首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

2.
When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28°C up to 40°C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as heat shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. A brief 10-minute exposure to 45°C followed by incubation at 28°C also results in the synthesis of HSPs. Prolonged incubation (e.g. 1-2 hours) at 45°C results in greatly impaired protein synthesis and seedling death. However, a pretreatment at 40°C or a brief (10-minute) pulse treatment at 45°C followed by a 28°C incubation provide protection (thermal tolerance) to a subsequent exposure at 45°C. Maximum thermoprotection is achieved by a 2-hour 40°C pretreatment or after 2 hours at 28°C with a prior 10-minute 45°C exposure. Arsenite treatment (50 micromolar for 3 hours) also induces the synthesis of HSP-like proteins, and also provides thermoprotection to a 45°C HS; thus, there is a strong positive correlation between the accumulation of HSPs and the acquisition of thermal tolerance under a range of conditions.

During 40°C HS, some HSPs become localized and stably associated with purified organelle fractions (e.g. nuclei, mitochondria, and ribosomes) while others do not. A chase at 28°C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40°C chase period. If the seedlings are subjected to a second HS after a 28°C chase, the HSPs rapidly (complete within 15 minute) relocalize in the organelle fractions. The relative amount of the HSPs which relocalize during a second HS increases with higher temperatures from 40°C to 45°C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28°C but become organelle-associated during a subsequent HS at 40°C.

  相似文献   

3.
Heat Shock Proteins in Tobacco Cell Suspension during Growth Cycle   总被引:8,自引:6,他引:2       下载免费PDF全文
Tobacco (Nicotiana tabacum L. cv Wisconsin 38) cells grown in suspension culture at 26°C produce heat shock proteins (HSPs) when exposed to elevated temperature of 34 to 42°C. At 34 and 38°C, synthesis of normal proteins is maintained while HSPs are expressed within 30 minutes after initiation of the shock. At 42°C, HSPs are still expressed but normal proteins are made at a reduced rate or not at all. Exposure of cells to 38°C allows for a full expression of HSPs without inhibition of the synthesis of normal proteins. Induced synthesis of HSPs at 38°C is maximal 1 to 2 hours after elevation of temperature and diminishes thereafter through at least 6 hours. Cells growing asynchronously in the logarithmic phase of growth produce HSPs at a much higher rate than those in the stationary phase. The ability to synthesize HSPs disappears about one generation time before the cells reach a growth plateau.  相似文献   

4.
Interaction of heat and salt shock in cultured tobacco cells   总被引:10,自引:2,他引:8       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54°C treatment when heat-shocked at 38°C (2 h) but not at 42°C. Heat-shocked cells (38°C) exhibited little normal growth when the 54°C stress came immediately after heat shock and normal growth when 54°C stress was administered 8 hours after heat shock. Heat shock extended the length of time that the cells tolerated 54°C. Tobacco cells developed tolerance to otherwise lethal 2% NaCl treatment when salt-shocked (1.2% NaCl for 3 hours). The time course for salt tolerance development was similar to that of thermotolerance. Heat-shocked cells (38°C) developed tolerance of nonpermissive salt stress 8 hours after heat shock. Alternatively, cells heat-shocked at 42°C exhibited immediate tolerance to lethal salt stress followed by a decline over 8 hours. Radioactive methionine incorporation studies demonstrated synthesis of heat shock proteins at 38°C. The apparent molecular weights range from 15 to 115 kilodaltons with a protein complex in the 15 to 20 kilodalton range. Synthesis of heat shock proteins appeared to persist at 42°C but with large decreases in incorporation into selected heat shock protein. During salt shock, the synthesis of normal control proteins was reduced and a group of salt shock proteins appeared 3 to 6 h after shock. Similarities between the physiology and salt shock proteins/heat shock proteins suggest that both forms of stress may share common elements.  相似文献   

5.
Hsieh MH  Chen JT  Jinn TL  Chen YM  Lin CY 《Plant physiology》1992,99(4):1279-1284
Two major polypeptides of the 15- to 18-kilodalton class of soybean (Glycine max) heat shock proteins (HSPs), obtained from an HSP-enriched (NH4)2SO4 fraction separated by two-dimensional polyacrylamide gel electrophoresis, were used individually as antigens to prepare antibodies. Each of these antibody preparations reacted with its antigen and cross-reacted with 12 other 15- to 18-kilodalton HSPs. With these antibodies, the accumulation of the 15- to 18-kilodalton HSPs under various heat shock (HS) conditions was quantified. The 15- to 18-kilodalton HSPs began to be detectable at 35° C, and after 4 hours at 40° C they had accumulated to a maximum level of 1.54 micrograms per 100 micrograms of total protein in soybean seedlings and remained almost unchanged up to 24 hours after HS. Accumulation of the HSPs was reduced at temperatures higher than 40° C. At 42.5° C the HSPs were reduced to 1.02 micrograms per 100 micrograms, and at 45° C they were hardly detectable. A brief HS at 45° C (10 minutes), followed by incubation at 28° C, which also induced HSP synthesis, resulted in synthesis of this class of HSPs at levels up to 1.06 micrograms per 100 micrograms of total protein. Taking into consideration the previous data concerning the acquisition of thermotolerance in soybean seedlings, our estimation indicates that the accumulation of the 15- to 18-kilodalton HSPs to 0.76 to 0.98% of total protein correlated well with the establishment of thermotolerance. Of course, other HSPs, in addition to this group of proteins, may be required for the development of thermotolerance.  相似文献   

6.
Endogenous abscisic acid levels and induced heat shock proteins were measured in tissue exposed for 6 hours to temperatures that reduced their subsequent chilling sensitivity. One-centimeter discs excised from fully expanded cotyledons of 11-day-old seedlings of cucumber (Cucumis sativus L., cv Poinsett 76) were exposed to 12.5 or 37°C for 6 hours followed by 4 days at 2.5 or 12.5°C. Ion leakage, a qualitative indicator of chilling injury, increased after 2 to 3 day exposure to 2.5°C, but not to 12.5°C, a nonchilling temperature. Exposure to 37°C before chilling significantly reduced the rate of ion leakage by about 60% compared to tissue exposed to 12.5°C before chilling, but slightly increased leakage compared to tissue exposed to 12.5 or 37°C and held at the nonchilling temperature of 12.5°C. There was no relationship between abscisic acid content following exposure to 12.5 or 37°C and chilling tolerance. Five heat shock proteins, with apparent molecular mass of 25, 38, 50, 70, and 80 kilodaltons, were induced by exposure to 37 or 42°C for 6 hours, and their appearance coincided with increased chilling resistance. Heat shock treatments reduced the synthesis of three proteins with apparent molecular mass of 14, 17, and 43 kilodaltons. Induction of heat shock proteins could be a possible cause of reduced chilling injury in tissue exposed to 37 or 42°C.  相似文献   

7.
Dupuis I  Dumas C 《Plant physiology》1990,94(2):665-670
This study was conducted to investigate the response of maize (Zea mays) male and female mature reproductive tissues to temperature stress. We have tested the fertilization abilities of the stressed spikelets and pollen using in vitro pollination-fertilization to determine their respective tolerance to stress. The synthesis of heat shock proteins (HSPs) was also analyzed in male and female tissues using electrophoresis of 35S-labeled proteins and fluorography, to establish a relationship between the physiological and molecular responses. Pollen, spikelets, and pollinated spikelets were exposed to selected temperatures (4, 28, 32, 36, or 40°C) and tested using an in vitro fertilization system. The fertilization rate is highly reduced when pollinated spikelets are exposed to temperatures over 36°C. When pollen and spikelets are exposed separately to temperature stress, the female tissues appear resistant to 4 hours of cold stress (4°C) or heat stress (40°C). Under heat shock conditions, the synthesis of a typical set of HSPs is induced in the female tissues. In contrast, the mature pollen is sensitive to heat stress and is responsible for the failure of fertilization at high temperatures. At the molecular level, no heat shock response is detected in the mature pollen.  相似文献   

8.
Heat shock proteins in maize   总被引:27,自引:19,他引:8       下载免费PDF全文
Cooper P  Ho TH 《Plant physiology》1983,71(2):215-222
The pattern of protein synthesis in roots of 3-day-old maize seedlings (Zea mays L.) is rapidly and dramatically altered when the incubation temperature is raised from 25 to 40°C. One-dimensional sodium dodecyl sulfate gels reveal that although synthesis of the proteins observed at 25°C continues at 40°C, a new set of `heat shock proteins' (hsp) is induced within 20 minutes of the temperature transition. The hsp have molecular weights of 87, 85, 79, 78, 77, 72, 70, 27, 22, and 18 kilodaltons. The 10 hsp are visible on autoradiograms but not on stained gels, suggesting that the proteins do not accumulate to any great extent.

The induction of the hsp is transitory. With prolonged high temperature treatment, the synthesis of hsp continues for 4 hours in excised roots and for 8 hours in the roots of intact seedlings before declining sharply. Coincident to the decline in synthesis of the 10 hsp is the gradual increase in intensity of three new polypeptides having molecular weights of 62, 49.5, and 19 kilodaltons. These proteins begin to appear about the time that synthesis of the other 10 hsp becomes maximal.

Shifting the temperature back to 25°C also causes a decline in synthesis of hsp, but this decline occurs more rapidly than that seen during prolonged heat shock. A decrease in hsp synthesis becomes apparent 2 hours after the roots are returned to 25°C.

Shifting the temperature from 25 to 45°C results in a pattern of protein synthesis different from that observed after a shift to 40°C. Normal protein synthesis continues, except four proteins, which are produced in small amounts at lower temperatures, show greatly enhanced synthesis at 45°C. These proteins have apparent molecular weights of 83, 81, 68, and 65 kilodaltons. Also, the 10 hsp listed above are not synthesized. It is suggested that at least two distinct high-temperature responses are present in maize, which may reflect the metabolic changes generated at different elevated temperatures.

  相似文献   

9.
Ubiquitin, a key component in an ATP-dependent proteolytic pathway, participates in the response of various eucaryotic organisms to high temperature stress. Our objective was to determine if ubiquitin serves a similar capacity for metabolizing altered proteins in higher plants during stress. Degradation of total proteins was measured, and ubiquitin pools (free versus conjugated) were extracted with an improved protocol from wheat (Triticum aestivum L. cv Len) roots treated at 22, 27, 32, 37, and 42°C for 1 hour and assayed by western blots and radioimmunoassays. Heat-shock protein synthesis was detected by in vivo labeling and autoradiography. Mean half-life of total root proteins decreased from 51 hours at 22°C to 23 hours at 40°C. Ubiquitin pools were extracted better and proteolysis was slowed more by the improved protocol than by a conventional procedure for plant proteins. Amounts of high molecular mass conjugates were elevated and levels of low molecular mass conjugates and free ubiquitin were depressed when roots were treated at 37 or 42°C than at lower temperatures; the same high temperatures also induced synthesis of heat-shock proteins. We concluded that high temperatures increase breakdown of root proteins, which are degraded via the ubiquitin proteolytic pathway. A conjugate with an apparent molecular mass of 23 kilodaltons was tentatively identified as an ubiquitinated histone.  相似文献   

10.
Exposure of leaf sections from 2-week-old seedlings of sorghum (Sorghum bicolor L.) (C4 plant), corn (Zea mays L.) (C4), peanut (Arachis hypogaea L.) (C3 plant), and soybean (Glycine max L.) (C3) to 40 or 45°C for up to 4 hours resulted in significant increases in the levels of 102 kilodalton (C4), 52 kilodalton (C3 and C4), and 15 kilodalton (C3 and C4) polypeptides. These proteins comigrated, respectively, with authentic phosphoenolpyruvate carboxylase (PEPC) and the large (RLSU) and small (RSSU) subunits of ribulose-1,5-bisphosphate carboxylase (Rubisco) during both one- and two-dimensional SDS-PAGE and reacted with antisera raised against these enzymes. After 4 hours at 50°C, levels of the polypeptides either remained relatively stable (PEPC, RLSU) or increased (RSSU) in sorghum and peanut (plants native to hot climates). In corn and soybean (plants native to temperate climates), levels of the proteins either fell sharply (corn) or showed strong evidence of incomplete processing and/or aggregation (soybean). In addition to changes in levels of the proteins, the activities of PEPC and Rubisco in extracts of leaves exposed to 50°C fell by 84% and 11% of their respective control values in sorghum and by 54% each in peanut. In corn and soybean, the activities of both enzymes were depressed at 40°C, with measured values at 50°C not exceeding 5% of those from the nonstressed controls.  相似文献   

11.
Kee SC  Nobel PS 《Plant physiology》1986,80(2):596-598
Raising the day/night air temperatures from 30°C/20°C to 50°C/40°C increases the high temperature tolerated by Agave deserti, Carnegiea gigantea, and Ferocactus acanthodes by 6°C to 8°C; the increase is about half completed in 3 days and fully completed in 10 days. A 25 to 27 kilodalton protein concomitantly accumulates for all three desert succulents upon transfer to 50°C/40°C, while accumulation of other heat “heat-shock” proteins is species specific. Some of the induced proteins are more abundant at 3 days, while others (including the 25-27 kilodalton protein) remain after completion of high temperature acclimation.  相似文献   

12.
Bromus inermis Leyss cell cultures treated with 75 micromolar abscisic acid (ABA) at both 23 and 3°C developed more freezing resistance than cells cultured at 3°C. Protein synthesis in cells induced to become freezing tolerant by ABA and low temperature was monitored by [14C]leucine incorporation. Protein synthesis continued at 3°C, but net cell growth was stopped. Most of the major proteins detected at 23°C were synthesized at 3°C. However, some proteins were synthesized only at low temperatures, whereas others were inhibited. ABA showed similar effects on protein synthesis at both 23 and 3°C. Comparative electrophoretic analysis of [14C]leucine labeled protein detected the synthesis of 19, 21 and 47 kilodalton proteins in less than 8 hours after exposure to exogenous ABA. Proteins in the 20 kilodalton range were also synthesized at 3°C. In addition, a 31 kilodalton protein band showed increased expression in freezing resistant ABA treated cultures after 36 hours growth at both 3 and 23°C. Quantitative analysis of [14C]leucine labeled polypeptides in two-dimensional gels confirmed the increased expression of the 31 kilodalton protein. Two-dimensional analysis also resolved a 72 kilodalton protein enriched in ABA treated cultures and identified three proteins (24.5, 47, and 48 kilodaltons) induced by low temperature growth.  相似文献   

13.
Accumulation of heat shock proteins in field-grown cotton   总被引:13,自引:8,他引:5       下载免费PDF全文
Cotton (Gossypium hirsutum L.) plants grown under field water deficits exhibited an 80 to 85% reduction in leaf area index, plant height, and dry matter accumulation compared with irrigated controls. Midday photosynthetic rates of dryland plants decreased 2-fold, and canopy temperatures increased to 40°C at 80 days after planting compared with canopy temperatures of 30°C for irrigated plants. Leaves from dryland plants which had exhibited canopy temperatures of 40°C for several weeks accumulated stainable levels of polypeptides with apparent molecular weights of 100, 94, 89, 75, 60, 58, 37, and 21 kilodaltons. These polypeptides did not accumulate in leaves from irrigated plants.

Addition of [35S]methionine to leaves of growth chamber-grown cotton plants and subsequent incubation at 40°C for 3 hours radiolabeled polypeptides with molecular weights similar to those that accumulate in dryland cotton leaves. These data suggest that the proteins which accumulate in water-stressed cotton leaves at elevated temperatures (40°C) are heat shock proteins and that these proteins can accumulate to substantial levels in field-stressed plants.

  相似文献   

14.
The effects of heat shock on the synthesis of α-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25°C to 40°C for 3 hours, inhibits the accumulation of α-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca2+. When ER is isolated from heat-shocked aleurone layers, less newly synthesized α-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca2+ transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.  相似文献   

15.
Cold Acclimation in Arabidopsis thaliana   总被引:27,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

16.
The heat shock response in Lactococcus lactis subsp. lactis was characterized with respect to synthesis of a unique set of proteins induced by thermal stress. A shift in temperature from 30 to 42°C was sufficient to arrest the growth of L. lactis subsp. lactis, but growth resumed after a shift back to 30°C. Heat shock at 50°C reduced the viable cell population by 103; however, pretreatment of the cells at 42°C made them more thermoresistant to exposure at 50°C. The enhanced synthesis of approximately 13 proteins was observed in cells labeled with 35S upon heat shock at 42°C. Of these heat shock-induced proteins, two appeared to be homologs of GroEL and DnaK, based on their molecular weights and reactivity with antiserum against the corresponding Escherichia coli proteins. Therefore, we conclude that L. lactis subsp. lactis displays a heat shock response similar to that observed in other mesophilic bacteria.  相似文献   

17.
Synthesis of heat shock proteins (HSPs) in the leaves of a drought- and heat-resistant (line ZPBL 1304), and a drought- and heat-sensitive (line ZPL 389) line of maize (Zea mays L.) was studied under two environmental stress treatments: (a) soil drying and high temperature and (b) high temperature. In the first treatment 13-day-old plants were exposed to 7-day soil drying followed by high temperature stress (45°C), and in the second treatment 20-day-old plants were exposed to high temperature stress (45°C). Second leaves were labeled with [35S]methionine. During the labeling period line ZPBL 1304 showed no signs of leaf dehydration under soil drying and high temperature stress conditions. In contrast, line ZPL 389 was dehydrated 23%, as determined by relative water content. Incorporation of [35S]methionine into protein was greater in the resistant than in the sensitive line in both treatments. The pattern of synthesis of HSPs in the two lines was similar in treatments 1 and 2. Both lines synthesized a high molecular mass set and a low molecular mass set of HSPs. Proteins from both sets from both lines of maize appeared similar to each other, with respect to the molecular mass. Heated plants of the drought- and heat-resistant line ZPBL 1304 synthesized a band of HSP(s) of approximately 45 kilodaltons which was not found in heated plants of the drought and heat sensitive line ZPL 389. This is the first report on qualitative intraspecific difference in the synthesis of HSPs in maize.  相似文献   

18.
The response of maize (Zea mays L.) protoplasts to high temperature stress was investigated. After isolation and electroporation, protoplasts were preincubated for 12 hours at 26°C then incubated for 6 hours at elevated temperatures. The pattern of polypeptides synthesized by these protoplasts during the last hour was monitored by in vivo labeling with 35S-methionine. Incubation at 40° and 42°C resulted in the synthesis of polypeptides not detectable at 26°C. Introduction of a chimeric maize heat shock protein 70 promoter-chloramphenicol acetyltransferase coding region gene into protoplasts via electroporation resulted in the temperature-dependent induction of chloramphenicol acetyltransferase activity with maximal activity at 40°C. In the same protoplasts, a second chimeric gene, in which the firefly luciferase coding region was under the control of the 35S promoter from cauliflower mosaic virus, did not show an increase in expression after incubation at higher temperatures. Maize protoplasts provide a system to study molecular responses to high temperature stress.  相似文献   

19.
We have studied modifications in the pattern of proteins synthesized by tobacco (Nicotiana tabacum var Maryland) mesophyll protoplasts when they are transferred from 25°C to 40°C. The synthesis of one group of proteins is practically unaffected by the heat shock. On the other hand, the synthesis of most other 25°C proteins is greatly reduced, while specific heat-shock proteins appear: 17 stable, neutral, major proteins, which are synthesized throughout the culture period at the higher temperature and which correspond to those observed in other organisms, and two basic proteins with a short lifetime and which are synthesized only during the first 2 hours of heat shock. We suggest that these latter proteins are regulatory peptides which intervene in the inhibition of 25°C syntheses.  相似文献   

20.
Cormels of Gladiolus X gandavensis Van Houtte respond to heat shock by an induced synthesis of heat shock proteins. Synthesis of some of the non-heat shock proteins is concomitantly reduced. The ability of dormant cormels to synthesize heat shock proteins (hsps) and to repress the synthesis of non-hsps is greater than that of nondormant ones. A hsp of apparent molecular weight 68 kilodaltons is synthesized only in dormant cormels or in cormels that lost their dormancy after long storage at 25°C. The synthesis of hsps at 40°C, but not at 25°C, is promoted by abscisic acid in nondormant cormels. Methionine incorporation into hsps declines after a 4-hour incubation period at 40°C. Induction of hsps is stronger if exposure to extreme temperature is done gradually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号