首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The associations of the butterfly fauna of the Japanese islands of Hokkaido, Honshu, Kyushu, Shikoku and Ryukyu Rett are analysed with respect to one another and to the fauna of the far-east U.S.S.R. A faunal discontinuity exists between the fauna of Ryukyu Rett and all other areas. The fauna of Ryukyu Rett can be considered as being of the Oriental region, the faunas of the other Japanese islands as being of the Palaearctic region. This view was reinforced with conclusions drawn from MacArthus&Wilson's theory of island biogeography (1963, 1967). The divergence of die faunas of the Japanese islands is dependent on their isolation - the further the distance between islands, the greater the isolation and the greater the faunal divergence. Thus the fauna of all silands of Japan, except of the Ryukyu Rett, have a close association with the far-east Russian fauna. There is a greater similarity between these faunas than between the fauna of the islands of Hokkaido, Honshu, Kyushu and Shikoku with respect to that of Ryukyu Rett.  相似文献   

2.
Aim At the height of glaciations such as the Last Glacial Maximum (LGM), benthic life on polar continental shelves was bulldozed off nearly all of the Antarctic shelf by grounded ice sheets. The origins of the current shelf benthos have become a subject of considerable debate. There are several possible sources for the current Antarctic shelf fauna, the first of which is the continental slope and deep sea of the Southern Ocean. The high levels of reported eurybathy for many Antarctic species are taken as evidence supporting this. A second possible source for colonists is the southern margins of other continents. Finally, shelves could have been recolonized from refugia on the continental shelves or slopes around Antarctica. The current study investigates whether the patchily rich and abundant biota that now occurs on the Antarctic continental shelf recolonized from refugia in situ or elsewhere. Location Weddell Sea, Antarctica. Methods We examined bryozoan samples of the BENDEX, ANDEEP III and SYSTCO expeditions, as well as the literature. Using similarity matrices (Sørensen coefficient), we assessed similarities of benthos sampled from around Antarctica. By assessing numbers of species shared between differing depths and adjacent shelf areas, we evaluated the origins of cheilostome bryozoan communities. Results Bryozoans decreased from 28, 6.5 and 0.3 colonies per trawl, and 0.16, 0.046 and 0.0026 colonies per cm2 of hard surface from shelf to slope to abyssal depths. We found little and no support for recolonization of the Weddell Sea shelf by bryozoans from the adjacent slope and abyss, in the scenario of LGM faunal wipe‐out. The Weddell Sea shelf bryozoan fauna was considerably more similar to those on other Antarctic shelves than to that of the adjacent (Weddell Sea) continental slope. The known bryozoan fauna of the Weddell Sea shelf is not a subset of the Weddell Sea slope or abyssal faunas. Main conclusions We consider that the composition of the current Weddell Sea bryozoan fauna is most easily explained by in situ survival. Thus we consider that at least some of the Weddell Sea fauna persisted throughout the LGM, although not necessarily at the same locations throughout, to recolonize the large area currently occupied.  相似文献   

3.
Summary The biogeography of Antarctic demosponges has been studied by dividing Antarctic and circumantarctic areas into geographic entities, and then assigning to these entities all recorded species according to literature reports. Correspondence analysis ordination based on the presence or absence of species shows the existence of a distinct Antarctic Faunistic Complex (AFC), including continental Antarctica, most of the Antarctic and circumantarctic islands and the Magellan area. Such a result has enabled us to drawup a checklist of 352 Antarctic demosponge species. Investigation of within-AFC patterns indicates that the continent is a highly homogeneous area, establishing closer relationships with the Scotia Arc and to a lesser extent with the Magellan region. The AFC has low specific affinities with the other circumantarctic regions (South Africa, temperate Australia and New Zealand), whereas at the generic level relationships appear more pronounced. This biogeographic pattern may lead us to suppose a common Gondwanian origin for Antarctic and circumantarctic sponge faunas, followed by differentiation due to Gondwana fragmentation. Antarctica moved towards polar latitudes and became progressively isolated, only maintaining active interchanges with South America. Climatic changes possibly induced intense processes of speciation in the Antarctic demosponge fauna, thus contributing to its differentiation.  相似文献   

4.
Throughout the Quaternary, the continental-based Antarctic ice sheets expanded and contracted repeatedly. Evidence suggests that during glacial maxima, grounded ice eliminated most benthic (bottom-dwelling) fauna across the Antarctic continental shelf. However, paleontological and molecular evidence indicates most extant Antarctica benthic taxa have persisted in situ throughout the Quaternary. Where and how the Antarctic benthic fauna survived throughout repeated glacial maxima remain mostly hypothesised. If understood, this would provide valuable insights into the ecology and evolution of Southern Ocean biota over geological timescales. Here we synthesised and appraised recent studies and presented an approach to demonstrate how genetic data can be effective in identifying where and how Antarctic benthic fauna survived glacial periods. We first examined the geological and ecological evidence for how glacial periods influenced past species demography in order to provide testable frameworks for future studies. We outlined past ice-free areas from Antarctic ice sheet reconstructions that could serve as glacial refugia and discussed how benthic fauna with pelagic or non-pelagic dispersal strategies moved into and out of glacial refugia. We also reviewed current molecular studies and collated proposed locations of Southern Ocean glacial refugia on the continental shelf around Antarctica, in the deep sea, and around sub-Antarctic islands. Interestingly, the proposed glacial refugia based on molecular data generally do not correspond to the ice-free areas identified by Antarctic ice sheet reconstructions. The potential biases in sampling and in the choice of molecular markers in current literature are discussed, along with the future directions for employing testable frameworks and genomic methods in Southern Ocean molecular studies. Continued data syntheses will elucidate greater understanding of where and how Southern Ocean benthic fauna persisted throughout glacial periods and provide insights into their resilience against climate changes in the future.  相似文献   

5.
The phylogenetic system of the Tanaidacea and the question of age and origin of the crustacean fauna on the Antarctic shelf The final breakup of Gondwanaland during the Tertiary not only played an important role in establishing modern climates and oceanic currents but also had a tremendous influence on the composition of the Recent crustacean fauna. Analysis of the fossil record of the Tanaidacea shows that all Recent families had evolved before the Eocene. They all, therefore, had the chance to colonize the Antarctic shelf area. However, the tanaidacean fauna of this region is represented exclusively by phylogenetically young taxa. The species composition is atypical and does not correspond to those of other zoogeographic regions. Surprisingly, in the West Antarctic there occur some phylogenetic older taxa which are not recorded from the East Antarctic. In general, the species composition of the East Antarctic tanaidacean fauna is more like that of the deep sea while that of the West Antarctic is characterized by additional “littoral elements”. For the interpretation of recognized distribution patterns are most important geological events and the resulting effects on the changes in the world climates, e. g. it is commonly excepted that there is a continuous decrease of the surface water temperature since the paleocene. Deduced from foraminiferan data, it can be assumed that almost the entire Antarctic tanaidacean fauna was extinguished during the first dramatic drop of temperature. Cold-stenothermic eurybathic species then have colonized the Antarctic shelf. After the phase of maximal glaciation in the Pliozene the fauna of the West Antarctic was finally modified by Magellanian elements, which in some cases have to be accepted as phylogenetic old forms. Other available information on Crustacea, especially for Cirripedia, Ostracoda, Decapoda, and Isopoda support this interpretation. Therefore, it may be assumed that the Recent Antarctic crustacean fauna was established mainly about 38 m. y. ago. Practically no primitiv forms exist in this region, i. e. there are no relict species. On the contrary, we have to suggest that an important part of the fauna is represented by apomorphic species which have reached the Antarctic shelf from the deep sea. Polar emergence is a more likely hypothesis at the moment than tropical submergence. However, the final elucidation of this question can be given only after detailed phylogenetic analysis of the fauna of the adjacent deep sea basins.  相似文献   

6.
The biodiversity of the deep Southern Ocean benthos   总被引:2,自引:0,他引:2  
Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.  相似文献   

7.
Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress.  相似文献   

8.
9.
Samples of resident freshwater char, Salvelinus alpinus were obtained from three lakes on Bjørnøya and their parasite faunas examined. Comparison of the species composition, number, diversity and equitability of the parasite faunas of Bjørnøya with those of other Arctic islands, an inshore island and lakes on the Norwegian mainland indicated that the communities on Bjørnøya formed a distinct unit with a high degree of similarity between the three lakes. Small differences could be related to differences in the ecology of the lakes. The parasite community of char on Spitsbergen showed the greatest similarity to that on Bjørnøya, and the communities of char in mainland lakes the least. Species number and diversity of parasites were often higher on the Arctic islands than on the mainland, and did not correlate with island size or distance from the mainland. The island parasite communities were often dominated by a single species, but a similar situation was also observed in the mainland lakes. It is concluded that the parasite fauna of char on offshore Arctic islands does not agree well with the predictions of island biogeographical theory.  相似文献   

10.
Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity "hotspots"; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian).  相似文献   

11.
Communities of parasites of freshwater fish of Jersey, Channel Islands   总被引:1,自引:0,他引:1  
The parasite faunas of 12 species of freshwater fish from 17 localities on the island of Jersey were examined. Comparison of the species composition, number, diversity and equitability of the parasite fauna of each species of fish in each locality revealed that community diversity was always low, that most communities were dominated by a single species of parasite, and that community similarity between host species, and often between sites, was generally low. This was not related to unavailability or distribution of potential, invertebrate, intermediate host species, but appeared to be due to chance colonization events. With two exceptions, little exchange of parasites took place between host species, despite vacant niches in the parasite communities and the absence of competitors, and normal parasite specificity was maintained. Comparison of the parasite communities with those on other oceanic islands suggests that they are poorer than would be predicted by island biogeographical theory, and that this is not a very good predictor of parasite community richness on oceanic islands.  相似文献   

12.
Data on land snail diversity in the Gulf of Guinea islands is presented and the biogeography of the Gulf of Guinea fauna is discussed with reference to island snail faunas in the other areas of the world. Although the land snail faunas of the four islands clearly have west and central African affinities, speciation events following rare colonizations have led to high rates of endemism at the species and generic levels. The influence of island size, altitude, isolation and other factors on the development of the land snail faunas is discussed. The effect of land use changes on the land snail fauna over the last 150 years is evaluated. Current threats include recent changes in agricultural practice leading to the destruction of snail habitats in both forest and plantation areas. The potential threat posed by introduced species is also discussed. The Gulf of Guinea snail faunas appear to be in relatively good health in comparison to many other island snail faunas. However, the uniqueness of the faunas makes it imperative that further ecological and taxonomic research is undertaken both to understand the processes by which they developed and to evaluate the current status of many species in terms of distribution and threats.  相似文献   

13.
The major biogeographic structure and affinities of the Australian chondrichthyan fauna were investigated at both interregional and intraregional scales and comparisons made with adjacent bioregions. Faunal lists were compiled from six geographical regions with species from these regions assigned to distributional classes and broad habitat categories. Australian species were further classified on provincial and bathomic structure following bioregionalization outputs from regional marine planning. About 40% of the world's chondrichthyan fauna occurs in Indo-Australasia (482 species) of which 323 species are found in Australian seas. The tropical Australian component, of which c. 46% of taxa are regional endemics, is most similar to faunas of Indonesia, New Guinea and New Caledonia. The temperate Australian component is most similar to New Zealand and Antarctica with about half of its species endemic. Highest levels of Australian endemism exist in bathomes of the outer continental shelf and upper slope. A relatively high proportion of regional endemism (57% of species) on the slope in the poorly surveyed but species-rich Solanderian unit is probably due to high levels of large-scale habitat complexity in the Coral Sea. The richness of demersal assemblages on the continental shelf and slope appears to be largely related to the spatial complexity of the region and the level of exploration. Much lower diversity off Antarctica is consistent with the pattern in teleosts. The complex chondrichthyan fauna of Australia is confirmed as being amongst the richest of the mega-diverse Indo-West Pacific Ocean. Species-level compositions of regional faunas across Indo-Australasia differ markedly because of moderate to high levels of intraregional speciation. Faunal assemblages in Australian marine provinces and bathomes differ from each other, supporting a broader pattern for fishes that underpins a marine planning framework for the region.  相似文献   

14.
The Madeiran archipelago consists of Madeira itself, Porto Santo and the Deserta islands. On Madeira, the forest arid the coastal floral associations are so different that their faunas are effectively isolated and have undergone largely independent development. There are different faunal associations on the eastern peninsula and in the SE coastal region, which may have been separated from each other in the past. On Porto Santo, western and eastern hills have different faunas. Most observations on the fauna are compatible with evolution by allopatric speciation, consequent upon isolation on different islands or mountains, as opposed to parapatric or sympatric processes following disruptive selection. Some cases where the taxonomy is difficult to unravel may, however, indicate parapatric speciation; examples belong to the genera Discula and Heterostoma (Helicidae) and Amphorella (Ferussaciidae). Most evidence relating to species composition in communities is compatible with a balance of random immigration and extinction, rather than selective interaction, allowing clusters of similar sympatric species to accumulate. However, this impression may indicate that test procedures are insufficiently sensitive to detect interactions, and detailed ecological studies are required. Questions about speciation and distribution would be clarified if dates of divergence were established.  相似文献   

15.

Aim

To evaluate the extent to which ant species richness in Neotropical savannas varies with macrogeographic variables, and to identify the potential climatic drivers of such variation.

Location

The Cerrado savanna biome of central Brazil, in a region spanning ca. 20° of latitude and 18°of longitude.

Methods

Standardized sampling of the arboreal and ground‐dwelling faunas was performed in 29 well‐preserved savanna sites using pitfall traps. Species were classified according to their habitat affinities: open‐savanna specialists, forest‐associated species or habitat generalists. We used generalized linear models to evaluate the importance of geographic (latitude, longitude and elevation) and climatic (mean temperature and three metrics of rainfall) variables as predictors of species richness.

Results

The total number of species recorded at each site varied more than twofold (from 59 to 144), and latitude was the best geographic correlate of overall species richness. However, contrary to the expected pattern, more species were found at higher than lower latitudes. This reversed latitudinal pattern of diversity occurred for both the arboreal and ground‐dwelling faunas, and for the habitat generalists and forest specialists. The savanna specialists showed a mid‐latitudinal peak in diversity. Overall, there was a significant positive association between rainfall and species richness, but the strength of this relationship varied with ant habitat affinity.

Main conclusions

The Cerrado ant fauna shows a reverse latitudinal gradient in species diversity, and this can be explained by increasing rainfall during the warmest months of the year (and therefore in plant productivity) with increasing latitude. The sensitivity of Cerrado ant diversity to declining rainfall contrasts with the high resilience to aridity of the Australian savanna ant fauna, and this reflects the contrasting evolutionary histories of these faunas. Our findings highlight the importance of historical processes as drivers of intercontinental contrasts in macroecological patterns.  相似文献   

16.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

17.
The aim of this study is to analyze the community structure, ecology and distribution of deep Weddell Sea sponge faunas. Analysis was performed on the basis of sponges sampled during ANDEEP I–III and SYSTCO I expeditions (2002–2008) by RV Polarstern. The material obtained comprises about 800 sponge specimens, representing 129 species, within these are 95 species of demosponges (including 15 new to science), 25 hexactinellid species (7 new) and 9 calcarean species (5 new). Sponges were sampled at 51 stations in depths between 500 and 5,500 m. At most stations, sponge densities were very low, and many species are represented by one or two specimens only. Community structure by Bray–Curtis similarity was analyzed as well as depth range and spatial distribution of the most common species. Zoogeographic affinities of sampled faunas are analyzed. Three associations of sponges are found in the deep Weddell Sea: (1) The Polymastia/Tentorium community, (including Rossella associations) distributed on the lower shelf and continental slope. (2) The Bathydorus community, distributed on the continental slope and upper abyssal. (3) The Caulophacus community, associated with Cladorhizidae, is characteristic for the abyssal plains. The associations follow each other successively both bathymetrically and geographically, from shallow to deep, from shelf and ridge structures into the open abyssal. A distinct faunistic boundary between shelf and deep sea is not present. In general, the sponge fauna of the deep Weddell Sea is regionally restricted and shows stronger affinities only to the sponge fauna of the subantarctic islands.  相似文献   

18.
Mammals of south-east Asian islands and their Late Pleistocene environments   总被引:3,自引:1,他引:2  
Aim The environments that existed in south‐east Asian islands during the last glacial are poorly known, limiting our understanding of mammalian biogeography in the region. The objective of this research is to investigate the ecological characteristics of mammal faunas on small islands, and to see whether the habitat requirements of the species in those faunas can be used to deduct the vegetation types that existed on islands before becoming isolated by rising sea levels. Location The maps presented here cover the small islands of tropical south‐east Asia, including the Burmese, Thai and Cambodian islands in the north, the islands off the coast of west Sumatra in the west, the islands around Java in the south, and the islands off the east coast of Borneo in the east, including the Philippine islands of Palawan and those in the Sulu Archipelago. Methods The presence records of mammal species on 215 small islands in the region were compiled, and the habitat requirements for each of these species was assessed (species that had probably been introduced by humans were excluded from the analysis). For each island location (longitude and latitude), maximum altitude of the island, total area, depth to nearest land, distance to nearest island, and distance to nearest mainland were assessed. Geographical and statistical analyses were used to investigate patterns of mammalian habitat requirements. Results The geographical analysis showed that forest‐dependent species, i.e. species that are only found in primary forest (lowland and mountainous), appear to be concentrated on islands off west Sumatra, in the Lingga and Riau Archipelagos, around Palawan, and around Bunguran Island; they are absent mostly from the islands of the Java Sea, those off the east coast of eastern Borneo, from most islands in the Sunda Strait, several islands in the northern South China Sea, and from all islands off the west coast of the Malay/Thai Peninsula and in the Gulf of Thailand. Species that generally occur outside primary forest, that is those in secondary forest, gardens, plantations and open areas mostly occurred on islands where the forest‐dependent species were absent. The statistical analysis showed that latitude and size of islands were important factors that determined the absence and presence of forest‐dependent species on small islands. Main conclusions The data suggest that during the last glacial there were several areas in the Sundaic region that remained forest covered: west of Sumatra, north‐west of Borneo, the Malacca Straits and around Palawan. Other areas may have been covered by more open vegetation types like tree savanna, or open deciduous forest: on and to the east of the Malay/Thai Peninsula, the Java Sea area, including the Sunda Strait, and eastern Borneo.  相似文献   

19.
To protect the remaining biodiversity on tropical islands it is important to predict the elevational ranges of non-native species. We evaluated two hypotheses by examining land snail faunas on the eastern (windward) side of the island of Hawaii: (1) the latitude of a species' native region can be used to predict its potential elevational range and (2) non-native temperate species, which experience greater climatic fluctuations in their native range, are more likely to become established at higher elevations and to extend over larger elevational ranges than non-native tropical species. All non-native tropical species were distributed patchily among sites ≤500 m and occupied small elevational ranges, whereas species introduced from temperate regions occupied wide elevational ranges and formed a distinct fauna spanning elevations 500–2000 m. Most native land snail species and ecosystems occur >500 m in areas dominated by temperate non-native snail and slug species. Therefore, knowing the native latitudinal region of a non-native species is important for conservation of tropical island ecosystems because it can be translated into potential elevational range if those species are introduced. Because temperate species will survive in tropical locales particularly at high elevation, on many tropical islands the last refuges of the native species, preventing introduction of temperate species should be a conservation priority.  相似文献   

20.
Throughout the Southern Hemisphere many terrestrial taxa have circum-Antarctic distributions. This pattern is generally attributed to ongoing dispersal (by wind, water, or migrating birds) or relict Gondwanan distributions. Few of these terrestrial taxa have extant representatives in Antarctica, but such taxa would contribute to our understanding of the evolutionary origins of the continental Antarctic fauna. Either these taxa have survived the harsh climate cooling in Antarctica over the last 23 Myr (Gondwanan/vicariance origin) or they have dispersed there more recently (<2 MYA). In this context, we examined mtDNA (COI) sequence variation in Cryptopygus and related extant Antarctic and subantarctic terrestrial springtails (Collembola). Sequence divergence was estimated under a maximum likelihood model (general time reversible+I+Gamma) between individuals from subantarctic islands, Australia, New Zealand, Patagonia, Antarctic Peninsula, and continental Antarctica. Recent dispersal/colonization (<2 MYA) of Cryptopygus species was inferred between some subantarctic islands, and there was a close association between estimated times of divergences based on a molecular clock and proposed geological ages of islands. Most lineages generally grouped according to geographic proximity or by inferred dispersal/colonization pathways. In contrast, the deep divergences found for the four endemic Antarctic species indicate that they represent a continuous chain of descent dating from the break up of Gondwana to the present. We suggest that the diversification of these springtail species (21-11 MYA) in ice-free glacial refugia throughout the Trans-Antarctic Mountains was caused by the glaciation of the Antarctic continent during the middle to late Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号