lamprey pair. This indicates that some protein sequence convergence may occur and reduce the sequence differences in distantly related species. We also examined transitions and transversions separately for several species pairs and found that the transitions tend to be saturated in the distantly related species pair, while transversions are increasing. We conclude that transversions maintain a conservative rate through the evolutionary time. Kimura's two-parameter model for multiple-hit correction on transversions only was used to derive a distance measure and then construct a neighbor-joining (NJ) tree. Three findings were revealed from the NJ tree: (i) the branching order of the tree is consistent with the common branch pattern of major vertebrates; (ii) Ldh-A and Ldh-B genes were duplicated near the origin of vertebrates; and (iii) Ldh-C and Ldh-A in mammals were produced by an independent gene duplication in early mammalian history. Furthermore, a relative rate test showed that mammalian Ldh-C evolved more rapidly than mammalian Ldh-A. Under a two-rate model, this duplication event was calibrated to be approximately 247 million years ago (mya), dating back to the Triassic period. Other gene duplication events were also discovered in Xenopus, the first duplication occurring approximately 60–70 mya in both Ldh-A and Ldh-B, followed by another recent gene duplication event, approximately 20 mya, in Ldh-B. Received: 5 October 2001 / Accepted: 24 October 2001  相似文献   

5.
To determine the origin and evolutionary significance of a recently discovered isoform of the estrogen receptor (ERβ), we examined the phylogenetic relationship of ERβ to the well-known α isoform (ERα) and other steroid receptors. Our phylogenetic analyses traced the origin of ERβ to a single duplication event at least 450 million years ago. Since this duplication, the evolution of both ER isoforms has apparently been constrained such that 80% of the amino acid positions in the DNA binding domain (DBD) and 53% of the ligand binding domain (LBD) have remained unchanged. Using the phylogenetic tree, we determined the amount of evolutionary change that had occurred in two ER isoforms. The DBD and the LBD had lower rates of evolutionary change compared to the NH2 terminal domain. However, even with strong selective constraints on the DBD and LBD, our phylogenetic analyses demonstrate two clearly separate phylogenetic histories for ERα and ERβ dating back several hundred million years. The ancient duplication of ER and the parallel evolution of the two ER isoforms suggest that, although ERα and ERβ share a substantial degree of sequence identity, they play unique roles in vertebrate physiology and reproduction. Received: 19 January 1999 / Accepted: 26 May 1999  相似文献   

6.
We report the cDNA sequences for the DMA and DMB family of Mhc genes of the gray short-tailed opossum. Until now DM sequences were available only in eutherian mammals. The marsupial sequences indicate that both members of the family are old and probably diverged from other classical class II families about the time of the radiation of jawed vertebrates some 450 million years ago. We examine the evolutionary rates of equivalent sets of classical and nonclassical genes to check for rate heterogeneity. We find the α-1 domain of the DR genes to be untypically conservative in its evolutionary mode. The DM genes appear to evolve at rates typical of other class II genes, indicating that their placement at the root of class II gene evolutionary trees may be justified. Received: 2 March 1998 / Accepted: 2 June 1998  相似文献   

7.
The pairs of nitrogen fixation genes nifDK and nifEN encode for the α and β subunits of nitrogenase and for the two subunits of the NifNE protein complex, involved in the biosynthesis of the FeMo cofactor, respectively. Comparative analysis of the amino acid sequences of the four NifD, NifK, NifE, and NifN in several archaeal and bacterial diazotrophs showed extensive sequence similarity between them, suggesting that their encoding genes constitute a novel paralogous gene family. We propose a two-step model to reconstruct the possible evolutionary history of the four genes. Accordingly, an ancestor gene gave rise, by an in-tandem paralogous duplication event followed by divergence, to an ancestral bicistronic operon; the latter, in turn, underwent a paralogous operon duplication event followed by evolutionary divergence leading to the ancestors of the present-day nifDK and nifEN operons. Both these paralogous duplication events very likely predated the appearance of the last universal common ancestor. The possible role of the ancestral gene and operon in nitrogen fixation is also discussed. Received: 21 June 1999 / Accepted: 1 March 2000  相似文献   

8.
Previous evidence has demonstrated the absence of exons 34 and 35 within the 3′ end of the human tropoelastin (ELN) gene. These exons encode conserved polypeptide domains within tropoelastin and are found in the ELN gene in vertebrate species ranging from chickens to rats to cows. We have analyzed the ELN gene in a variety of primate species to determine whether the absence of exons 34 and 35 in humans either is due to allelic variation within the human population or is a general characteristic of the Primates order. An analysis of the 3′ end of the ELN gene in several nonhuman primates and in 546 chromosomes from humans of varying ethnic background demonstrated a sequential loss of exons 34 and 35 during primate evolution. The loss of exon 35 occurred at least 35–45 million years ago, when Catarrhines diverged from Platyrrhines (New World monkeys). Exon 34 loss, in contrast, occurred only about 6–8 million years ago, when Homo separated from the common ancestor shared with chimpanzees and gorillas. Loss of both exons was probably facilitated by Alu-mediated recombination events and possibly conferred a functional evolutionary advantage in elastic tissue. Received: 6 July 1998 / Accepted: 18 February 1999  相似文献   

9.
Sequences of the α1, α2 and θ globin genes from six equid species have been determined to investigate relationships within the genus Equus. Analyses using standard phylogenetic methods, or an approach designed to account for the effects of gene conversion between the α genes, gave broadly similar results and show that the horses diverged from the zebra/ass ancestor ∼2.4 million years ago and that the zebra and ass species arose in a rapid radiation ∼0.9 million years ago. These results from the α genes are corroborated by θ gene data and are in contrast to mitochondrial DNA studies of the phylogeny of this genus, which suggest a more gradual set of speciation events. Received: 22 April 1997 / Accepted: 20 July 1998  相似文献   

10.
The human RH locus is responsible for the expression of the Rh blood group antigens. It consists of two closely linked genes, RHD and RHCE, that exhibit 92% similarity between coding regions. These observations suggest that they are derived from a relatively recent duplication event. Previously a study of nonhuman primate RH-like genes demonstrated that ancestral RH gene duplication occurred in the common ancestor of man, chimpanzees and gorillas. By amplification of intron 3 and intron 4 of gorilla RH-like genes, we have now shown that, like man, gorillas possess two types of RH intron 3 (RHCE intron 3 being 289 bp longer than the RHD intron 3) and two types of intron 4 (RHCE intron 4 being 654 bp longer than the RHD intron 4). Here we report the characterization of a cDNA encoded by a gorilla RH-like gene which possesses introns 3 and 4 of the RHCE type. A comparison of this gorilla RHCE-like coding sequence with previously characterized human and ape cDNA sequences suggests that RH genes experienced complex recombination events after duplication in the common ancestor of humans, chimpanzees and gorillas.  相似文献   

11.
The complete mitochondrial DNA (mtDNA) molecule of the hamadryas baboon, Papio hamadryas, was sequenced and included in a molecular analysis of 24 complete mammalian mtDNAs. The particular aim of the study was to time the divergence between Cercopithecoidea and Hominoidea. That divergence, set at 30 million years before present (MYBP) was a fundamental reference for the original proposal of recent hominoid divergences, according to which the split among gorilla, chimpanzee, and Homo took place 5 MYBP. In the present study the validity of the postulated 30 MYBP dating of the Cercopithecoidea/Hominoidea divergence was examined by applying two independent nonprimate molecular references, the divergence between artiodactyls and cetaceans set at 60 MYBP and that between Equidae and Rhinocerotidae set at 50 MYBP. After calibration for differences in evolutionary rates, application of the two references suggested that the Cercopithecoidea/Hominoidea divergence took place >50 MYBP. Consistent with the marked shift in the dating of the Cercopithecoidea/Hominoidea split, all hominoid divergences receive a much earlier dating. Thus the estimated date of the divergence between Pan (chimpanzee) and Homo is 10–13 MYBP and that between Gorilla and the Pan/Homo linage ≈17 MYBP. The same datings were obtained in an analysis of clocklike evolving genes. The findings show that recalculation is necessary of all molecular datings based directly or indirectly on a Cercopithecoidea/Hominoidea split 30 MYBP. Received: 1 April 1998 / Accepted: 1 July 1998  相似文献   

12.
The two eosinophil ribonucleases, eosinophil-derived neurotoxin (EDN/RNase 2) and eosinophil cationic protein (ECP/RNase 3), are among the most rapidly evolving coding sequences known among primates. The eight mouse genes identified as orthologs of EDN and ECP form a highly divergent, species-limited cluster. We present here the rat ribonuclease cluster, a group of eight distinct ribonuclease A superfamily genes that are more closely related to one another than they are to their murine counterparts. The existence of independent gene clusters suggests that numerous duplications and diversification events have occurred at these loci recently, sometime after the divergence of these two rodent species (∼10–15 million years ago). Nonsynonymous substitutions per site (d N) calculated for the 64 mouse/rat gene pairs indicate that these ribonucleases are incorporating nonsilent mutations at accelerated rates, and comparisons of nonsynonymous to synonymous substitution (d N / d S) suggest that diversity in the mouse ribonuclease cluster is promoted by positive (Darwinian) selection. Although the pressures promoting similar but clearly independent styles of rapid diversification among these primate and rodent genes remain uncertain, our recent findings regarding the function of human EDN suggest a role for these ribonucleases in antiviral host defense. Received: 8 April 1999 / Accepted: 22 June 1999  相似文献   

13.
From a total of 22 nuclear genes, we estimate that the divergence time between Drosophila and vertebrates was about 830 million years ago (mya), which is significantly (1% level) earlier than the Cambrian explosion indicated by the early triploblastic fossils (<600 mya). Received: 21 November 1997 / Accepted: 18 February 1998  相似文献   

14.
Invertebrates, tetrapod vertebrates, and fish might be expected to differ in their number of gene copies, possibly due the occurrence of genome duplication events during animal evolution. Reggie (flotillin) genes code for membrane-associated proteins involved in growth signaling in developing and regenerating axons. Until now, there appeared to be only two reggie genes in fruitflies, mammals, and fish. The aim of this research was to search for additional copies of reggie genes in fishes, since a genome duplication might have increased the gene copy number in this group. We report the presence of up to four distinct reggie genes (two reggie-1 and two reggie-2 genes) in the genomes of zebrafish and goldfish. Phylogenetic analyses show that the zebrafish and goldfish sequence pairs are orthologous, and that the additional copies could have arisen through a genome duplication in a common ancestor of bony fish. The presence of novel reggie mRNAs in fish embryos indicates that the newly discovered gene copies are transcribed and possibly expressed in the developing and regenerating nervous system. The intron/exon boundaries of the new fish genes characterized here correspond with those of human genes, both in location and phase. An evolutionary scenario for the evolution of reggie intron-exon structure, where loss of introns appears to be a distinctive trait in invertebrate reggie genes, is presented. Received: 24 January 2001 / Accepted: 27 July 2001  相似文献   

15.
A comprehensive analysis of duplication and gene conversion for 7394 Caenorhabditis elegans genes (about half the expected total for the genome) is presented. Of the genes examined, 40% are involved in duplicated gene pairs. Intrachromosomal or cis gene duplications occur approximately two times more often than expected. In general the closer the members of duplicated gene pairs are, the more likely it is that gene orientation is conserved. Gene conversion events are detectable between only 2% of the duplicated pairs. Even given the excesses of cis duplications, there is an excess of gene conversion events between cis duplicated pairs on every chromosome except the X chromosome. The relative rates of cis and trans gene conversion and the negative correlation between conversion frequency and DNA sequence divergence for unconverted regions of converted pairs are consistent with previous experimental studies in yeast. Three recent, regional duplications, each spanning three genes are described. All three have already undergone substantial deletions spanning hundreds of base pairs. The relative rates of duplication and deletion may contribute to the compactness of the C. elegans genome. Received: 30 July 1998 / Accepted: 12 October 1998  相似文献   

16.
To know whether genes involved in cell–cell communication typical of multicellular animals dramatically increased in concert with the Cambrian explosion, the rapid evolutionary burst in the major groups of animals, and whether these genes exist in the sponge lacking cell cohesiveness and coordination typical of eumetazoans, we have carried out cloning of the G-protein α subunit (Gα) and the protein tyrosine kinase (PTK) cDNAs from Ephydatia fluviatilis (freshwater sponge) and Hydra magnipapillata strain 105 (hydra). We obtained 13 Gα and 20 PTK cDNAs. Generally animal gene families diverged first by gene duplication (subtype duplication) that gave rise to diverse subtypes with different primary functions, followed by further gene duplication in the same subtype (isoform duplication) that gave rise to isoform genes with virtually identical function. Phylogenetic trees of Gα and PTK families including cDNAs from sponge and hydra revealed that most of the present-day subtypes had been established in the very early evolution of animals before the parazoan–eumetazoan split, the earliest branching among the extant animal phyla, by extensive subtype duplication: for PTK and Gα families, 23 and 9 subtype duplications were observed in the early stage before the parazoan–eumetazoan split, respectively, and after that split, only 2 and 1 subtype duplications were found, respectively. After the separation from arthropods, vertebrates underwent frequent isoform duplications before the fish–tetrapod split. Furthermore, rapid amino acid changes appear to have occurred in concert with the extensive subtype duplication and isoform duplication. Thus the pattern of gene diversification during animal evolution might be characterized by bursts of gene duplication interrupted by considerably long periods of silence, instead of proceeding gradually, and there might be no direct link between the Cambrian explosion and the extensive gene duplication that generated diverse functions (subtypes) of these families. Received: 4 November 1998 / Accepted: 17 November 1998  相似文献   

17.
Genes with atypical G+C content and pattern of codon usage in a certain genome are possibly of exotic origin, and this idea has been applied to identify horizontal events. In this way, it was postulated that a total of 755 genes in the E. coli genome are relics of horizontal events after the divergence of E. coli from the Salmonella lineage 100 million years ago (Lawrence and Ochman, 1998). In this paper we propose a new way to study sequence composition more thoroughly. We found that although the 755 genes differ in composition from other genes in the E. coli genome, the difference is minor. If we accepted that these genes are horizontally transferred, then (1) it would be more likely that they were transferred from genomes evolutionarily closely related to E. coli; but (2) the dating method used by Lawrence and Ochman (1997, 1998) largely underestimated the average age of introduced sequences in the E. coli genome, in particular, most of the 755 genes should be introduced into E. coli before, instead of after, the divergence of E. coli from the Salmonella lineage. Our study reveals that atypical G+C content and pattern of codon usage are not reliable indicators of horizontal gene transfer events. Received: 27 September 2000 / Accepted: 9 April 2001  相似文献   

18.
19.
The duplication of genes and even complete genomes may be a prerequisite for major evolutionary transitions and the origin of evolutionary novelties. However, the evolutionary mechanisms of gene evolution and the origin of novel gene functions after gene duplication have been a subject of many debates. Recently, we compiled 26 groups of orthologous genes, which included one gene from human, mouse, and chicken, one or two genes from the tetraploid Xenopus and two genes from zebrafish. Comparative analysis and mapping data showed that these pairs of zebrafish genes were probably produced during a fish-specific genome duplication that occurred between 300 and 450 Mya, before the teleost radiation (Taylor et al. 2001). As discussed here, many of these retained duplicated genes code for DNA binding proteins. Different models have been developed to explain the retention of duplicated genes and in particular the subfunctionalization model of Force et al. (1999) could explain why so many developmental control genes have been retained. Other models are harder to reconcile with this particular set of duplicated genes. Most genes seem to have been subjected to strong purifying selection, keeping properties such as charge and polarity the same in both duplicates, although some evidence was found for positive Darwinian selection, in particular for Hox genes. However, since only the cumulative pattern of nucleotide substitutions can be studied, clear indications of positive Darwinian selection or neutrality may be hard to find for such anciently duplicated genes. Nevertheless, an increase in evolutionary rate in about half of the duplicated genes seems to suggest that either positive Darwinian selection has occurred or that functional constraints have been relaxed at one point in time during functional divergence. Received: 4 January 2001 / Accepted: 29 March 2001  相似文献   

20.
In this paper we have analyzed 49 vertebrate gene families that were generated in the early stage of vertebrates and/or shortly before the origin of vertebrates, each of which consists of three or four member genes. We have dated the first (T1) and second (T2) gene duplications of 26 gene families with 3 member genes. The means of T1 (594 mya) and T2 (488 mya) are largely consistent to a well-cited version of two-round (2R) genome duplication theory. Moreover, in most cases, the time interval between two successive gene duplications is large enough that the fate of duplicate genes generated by the first gene duplication was likely to be determined before the second one took place. However, the phylogenetic pattern of 23 gene families with 4 members is complicated; only 5 of them are predicted by 2R model, but 11 families require an additional gene (or genome) duplication. For the rest (7 families), at least one gene duplication event had occurred before the divergence between vertebrate and Drosophila, indicating a possible misleading of the 4:1 rule (member gene ratio between vertebrates and invertebrates). Our results show that Ohno's 2R conjecture is valid as a working hypothesis for providing a most parsimonious explanation. Although for some gene families, additional gene duplication is needed, the credibility of the third genome duplication (3R) remains to be investigated. Received: 13 December 1999 / Accepted: 7 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号