首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The soybean major storage protein glycinin is encoded by five genes, which are divided into two subfamilies. Expression of A3B4 glycinin in transgenic rice seed reached about 1.5% of total seed protein, even if expressed under the control of strong endosperm-specific promoters. In contrast, expression of A1aB1b glycinin reached about 4% of total seed protein. Co-expression of the two proteins doubled accumulation levels of both A1aB1b and A3B4 glycinins. This increase can be largely accounted for by their aggregation with rice glutelins, self-assembly and inter-glycinin interactions, resulting in the enrichment of globulin and glutelin fractions and a concomitant reduction of the prolamin fraction. Immunoelectron microscopy indicated that the synthesized A1aB1b glycinin was predominantly deposited in protein body-II (PB-II) storage vacuoles, whereas A3B4 glycinin is targeted to both PB-II and endoplasmic reticulum (ER)-derived protein body-I (PB-I) storage structures. Co-expression with A1aB1b facilitated targeting of A3B4 glycinin into PB-II by sequestration with A1aB1b, resulting in an increase in the accumulation of A3B4 glycinin.  相似文献   

2.
3.
Transgenic rice expressing soybean glycinin in its endosperm was crossed with two types of low-glutelin mutants to determine how much storage the protein mutants can contribute to increases in glycinin accumulation. The glycinin level (102 microg/100 mg seed) in the parental transgenic line was enhanced to approximately 224-237 microg/100 mg seed within a genetic background deficient in glutelin (i.e. of low glutelins). The enrichment of this foreign gene product was compensated by a decrease in the expression of other endogenous prolamine and globulin storage proteins, resulting in an almost equivalent total amount of seed storage proteins. These results show that low storage protein mutants can provide potentially useful hosts for the expression of foreign genes, allowing a higher-level accumulation, because they can provide wider space for the accumulation of foreign gene products than in the normal host plant.  相似文献   

4.
Feeding studies of transgenic potatoes with native and designed soybean glycinins in rats were done for four weeks. The designed glycinin has four additional methioninyl residues in the middle of the glycinin molecule. Rats were divided into four groups fed (I) only a commercial diet, (II) the diet plus non-transgenic potatoes, (III) the diet plus transgenic potatoes with native glycinin, and (IV) the diet plus transgenic potatoes with designed glycinin. Rats were fed 2,000 mg/kg-weight potatoes every day by oral administration. During the period tested, rats in each group (groups II, III, and IV) grew well without marked differences in appearance, food intake, body weight, or in cumulative body weight gain. No significant differences were also found in blood count, blood composition, and in internal organ weights among the rats after feeding potatoes (groups II, III, and IV) for four weeks. Necropsy at the end of experiment indicated neither pathologic symptoms in all rats tested nor histopathological abnormalities in liver and kidney. Judging from these results, the transgenic potatoes with glycinins are confirmed to have nearly the same nutritional and biochemical characteristics as non-transgenic one.  相似文献   

5.
W Higuchi  C Fukazawa 《Gene》1987,55(2-3):245-253
A cDNA clone covering the entire coding region for a glutelin subunit precursor has been identified from a library of endosperm-developing rice cDNA clones using a mixed oligodeoxynucleotide probe, and then by immunoprecipitation of hybrid-selected translation product with an antiserum against the acidic polypeptides of the glutelin. Analysis of the cDNA insert revealed that rice glutelin is synthesized as precursor polypeptides which undergo post-translational processing to form the nonrandom polypeptide pairs, like glycinin precursors of soybean. By comparing the predicted protein sequence of this precursor from monocots with that of glycinin A1aB1b precursor from dicots, it was found that the overall 32% of the amino acid positions are identical in both proteins. Because regions which show identities are dispersed throughout both molecules, the similarity is not due to convergent evolution, but to divergence evolution from a common ancestral gene.  相似文献   

6.
Glycinin is one of the predominant storage proteins of soybean. To improve its functional properties (heat-induced gelation and emulsification) and/or nutritional value, the A1aB1b proglycinin subunit was modified on the basis of genetically variable domains suggested from the comparison of amino acid sequences of glycinin-type globulins from various legumes and nonlegumes and the relationships between the structure and the functional properties of glycinin. Thus, nucleotide sequences corresponding to each of the variable domains were deleted from the cDNA encoding the A1aB1b proglycinin, and a synthetic DNA encoding four continuous methionines was inserted into the cDNA region corresponding to each of the variable domains. Expression plasmids carrying the modified cDNAs were constructed and expressed in Escherichia coli strain JM105. Some of the modified proteins were accumulated as soluble proteins in the cells at a high level and self-assembled. They exhibited functional properties superior to those of the native glycinin from soybean, which establishes the possibility of creating theoretically designed novel glycinins with high food qualities.  相似文献   

7.
Aminograms and SDS-polyacrylamide electrophoresis of milled rice glutelin of 12 Oryza sativa samples showed similar composition and ratio of 1 : 1 : 1 for subunits with MW 38 000:25 000: 16 000, indicating little possibility of finding variants of rice glutelins. Fractionation of S-cyanoethyl glutelin of 3 rices on polyacrylamide-agarose gels gave MW subunits differing in amino acid analysis of which the subunits with MW > 38 000 had the highest lysine content. Of the solubility fractions of endosperm glutelin, the fraction extracted by 0.5 M NaCl-0.6 % β-mercapto-ethanol-0.5% SDS was closest to glutelin in properties. In the developing grain of two varieties, appearance of protein bodies and rapid synthesis of glutelin from 7 days after flowering onward coincided with a drop in lysine content and appearance of MW 38 000 and 25 000 of crude glutelin. The MW 38 000 subunit is thus unique to endo-sperm glutelin.  相似文献   

8.
The 7S and 11S seed storage proteins from four perennials related to soybean (Glycine canescens, G. tomentella, G. tabacina, and G. clandestina) were analyzed by sodium dodecyl sulfate-gel electrophoresis. Each species yielded a unique electrophoretic pattern that varied in the total number of bands and their relative mobilities. In every case, the electrophoretic patterns were substantially different from CX635-1-1-1, the strain of G. max used in this study for comparison. Size heterogeneities among both the 7S and 11S polypeptides of the perennials were evident.

Abundant proteins in the 11S fraction from G. tomentella (CSIRO No. 1133) were separated by chromatography on DEAE-Sephadex and then their apparent molecular weights, amino acid compositions, and NH2-terminal amino acid sequences were determined. A group of proteins were obtained which resembled the A1b-polypeptide components of glycinin from G. max. They had the same size (Mr 37,000), identical NH2-terminal sequences, and similar amino acid compositions to A1b. A second group of acidic proteins (Mr 50,000) in G. tomentella had NH2-terminal sequences homologous to the A5 component (Mr 10,000) of glycinin. The latter group of polypeptides had a substantially higher apparent molecular weight than any acidic polypeptide components of glycinin analyzed previously. A third group of polypeptides purified from G. tomentella were the same size as basic polypeptides of glycinin and had homologus NH2-terminal sequences. The results indicated that the perennials exhibit variability in their seed proteins at a level not found among the cultivars of G. max and G. soja and may be useful in studies concerning the origin and organization of genes involved in the synthesis of storage proteins in cultivated soybeans.

  相似文献   

9.
Antibodies raised against purified glutelins and prolamines were employed as probes to study the cellular routes by which these proteins are deposited into protein bodies of rice (Oryza sativa L.) endosperm. Three morphologically distinct protein bodies, large spherical, small spherical, and irregularly-shaped, were observed, in agreement with existing reports. Immunocytochemical studies showed the presence of glutelins in the irregularly-shaped protein bodies while the prolamines were found in both the large and small spherical protein bodies. Both the large and small spherical protein bodies, distinguishable by electron density and gold-labeling patterns, appear to be formed by direct deposition of the newly formed proteins into the lumen of the rough endoplasmic reticulum (ER). In contrast, glutelin protein bodies are formed via the Golgi apparatus. Small electron-lucent vesicles are often found at one side of the Golgi. Electron-dense vesicles, whose contents are labeled by glutelin antibody-gold particles, are commonly observed at the distal side of the Golgi apparatus and fuse to form the irregularly shaped protein bodies in endosperm cells. These observations indicate that the transport of rice glutelins from their site of synthesis, the ER, to the site of deposition, the protein bodies, is mediated by the Golgi apparatus.Abbreviations BSA bovine serum albumin - Da dalton - DAF days after flowering - ER endoplasmic reticulum - GL irregularly shaped - L large spherical - S small spherical (protein bodies) - PBS phosphate-buffered saline - PTA phosphotungstic acid  相似文献   

10.
Particle bombardment is a common platform for soybean transformation but tends to cause transgene silencing due to the integration of rearranged or multiple copies of transgenes. We now describe the isolation of a total of 44 independent transgenic soybean plants after transformation by particle bombardment with one of two gene constructs, pHV and pHVS. Both constructs contain the hygromycin phosphotransferase gene (hpt) as a selectable marker and a modified glycinin gene (V3-1) for evaluation of homology-dependent silencing of endogenous glycinin genes; pHVS also contains sGFP(S65T), which encodes a modified form of green fluorescent protein (GFP), as a reporter gene in the flanking region of V3-1. Fluorescence microscopy revealed that the leaves of 8 of the 25 independent transgenic plants obtained with pHVS expressed GFP; most of these GFP-positive plants also contained V3-1 mRNA and an increased glycinin content in their seeds, and they exhibited simple banding patterns on Southern blots that were indicative of a low copy number of each of the three transgenes. In contrast, most of the transgenic plants obtained with pHVS that did not express GFP, as well as most of those obtained with pHV, lacked endogenous glycinin in their seeds and exhibited more complex patterns of transgene integration. The use of a reporter gene such as sGFP(S65T) in addition to an antibiotic resistance gene may thus help to reduce the problem of gene silencing associated with direct DNA transformation systems and facilitate the recovery of transgenic plants that stably express the gene of interest.  相似文献   

11.
Molecular co-suppression phenomena are important to consider in transgene experiments. Embryogenic cells were obtained from immature cotyledons and engineered with two different gene constructs (pHV and pHVS) through particle bombardment. Both constructs contain a gene conferring resistance to hygromycin (hpt) as a selective marker and a modified glycinin (11S globulin) gene (V3-1) as a target. sGFP(S65T) as a reporter gene was, however, inserted into the flanking region of the V3-1 gene (pHVS). Fluorescence microscopic screening after the selection of hygromycin, identified clearly the expression of sGFP(S65T) in the transformed soybean embryos bombarded with the pHVS construct. Stable integration of the transgenes was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Seeds of transgenic plants obtained from the pHV construct frequently lacked an accumulation of endogenous glycinin, which is encoded by homologous genes to the target gene V3-1. Most of the transgenic plants expressing sGFP(S65T) showed highly accumulation of glycinin. The expression of sGFP(S65T) and V3-1 inherits into the next generations. sGFP(S65T) as a reporter gene may be useful to increase the transformation efficiency of transgenic soybean with avoiding gene co-suppression.  相似文献   

12.
Soybean 7S globulin, known as β-conglycinin, has been shown to regulate human plasma cholesterol and triglyceride levels. Furthermore, the α′ subunit of β-conglycinin has specifically been shown to possess low-density lipoprotein (LDL)-cholesterol-lowering activity. Therefore, accumulation of the α′ subunit of β-conglycinin in rice seeds could lead to the production of new functional rice that could promote human health. Herein, we used the low-glutelin rice mutant ‘Koshihikari’ (var. a123) and suppressed its glutelins and prolamins, the major seed storage proteins of rice, by RNA interference. The accumulation levels of the α′ subunit in the lines with suppressed glutelin and prolamin levels were >20 mg in 1 g of rice seeds, which is considerably higher than those in previous studies. Oral administration of the transgenic rice containing the α′ subunit exhibited a hypocholesterolemic activity in rats; the serum total cholesterol and LDL cholesterol levels were significantly reduced when compared to those of the control rice (var. a123). The cholesterol-lowering action by transgenic rice accumulating the α′ subunit induces a significant increase in fecal bile acid excretion and a tendency to increase in fecal cholesterol excretion. This is the first report that transgenic rice exhibits a hypocholesterolemic activity in rats in vivo by using the β-conglycinin α′ subunit.  相似文献   

13.
Role of posttranslational cleavage in glycinin assembly.   总被引:8,自引:1,他引:7       下载免费PDF全文
Glycinin, like other 11S seed storage proteins, undergoes a complex series of posttranslational events between the time proglycinin precursors are synthesized in endoplasmic reticulum and the mature glycinin subunits are deposited in vacuolar protein bodies. According to the current understanding of this process, proglycinin subunits aggregate into trimers in endoplasmic reticulum, and then the trimers move to the vacuolar protein bodies where a protease cleaves them into acidic and basic polypeptide chains. Stable glycinin hexamers, rather than trimers, are isolated from mature seeds. We used a re-assembly assay in this study to demonstrate that proteolytic cleavage of the proglycinin subunits is required for in vitro assembly of glycinin oligomers beyond the trimer stage. The possibility that the cleavage is a regulatory step and that it triggers the deposition of 11S seed storage proteins as insoluble aggregates in vivo is considered.  相似文献   

14.
Improvement of protein quality in transgenic soybean plants   总被引:2,自引:0,他引:2  
Glycinin is one of the abundant storage proteins in soybean seeds. A modified Gy1 (A1aB1b) proglycinin gene with a synthetic DNA encoding four continuous methionines (V3-1) was connected between the hpt gene and the modified green fluorescent protein sGFP(S65T) gene, and a resultant plasmid was introduced into soybean by particle bombardment in order to improve nutritional value of its seeds. After the selection with hygromycin, the efficiency of gene introduction was evaluated. More than 60 % of the regenerated plants tolerant to hygromycin yielded the hpt and V3-1 fragment by polymerase chain reaction (PCR) analysis, and the expression of sGFP was detected in about 50 % of putative transgenic soybeans. Southern hybridization confirmed the presence of transgenes in T0 plants and the transgenic soybeans hybridized with the hpt and V3-1 genes were analyzed showed different banding patterns. Most of the transgenic plants were growing, flowering normally and produced seeds. Analysis of seed obtained from transgenic soybean plants expressing hpt and V3-1 genes showed higher accumulation of glycinin compared with non-transgenic plants. In addition, protein expression in transgenic soybean plants was observed by using 2D-electrophoresis.  相似文献   

15.
Glutelin is a major seed storage protein, accounting for 60?C80?% of the total endosperm protein content in rice. To test whether we could augment the expression of an introduced recombinant protein in rice by suppressing the glutelin gene, we generated transgenic glutelin RNAi (glu RNAi) rice seeds. RNA gel blot analyses confirmed that the endogenous glutelin gene was severely suppressed in these transgenic rice lines. RT-PCR analysis further revealed that all the members of glutelin multigene family were downregulated. Transgenic glu RNAi rice seeds expressing a recombinant red fluorescent protein (RFP) showed stronger fluorescence than seeds transformed with the RFP gene only. Western blot analysis further revealed that the relative accumulation of RFP in glu RNAi seeds was twofold higher than that in the RFP-only transgenic seeds. These results suggest that RNAi targeting of an endogenous storage protein could be of great utility in obtaining higher transgene expression in genetically engineered rice and other plant lines.  相似文献   

16.
Protein storage vacuoles (PSVs) are unique organelles that accumulate storage proteins in plant seeds. Although morphological evidence points to the existence of multiple PSV-trafficking pathways for storage protein targeting, the molecular mechanisms that regulate these processes remain mostly unknown. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation7 (gpa7) mutant, which over-accumulates 57-kDa glutelin precursors in dry seeds. Cytological and immunocytochemistry studies revealed that the gpa7 mutant exhibits abnormal accumulation of storage prevacuolar compartment-like structures, accompanied by the partial mistargeting of glutelins to the extracellular space. The gpa7 mutant was altered in the CCZ1 locus, which encodes the rice homolog of Arabidopsis (Arabidopsis thaliana) CALCIUM CAFFEINE ZINC SENSITIVITY1a (CCZ1a) and CCZ1b. Biochemical evidence showed that rice CCZ1 interacts with MONENSIN SENSITIVITY1 (MON1) and that these proteins function together as the Rat brain 5 (Rab5) effector and the Rab7 guanine nucleotide exchange factor (GEF). Notably, loss of CCZ1 function promoted the endosomal localization of vacuolar protein sorting-associated protein 9 (VPS9), which is the GEF for Rab5 in plants. Together, our results indicate that the MON1–CCZ1 complex is involved in post-Golgi trafficking of rice storage protein through a Rab5- and Rab7-dependent pathway.

The small GTPases Rab5- and Rab7-dependent pathway is involved in rice storage protein trafficking to vacuoles.  相似文献   

17.
Structural Relationship among the Rice Glutelin Polypeptides   总被引:1,自引:1,他引:0  
When the glutelin protein fraction of rice (Oryza sativa L.) seeds was fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, three size classes of proteins, 51 kilodaltons (kD), 34 to 37 kD, and 21 to 22 kD, as well as a contaminating prolamine polypeptide of 14 kD were detected. Antibodies were raised against these proteins and employed in studies to determine whether a precursor-product relationship existed among the glutelin components. Antibodies of the 34 to 37 kD and 21 to 22 kD polypeptides strongly reacted with the 51 kD protein, and conversely, anti-51 kD protein cross reacted with both of the putative subunits. Immunoprecipitation of in vitro translated products resulted in the synthesis of only the precursor form, indicating that the α and β subunits are proteolytic products of the 51 kD precursor protein. The poly(A)+ RNA directed in vitro translated product was about 2000 daltons larger than both the authentic glutelin precursor and the in vitro translated product from polysome run-off synthesis. Western blot analysis of the 34 to 37 kD and 21 to 22 kD polypeptides partially digested with Staphylococcus aureus V8 protease revealed distinct patterns indicating that these proteins are structurally unrelated. As observed for the glutelins, the rice prolamines are also synthesized as a precursor of 16 kD, 2000 daltons larger than the mature polypeptide. Addition of dog pancreatic microsomal membranes to a wheat germ protein translation system resulted in the processing of the prolamine preprotein but not the preproglutelin to the mature form.  相似文献   

18.
19.
Anthranilate synthase (AS) is a key regulatory enzyme in tryptophan (Trp) biosynthesis and is subject to feedback inhibition by Trp. The gene encoding a mutated feedback-resistant α subunit of rice AS (OASA1D) under the control of either a soybean glycinin gene promoter or the 35S promoter of cauliflower mosaic virus for seed-specific or constitutive expression, respectively, was introduced into soybean [Glycine max (L.) Merrill] by particle bombardment. A total of seven different transgenic lines that showed markedly increased accumulation of free Trp in their seeds were developed. The overproduction of free Trp was stably inherited in subsequent generations without any apparent detrimental effect on plant growth or reproduction. The total Trp content of transgenic seeds was also about twice that of nontransgenic seeds, whereas the amount of protein-bound Trp was not substantially affected by OASA1D expression. In spite of the marked increase in free Trp content, metabolic profiling by high-performance liquid chromatography coupled with mass spectrometry revealed little change in the amounts of other aromatic compounds in the transgenic seeds. We developed a rapid and feasible system based on farmed rainbow trout to evaluate the nutritional quality of a limited quantity of transgenic soybean seeds. Supplementation of fish food with OASA1D transgenic soybean seeds or with nontransgenic seeds plus crystalline Trp increased the growth rate of the farmed fish. These results indicate transformation with OASA1D is a reliable approach to improve the nutritional quality of soybean (or of other grain legumes) for human and animal food.  相似文献   

20.
The composition of nutritionally and physiologically important molecules in transgenic rice with the soybean glycinin gene was determined and compared with that of a non-transgenic control. Except for the levels of protein, amino acids and moisture, no marked differences were found between the two kinds of rice. The protein content of the transgenic rice was about 20% higher than the control (control, 6.5 g/100 g; transgenic, 8.0 g/100 g) with a concomitantly lower moisture content. This increased protein content mainly resulted from the increased glycinin expressed in the transgenic rice, and the protein was susceptible to gastric and intestinal digestion juices. In parallel with the increased protein content, some important amino acids lacking in quantity in normal rice were replenished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号