首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Eukaryotic mRNAs can be degraded in either decapping/5'-to-3' or 3'-to-5' direction after deadenylation. In yeast and mammalian cells, decay factors involved in the 5'-to-3' decay pathway are concentrated in cytoplasmic processing bodies (P bodies). The mechanistic steps and localization of mammalian mRNA decay are still not completely understood. Here, we investigate functions of human mRNA decay enzymes in AU-rich element (ARE)-mediated mRNA decay (AMD) and find that the deadenylase, poly(A) ribonuclease PARN, and enzymes involved in the 5'-to-3' and 3'-to-5' decay pathways are required for AMD. The ARE-containing reporter mRNA accumulates in discrete cytoplasmic granular structures, which are distinct from P bodies and stress granules. These granules consist of poly(A)-specific ribonuclease, exosome subunits, and decay-promoting ARE-binding proteins. Inhibition of AMD increases accumulation of ARE-mRNA in these granules. We refer to these structures as cytoplasmic exosome granules and suggest that some AMD may occur in these granules.  相似文献   

3.
Two general pathways of mRNA decay have been characterized in yeast. Both start with deadenylation. The major pathway then proceeds via cap hydrolysis and 5'-exonucleolytic degradation whereas the minor pathway consists of 3'-exonucleolytic decay followed by hydrolysis of the remaining cap structure. In higher eukaryotes, these pathways of mRNA decay are believed to be conserved but have not been well characterized. We have investigated the decay of the hsp70 mRNA in Drosophila Schneider cells. As shown by the use of reporter constructs, rapid deadenylation of this mRNA is directed by its 3'-untranslated region. The main deadenylase is the CCR4.NOT complex; the PAN nuclease makes a lesser contribution. Heat shock prevents deadenylation not only of the hsp70 but also of bulk mRNA. A completely deadenylated capped hsp70 mRNA decay intermediate accumulates transiently and is degraded via cap hydrolysis and 5'-decay. Thus, decapping is a slow step in the degradation pathway. Cap hydrolysis is also inhibited during heat shock. Degradation of reporter RNAs from the 3'-end became detectable only upon inhibition of 5'-decay and thus represents a minor decay pathway. Because two reporter RNAs and at least two endogenous mRNAs were degraded primarily from the 5'-end with cap hydrolysis as a slow step, this pathway appears to be of general importance for mRNA decay in Drosophila.  相似文献   

4.
The rate of mRNA turnover is an important determinant of levels of gene expression. Although this process has been studied extensively in mammalian cells and yeast, relatively little is known about the mRNA decay pathways in insects. Our analysis found that the vast majority of components of the mRNA decay machinery are conserved between humans and mosquitoes. Moreover, the half-lives of Aedes albopictus mRNAs are within a similar range to those of mammalian mRNAs. In order to investigate mechanistic aspects of mRNA decay in mosquitoes, we developed an in vitro system using cytoplasmic S100 extracts from A. albopictus C6/36 cells. Using this decay assay, we show here that all the pathways of mRNA turnover that have been observed in mammalian cells (deadenylation, decapping, 3′-to-5′ exonucleolytic decay and 5′-to-3′ exonucleolytic decay) are active in C6/36 extracts. Finally, we present compelling evidence that the major deadenylase in C6/36 extracts is likely to be a homolog of the human poly(A) specific ribonuclease, PARN. Our results suggest a high level of conservation in the factors and pathways of mRNA decay between mosquitoes and humans.  相似文献   

5.
6.
The pathway of mRNA degradation has been extensively studied in the yeast, Saccharomyces cerevisiae, and it is now clear that many mRNAs decay by a deadenylation-dependent mechanism. Although several of the factors required for mRNA decay have been identified, the regulation and precise roles of many of the proteins involved remains unclear. We have developed an in vitro system that recapitulates both the deadenylation and the decapping steps of mRNA decay. Furthermore, both deadenylation and decapping are inhibited by poly(A) binding proteins in our assay. Our system has allowed us to separate the decay process from translation and we have shown that the poly(A) tail is capable of inhibiting decapping in an eIF4E-independent manner. Our in vitro system should prove invaluable in dissecting the mechanisms of mRNA turnover.  相似文献   

7.
The destabilization of AU-rich element (ARE)-containing mRNAs mediated by proteins of the TIS11 family is conserved among eukaryotes including Drosophila. Previous studies have demonstrated that Tristetraprolin, a human protein of the TIS11 family, induces the degradation of ARE-containing mRNAs through a large variety of mechanisms including deadenylation, decapping, and P-body targeting. We have previously shown that the degradation of the mRNA encoding the antimicrobial peptide Cecropin A1 (CecA1) is controlled by the TIS11 protein (dTIS11) in Drosophila cells. In this study, we used CecA1 mRNA as a model to investigate the molecular mechanism of dTIS11-mediated mRNA decay. We observed that during the biphasic deadenylation and decay process of this mRNA, dTIS11 enhances deadenylation performed by the CCR4-CAF-NOT complex while the mRNA is still associated with ribosomes. Sequencing of mRNA degradation intermediates revealed that the complete deadenylation of the mRNA triggers its decapping and decay in both the 5′-3′ and the 3′-5′ directions. Contrary to the observations made for its mammalian homologs, overexpression of dTIS11 does not promote the localization of ARE-containing mRNAs in P-bodies but rather decreases the accumulation of CecA1 mRNA in these structures by enhancing the degradation process. Therefore, our results suggest that proteins of the TIS11 family may have acquired additional functions in the course of evolution from invertebrates to mammals.  相似文献   

8.
GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)‐binding protein (PABP) and the CCR4–NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4–NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4–NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation.  相似文献   

9.
10.
Song MG  Li Y  Kiledjian M 《Molecular cell》2010,40(3):423-432
Regulation of RNA degradation plays an important role in the control of gene expression. One mechanism of eukaryotic mRNA decay proceeds through an initial deadenylation followed by 5' end decapping and exonucleolytic decay. Dcp2 is currently believed to be the only cytoplasmic decapping enzyme responsible for decapping of all mRNAs. Here we report that Dcp2 protein modestly contributes to bulk mRNA decay and surprisingly is not detectable in a subset of mouse and human tissues. Consistent with these findings, a hypomorphic knockout of Dcp2 had no adverse consequences in mice. In contrast, the previously reported Xenopus nucleolar decapping enzyme, Nudt16, is an ubiquitous cytoplasmic decapping enzyme in mammalian cells. Like Dcp2, Nudt16 also regulates the stability of a subset of mRNAs including a member of the motin family of proteins involved in angiogenesis, Angiomotin-like 2. These data demonstrate mammalian cells possess multiple mRNA decapping enzymes, including Nudt16 to regulate mRNA turnover.  相似文献   

11.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

12.
13.
14.
15.
The CCR4-NOT complex is the major enzyme catalyzing mRNA deadenylation in Saccharomyces cerevisiae. We have identified homologs for almost all subunits of this complex in the Drosophila genome. Biochemical fractionation showed that the two likely catalytic subunits, CCR4 and CAF1, were associated with each other and with a poly(A)-specific 3' exonuclease activity. In Drosophila, the CCR4 and CAF1 proteins were ubiquitously expressed and present in cytoplasmic foci. Individual knock-down of several potential subunits of the Drosophila CCR4-NOT complex by RNAi in tissue culture cells led to a lengthening of bulk mRNA poly(A) tails. Knock-down of two individual subunits also interfered with the rapid deadenylation of Hsp70 mRNA during recovery from heat shock. Similarly, ccr4 mutant flies had elongated bulk poly(A) and a defect in Hsp70 mRNA deadenylation. A minor increase in bulk poly(A) tail length was also observed in Rga mutant flies, which are affected in the NOT2 subunit. The data show that the CCR4-NOT complex is conserved in Drosophila melanogaster and plays a role in general and regulated mRNA deadenylation.  相似文献   

16.
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.  相似文献   

17.
Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2–PAN3 and CCR4–NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases.  相似文献   

18.
19.
20.
The major pathways of mRNA turnover in eukaryotic cells are initiated by shortening of the poly(A) tail. Recent work has identified Ccr4p and Pop2p as components of the major cytoplasmic deadenylase in yeast. We now demonstrate that CCR4 encodes the catalytic subunit of the deadenylase and that Pop2p is dispensable for catalysis. In addition, we demonstrate that at least some of the Ccr4p/Pop2p-associated Not proteins are cytoplasmic, and lesions in some of the NOT genes can lead to defects in mRNA deadenylation rates. The Ccr4p deadenylase is inhibited in vitro by addition of the poly(A) binding protein (Pab1p), suggesting that dissociation of Pab1p from the poly(A) tail may be rate limiting for deadenylation in vivo. In addition, the rapid deadenylation of the COX17 mRNA, which is controlled by a member of the Pumilio family of deadenylation activators Puf3p, requires an active Ccr4p/Pop2p/Not deadenylase. These results define the Ccr4p/Pop2p/Not complex as the cytoplasmic deadenylase in yeast and identify positive and negative regulators of this enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号