首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Anabaena PCC 7119 showed higher rates of phosphate uptake whencells were under P-starvation. Phosphate uptake was energy-dependentas indicated the decrease observed when assays were performedin the dark or in the presence of inhibitors of photosyntheticelectron transport, energy transfer and adenosine triphosphataseactivity. Phosphate uptake was stimulated by Na+ both in P-sufficientcells and P-starved cells. Li+ and K+ acted as partial analoguesfor Na+. The Na+-stimulation of phosphate uptake followed Michaelis-Mentenkinetics, half-saturation (K) of phosphate uptake was reachedwith a Na+ concentration of 212 µM. The absence of Na+reduced the rates of phosphate uptake at all phosphate concentrationsassayed (1–20 µM). The maximum uptake rates (Vmax)decreased from 658 nmol P (mg dry wt)-1 h-1 in the presenceof Na+ to 149 nmol P (mg dry wt)-1 h-1 in the absence of Na+.The absence of Na+ did not change significantly the concentrationof phosphate required to reach half-saturation (K) (3.01 µMin the presence of Na+ vs 3.21 µM in the absence of Na+).In the presence of Na+ the rate of phosphate uptake was affectedby the pH; optimal rates were observed at pH 8. In the absenceof Na+ phosphate uptake was not affected by the pH; low rateswere observed in all cases. Monensin, an ionophore which collapsesNa+-gradients, reduced the rate of phosphate uptake in Na+-supplementedcells. These results indicated the existence of a Na+-dependentphosphate uptake in Anabaena PCC 7119. (Received September 8, 1992; Accepted November 17, 1992)  相似文献   

2.
A comparison was made between two methods of measuring the relationshipbetween the external [K+] and the flux of K+ into whole plantsof Lolium perenne and Raphanus sativus. The values of flux obtainedfrom solutions of 1.2 µM K+ held constant around the rootswere three and six times greater for Lolium and Raphanus respectivelythan the values obtained at the same concentration in a depletionexperiment in which the solutions, initially 100 µM K+,were depleted to below 1.2 µM K+ by plant uptake. In thedepletion experiment with Lolium, the flux was higher into plantsgrown at low [K+] than into plants grown at 100 µM eventhough [K+] within the plant was about the same for all groupsof plants. It is suggested that Lolium grown at low [K+] hasan efficient mechanism for K+ uptake which continues to operatefor some time after the plants have been transferred to a higherconcentration. With both species, Km was 15–20 µMin the depletion experiment and below 1 µM when concentrationswere held constant.  相似文献   

3.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

4.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

5.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

6.
Ginzburg, M., and Ginzburg, B. Z., 1985. Ion and glycerol concentrationsin 12 isolates of Dunaliella.—J. exp. Bot. 36: 1064–1074. Twelve isolates of Dunaliella with average cell volumes rangingfrom 50 to 1400x10–18 m3 were grown in batch culture at0.5 M or 2.0 M NaCl. Glycerol and ions (Na+, K+, Mg2+, CI,phosphate) were measured in log-phase cultures. The contentsof Mg2+, K+ and phosphate per cell were found to be a functionof cell-volume. Cell glycerol, Na+ and Cl were functionsof cell-volume and of the NaCl concentration in the medium.Solute concentrations were calculated from the measured cell-volumesand from the 3H2O content of pellets corrected for intercellularspace using Blue Dextran. Cell glycerol was found to accountfor about one-half of the expected osmolarity, the remainderbeing largely accounted for by Na+ and CI. Key words: —Dunaliella, isolates, glycerol, ion concentrations  相似文献   

7.
The general phosphate need in mammalian cells is accommodated by members of the Pi transport (PiT) family (SLC20), which use either Na+ or H+ to mediate inorganic phosphate (Pi) symport. The mammalian PiT paralogs PiT1 and PiT2 are Na+-dependent Pi (NaPi) transporters and are exploited by a group of retroviruses for cell entry. Human PiT1 and PiT2 were characterized by expression in Xenopus laevis oocytes with 32Pi as a traceable Pi source. For PiT1, the Michaelis-Menten constant for Pi was determined as 322.5 ± 124.5 µM. PiT2 was analyzed for the first time and showed positive cooperativity in Pi uptake with a half-maximal activity constant for Pi of 163.5 ± 39.8 µM. PiT1- and PiT2-mediated Na+-dependent Pi uptake functions were not significantly affected by acidic and alkaline pH and displayed similar Na+ dependency patterns. However, only PiT2 was capable of Na+-independent Pi transport at acidic pH. Study of the impact of divalent cations Ca2+ and Mg2+ revealed that Ca2+ was important, but not critical, for NaPi transport function of PiT proteins. To gain insight into the NaPi cotransport function, we analyzed PiT2 and a PiT2 Pi transport knockout mutant using 22Na+ as a traceable Na+ source. Na+ was transported by PiT2 even without Pi in the uptake medium and also when Pi transport function was knocked out. This is the first time decoupling of Pi from Na+ transport has been demonstrated for a PiT family member. Moreover, the results imply that putative transmembrane amino acids E55 and E575 are responsible for linking Pi import to Na+ transport in PiT2. inorganic phosphate transport; retroviral receptor; SLC20  相似文献   

8.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

9.
We have reported that ryanodine receptor (RyR) channels display three different responses to cytoplasmic free Ca2+ concentration ([Ca2+]) depending on their redox state (Marengo JJ, Hidalgo C, and Bull R. Biophys J 74: 1263–1277, 1998), with low, moderate, and high maximal fractional open times (Po). Activation by ATP of single RyR channels from rat brain cortex was tested in planar lipid bilayers with 10 or 0.1 µM cytoplasmic [Ca2+]. At 10 µM [Ca2+], low-Po channels presented lower apparent affinity to activation by ATP [[ATP] for half-maximal activation (KaATP) = 422 µM] than moderate-Po channels (KaATP = 82 µM). Oxidation of low-Po channels with thimerosal or 2,2'-dithiodipyridine (DTDP) gave rise to moderate-Po channels and decreased KaATP from 422 to 82 µM. At 0.1 µM cytoplasmic [Ca2+], ATP induced an almost negligible activation of low-Po channels. After oxidation to high-Po behavior, activation by ATP was markedly increased. Noise analysis of single-channel fluctuations of low-Po channels at 10 µM [Ca2+] plus ATP revealed the presence of subconductance states, suggesting a conduction mechanism that involves four independent subchannels. On oxidation the subchannels opened and closed in a concerted mode. subconductance states; calcium ion release channels; calcium ion regulation; thimerosal; 2,2'-dithiodipyridine  相似文献   

10.
The cultivation of narrow-leafed lupins (Lupinus angustifoliusL.) increase rates of subsoil acidification, and this is thoughtto be partly related to their pattern of nutrient uptake andH+/OH- excretion. The main hypothesis of this study was thatH+ and OH- excretion is not distributed evenly over the entirelength of the root system but is limited to zones where excesscation or anion uptake occur. Seedlings of nodulated lupinswere grown in solution culture using vertically split pots thatallowed the upper and lower zones of the root system to be suppliedwith varying concentrations of K+ and NO-3. Net H+/OH- excretionwas equated to the addition of NaOH/HCl required to maintaina constant pH in the nutrient solution during a 4-d treatmentperiod and nutrient uptake was measured by depletion from solutionin each zone of the split pots. The excess of cation over anion uptake was positively correlatedwith H+ excretion in each rooting zone. In zones where K+ wassupplied at 1200 µM, cation uptake was dominated by K+and up to twice as much H+ was excreted than in zones whereK+ was absent. In zones where NO-3 was supplied at 750 µM,the anion/cation uptake was balanced, however H+ excretion continuedto occur in the zone. When NO-3 was supplied at 5000 µM,anion uptake exceeded cation uptake but there was no OH- excretion.Organic acid anions may be excreted by lupins to maintain theirinternal electroneutrality when anion uptake exceeds cationuptake. Rhizosphere pH would not increase unless the pKa ofthe excreted organic anions was greater than the external pH.Copyright1993, 1999 Academic Press Lupinus angustifolius L., H+/OH- excretion, nutrient uptake, cation-anion balance, vertical split root  相似文献   

11.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

12.
Memon, A. R., Saccomani, M. and Glass, A. D. M. 1985. Efficiencyof potassium utilization by barley varieties: The role of subcellularcompartmentation.?J. exp. Bot. 36: 1860–1876. The subcellulardistributions of K+ in roots of three barley (Hordeum vulgareL.) varieties, grown at 10 and 100 mmol m–3 external K+([K+]o) were estimated by compartmental analyses. In general,increased [K+]o caused a 2–3 fold increase in vacuolar[K+], but cytoplasmic [K+] increased only slightly. Nevertheless,the three varieties, which had been selected for study on thebasis of their different rates of K+ utilization, showed distinctdifferences in the allocation of K+ between cytoplasm and vacuole.At 10 mmol m–3 [K+]o var. Betzes exhibited typical K+deficiency symptoms while var. Fergus and var. Compana did not,even though Betzes had higher [K+] in shoots and roots. Theinefficient utilization of K+ in this variety appears to beassociated with a failure to mobilize vacuolar K+ into the cytoplasmiccompartment (the ratio of vacuolar: cytoplasmic K+ contentsfor Betzes was 4.1 compared to 2.7 and 2.5, respectively, forFergus and Compana). Fergus and Betzes, which demonstrate pronouncedgrowth responses to increased [K+]0 between 10 and 100 mmolm–3, showed significant increases of cytoplasmic [K+]in this range of [K+]o. By contrast, cytoplasmic [K+] in Compana,a variety whose growth is not stimulated by increased [K+]0(from 10 to 100 mmol m–3) showed virtually no increase.It is suggested that the efficiency of K+ utilization and thegrowth response to [K+]0 in these varieties are functions ofthe subcellular distribution of this ion between cytoplasm andvacuole. Key words: Barley varieties, K+ subcellular compartmentation, utilization efficiency  相似文献   

13.
Secretion of Cl and K+ in the colonic epithelium operates through a cellular mechanism requiring K+ channels in the basolateral and apical membranes. Transepithelial current [short-circuit current (Isc)] and conductance (Gt) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE2 and synergistically by PGE2 and carbachol (PGE2 + CCh). TRAM-34 at 0.5 µM, an inhibitor of KCa3.1 (IK, Kcnn4) K+ channels (H. Wulff, M. J. Miller, W. Hänsel, S. Grissmer, M. D. Cahalan, and K. G. Chandy. Proc Natl Acad Sci USA 97: 8151–8156, 2000), did not alter secretory Isc or Gt in guinea pig or rat colon. The presence of KCa3.1 in the mucosa was confirmed by immunoblot and immunofluorescence detection. At 100 µM, TRAM-34 inhibited Isc and Gt activated by Epi (4%), PGE2 (30%) and PGE2 + CCh (60%). The IC50 of 4.0 µM implicated involvement of K+ channels other than KCa3.1. The secretory responses augmented by the K+ channel opener 1-EBIO were inhibited only at a high concentration of TRAM-34, suggesting further that KCa3.1 was not involved. Sensitivity of the synergistic response (PGE2 + CCh) to a high concentration TRAM-34 supported a requirement for multiple K+ conductive pathways in secretion. Clofilium (100 µM), a quaternary ammonium, inhibited Cl secretory Isc and Gt activated by PGE2 (20%) but not K+ secretion activated by Epi. Thus Cl secretion activated by physiological secretagogues occurred without apparent activity of KCa3.1 channels but was dependent on other types of K+ channels sensitive to high concentrations of TRAM-34 and/or clofilium. epinephrine; prostaglandin E2; cholinergic; Kcnn4; TRAM-34; clofilium  相似文献   

14.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

15.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

16.
The reabsorption of filtered di- andtripeptides as well as certain peptide mimetics from the tubular lumeninto renal epithelial cells is mediated by anH+-coupledhigh-affinity transport process. Here we demonstrate for the first timeH+-coupled uptake of dipeptidesinto the renal proximal tubule cell lineLLC-PK1. Transport was assessed1) by uptake studies using theradiolabeled dipeptideD-[3H]Phe-L-Ala,2) by cellular accumulation of the fluorescent dipeptide D-Ala-Lys-AMCA, and3) by measurement of intracellularpH (pHi) changes as aconsequence of H+-coupleddipeptide transport. Uptake ofD-Phe-L-Alaincreased linearly over 11 days postconfluency and showed all thecharacteristics of the kidney cortex high-affinity peptide transporter,e.g., a pH optimum for transport ofD-Phe-L-Alaof 6.0, an apparent Km value forinflux of 25.8 ± 3.6 µM, and affinities of differently chargeddipeptides or the -lactam antibiotic cefadroxil to the binding sitein the range of 20-80 µM.pHi measurements established thepeptide transporter to induce pronounced intracellular acidification inLLC-PK1 cells and confirm itspostulated role as a cellular acid loader.

  相似文献   

17.
Decoding of fast cytosolic Ca2+ concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 µM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+ accumulation ([Ca2+]em resulting in half-maximal rate of Ca2+ accumulation = 4.4 µM) via Ca2+ uniporter. Ca2+ uptake was sensitive to the Ca2+ uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]m increase and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+ extrusion via mitochondrial Na+/Ca2+ exchanger. The maximal rate of Ca2+ extrusion was observed with [Na+]em in the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]em between 0 and 100 µM simulated rapid beat-to-beat changes in [Ca2+]i (with [Ca2+]i transient duration of 100–500 ms). No [Ca2+]m oscillations were observed, either under conditions of maximal rate of Ca2+ uptake (100 µM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+ removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]m argues against a rapid transmission of Ca2+ signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]m changes elicited by continuous or pulsatile exposure to elevated [Ca2+]em showed no difference in mitochondrial Ca2+ uptake. Thus in cardiac myocytes fast [Ca2+]i transients are integrated by mitochondrial Ca2+ transport systems, resulting in a frequency-dependent net mitochondrial Ca2+ accumulation. mitochondrial Ca2+; excitation-contraction coupling; cardiomyocytes  相似文献   

18.
The Na+-dependent nucleoside transporter 2 (CNT2) mediates active transport of purine nucleosides and uridine as well as therapeutic nucleoside analogs. We used the two-electrode voltage-clamp technique to investigate rat CNT2 (rCNT2) transport mechanism and study the interaction of nucleoside-derived drugs with the transporter expressed in Xenopus laevis oocytes. The kinetic parameters for sodium, natural nucleosides, and nucleoside derivatives were obtained as a function of membrane potential. For natural substrates, apparent affinity (K0.5) was in the low micromolar range (12–34) and was voltage independent for hyperpolarizing membrane potentials, whereas maximal current (Imax) was voltage dependent. Uridine and 2'-deoxyuridine analogs modified at the 5-position were substrates of rCNT2. Lack of the 2'-hydroxyl group decreased affinity but increased Imax. Increase in the size and decrease in the electronegativity of the residue at the 5-position affected the interaction with the transporter by decreasing both affinity and Imax. Fludarabine and formycin B were also transported with higher Imax than uridine and moderate affinity (102 ± 10 and 66 ± 6 µM, respectively). Analysis of the pre-steady-state currents revealed a half-maximal activation voltage of about –39 mV and a valence of about –0.8. K0.5 for Na+ was 2.3 mM at –50 mV and decreased at hyperpolarizing membrane potentials. The Hill coefficient was 1 at all voltages. Direct measurements of radiolabeled nucleoside fluxes with the charge associated showed a ratio of two positive inward charges per nucleoside, suggesting a stoichiometry of two Na+ per nucleoside. This discrepancy in the number of Na+ molecules that bind rCNT2 may indicate a low degree of cooperativity between the Na+ binding sites. two-electrode voltage clamp; concentrative nucleoside transport; presteady-state currents  相似文献   

19.
Rapamycin and FK-506 are immunosuppressive drugs thatbind a ubiquitous immunophilin, FKBP12, but immunosuppressivemechanisms and side effects appear to be different. Rapamycin bindsrenal FKBP12 to change renal transport. We used cell-attached patch clamp to examine rapamycin's effect on Na+ channels in A6cells. Channel NPo was 0.5 ± 0.08 (n = 6)during the first 5 min but fell close to zero after 20 min. Application of 1 µM rapamycin reactivated Na+ channels(NPo = 0.47 ± 0.1; n=6), but 1 µMFK-506 did not. Also, GF-109203X, a protein kinase C (PKC) inhibitor,mimicked the rapamycin-induced reactivation in a nonadditive manner.However, rapamycin did not reactivate Na+ channels if cellswere exposed to 1 µM FK-506 before rapamycin. In PKC assays,rapamycin was as effective as the PKC inhibitor; however, epithelialNa+ channel (ENaC) phosphorylation was low under baselineconditions and was not altered by PKC inhibitors or activators. Theseresults suggest that rapamycin activates Na+ channels bybinding FKBP12 and inhibiting PKC, and, in renal cells, despite bindingthe same immunophilin, rapamycin and FK-506 activate differentintracellular signaling pathways.

  相似文献   

20.
This study characterized theNa+-dependent transport of L-glutamine by ahuman neuroblastoma cell line, SK-N-SH. The Na+-dependentcomponent represented >95% of the total glutamine uptake. Kineticstudies showed a single saturable high-affinity carrier with aMichaelis constant (Km) of 163 ± 23 µMand a maximum transport velocity (Vmax) of13,713 ± 803 pmol · mgprotein1 · min1. Glutamine uptakewas markedly inhibited in the presence of L-alanine, L-asparagine, and L-serine. Li+ didnot substitute for Na+. These data show thatL-glutamine is predominantly taken up through systemASC. Glutamine deprivation resulted in the decrease of glutamine transport by a mechanism that decreasedVmax without affectingKm. The expression of the system ASC subtypeASCT2 decreased in the glutamine-deprived group, whereas glutaminedeprivation did not induce changes in system ASC subtype ASCT1 mRNAexpression. Adaptive increases in Na+-dependent glutamate,Na+-dependent 2-(methylamino)isobutyric acid, andNa+-independent leucine transport were observed underglutamine-deprived conditions, which were completely blocked byactinomycin D and cycloheximide. These mechanisms may allow cells tosurvive and even grow under nutrient-deprived conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号