首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
Although the influence of phosphorus loading on the Everglades ecosystem has received a great deal of attention, most research has targeted macro indicators, such as those based on vegetation or fauna, or chemical and physical parameters involved in biogeochemical cycles. Fewer studies have addressed the role of microorganisms, and these have mainly targeted gross informative parameters such as microbial biomass, enzymatic activities, and microbial enumerations. The objectives of this study were to characterize the dynamics of sulfate-reducing and methanogenic assemblages using terminal restriction fragment length polymorphism (T-RFLP) targeting the dissimilatory sulfite reductase (dsrA) and methyl coenzyme M reductase (mcrA) genes, respectively, and assess the impact of nutrient enrichment on microbial assemblages in the northern Everglades. T-RFLP combined with principal component analysis was a powerful technique to discriminate between soils from sites with eutrophic, transitional, and oligotrophic nutrient concentrations. dsrA T-RFLP provided a higher level of discrimination between the three sites. mcrA was a relatively weaker system to distinguish between sites, since it could not categorically discriminate between eutrophic and transition soil samples, but may be useful as an early indicator of phosphorus loading which is altering hydrogenotrophic methanogenic community in the transition zones, making them more similar to eutrophic zones. Clearly, targeting a combination of different microbial communities provides greater insight into the functioning of this ecosystem and provides useful information for understanding the relationship between eutrophication effects and microbial assemblages.  相似文献   

2.
The removal of plants and soil to bedrock to eradicate exotic invasive plants within the Hole-in-the-Donut (HID) region, part of the Everglades National Park (Florida), presented a unique opportunity to study the redevelopment of soil and the associated microbial communities in the context of short-term primary succession and ecosystem restoration. The goal of this study was to identify relationships between soil redevelopment and activity and composition of methanogenic assemblages in HID soils. Methane production potentials indicated a general decline in methanogenic activity with restoration age. Microcosm incubations strongly suggested hydrogenotrophic methanogenesis as the most favorable pathway for methane formation in HID soils from all sites. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogenic assemblages. Clone libraries were dominated by sequences related to hydrogenotrophic methanogens of the orders Methanobacteriales and Methanococcales and suggested a general decline in the relative abundance of Methanobacteriales mcrA with time since restoration. Terminal restriction fragment length polymorphism analysis indicated methanogenic assemblages remain relatively stable between wet and dry seasons. Interestingly, analysis of soils across the restoration chronosequence indicated a shift in Methanobacteriales populations with restoration age, suggesting genotypic shifts due to site-specific factors.  相似文献   

3.
Agricultural activities have produced well-documented changes in the Florida Everglades, including establishment of a gradient in phosphorus concentrations in Water Conservation Area 2A (WCA-2A) of the northern Everglades. An effect of increased phosphorus concentrations is increased methanogenesis in the eutrophic regions compared to the oligotrophic regions of WCA-2A. The goal of this study was to identify relationships between eutrophication and composition and activity of methanogenic assemblages in WCA-2A soils. Distributions of two genes associated with methanogens were characterized in soils taken from WCA-2A: the archaeal 16S rRNA gene and the methyl coenzyme M reductase gene. The richness of methanogen phylotypes was greater in eutrophic than in oligotrophic sites, and sequences related to previously cultivated and uncultivated methanogens were found. A preferential selection for the order Methanomicrobiales was observed in mcrA clone libraries, suggesting primer bias for this group. A greater diversity within the Methanomicrobiales was observed in mcrA clone libraries than in 16S rRNA gene libraries. 16S rRNA phylogenetic analyses revealed a dominance of clones related to Methanosaeta spp., an acetoclastic methanogen dominant in environments with low acetate concentrations. A significant number of clones were related to Methanomicrobiales, an order characterized by species utilizing hydrogen and formate as methanogenic substrates. No representatives of the orders Methanobacteriales and Methanococcales were found in any 16S rRNA clone library, although some Methanobacteriales were found in mcrA libraries. Hydrogenotrophs are the dominant methanogens in WCA-2A, and acetoclastic methanogen genotypes that proliferate in low acetate concentrations outnumber those that typically dominate in higher acetate concentrations.  相似文献   

4.
The removal of plants and soil to bedrock to eradicate exotic invasive plants within the Hole-in-the-Donut (HID) region, part of the Everglades National Park (Florida), presented a unique opportunity to study the redevelopment of soil and the associated microbial communities in the context of short-term primary succession and ecosystem restoration. The goal of this study was to identify relationships between soil redevelopment and activity and composition of methanogenic assemblages in HID soils. Methane production potentials indicated a general decline in methanogenic activity with restoration age. Microcosm incubations strongly suggested hydrogenotrophic methanogenesis as the most favorable pathway for methane formation in HID soils from all sites. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogenic assemblages. Clone libraries were dominated by sequences related to hydrogenotrophic methanogens of the orders Methanobacteriales and Methanococcales and suggested a general decline in the relative abundance of Methanobacteriales mcrA with time since restoration. Terminal restriction fragment length polymorphism analysis indicated methanogenic assemblages remain relatively stable between wet and dry seasons. Interestingly, analysis of soils across the restoration chronosequence indicated a shift in Methanobacteriales populations with restoration age, suggesting genotypic shifts due to site-specific factors.  相似文献   

5.
The diversity of methanogen-specific methyl-coenzyme M reductase alpha-subunit (mcrA/mrtA) genes in Italian rice field soil was analysed using a combination of molecular techniques and enrichment cultures. From 75 mcrA/mrtA clones retrieved from rice field soil, 52 were related to members of the Methanosarcinaceae, Methanosaetaceae and Methanobacteriaceae. However, 19 and four clones formed two novel clusters of deeply branching mcrA sequences, respectively, which could not be affiliated to known methanogens. A new methanogen-specific fingerprinting assay based on terminal restriction fragment length polymorphism (T-RFLP) analysis of fluorescently labelled polymerase chain reaction (PCR) products allowed us to distinguish all environmental mcrA/mrtA sequences via group-specific Sau96I restriction sites. Even genes for the isoenzyme methyl-coenzyme M reductase two (mrtA) of Methanobacteriaceae present in rice field soil were represented by a unique 470 bp terminal restriction fragment (T-RF). Both cloning and T-RFLP analysis indicated a significant representation of novel environmental mcrA sequences in rice field soil (238 bp T-RF). To identify these mcrA sequences, methanogenic enrichment cultures with rice field soil as inoculum were established with H2/CO2 as substrates at a temperature of 50 degrees C, and these were monitored using molecular tools. In subsequent transfers of these enrichment cultures, cloning and T-RFLP analysis detected predominantly SSU rRNA genes of rice cluster I (RC-I), an uncultivated euryarchaeotal lineage discovered previously in anoxic rice field soil. In parallel, both mcrA cloning and T-RFLP analyses of the enrichment culture identified the more frequent cluster of novel environmental mcrA sequences as belonging to members of RC-I. Thus, we could demonstrate the genotype and phenotype of RC-I Archaea by the presence of a catabolic gene in a methanogenic enrichment culture before the isolation of pure cultures.  相似文献   

6.
Nutrient runoff from the Everglades Agricultural Area resulted in a well-documented gradient of phosphorus concentrations in soil and water, with concomitant ecosystem-level changes, in the northern Florida Everglades. It was recently reported that sulfate-reducing prokaryote assemblage composition, numbers, and activities are dependent on position along the gradient (H. Castro, K. R. Reddy, and A. Ogram, Appl. Environ. Microbiol. 68:6129-6137, 2002). The present study utilized a combination of culture- and non-culture-based approaches to study differences in composition of assemblages of syntrophic and methanogenic microbial communities in eutrophic, transition, and oligotrophic areas along the phosphorus gradient. Methanogenesis rates were much higher in eutrophic and transition regions, and sequence analysis of 16S rRNA gene clone libraries constructed from samples taken from these regions revealed differences in composition and activities of syntroph-methanogen consortia. Methanogens from eutrophic and transition regions were almost exclusively composed of hydrogenotrophic methanogens, with approximately 10,000-fold-greater most probable numbers of hydrogenotrophs than of acetotrophs. Most cultivable strains from eutrophic and transition regions clustered within novel lineages. In non-culture-based studies to enrich syntrophs, most bacterial and archaeal clones were either members of novel lineages or closely related to uncultivated environmental clones. Novel cultivable Methanosaeta sp. and fatty acid-oxidizing bacteria related to the genera Syntrophomonas and Syntrophobacter were observed in microcosms containing soil from eutrophic regions, and different lines of evidence indicated the existence of novel syntrophic association in eutrophic regions.  相似文献   

7.
Nutrient runoff from the Everglades Agricultural Area resulted in a well-documented gradient of phosphorus concentrations in soil and water, with concomitant ecosystem-level changes, in the northern Florida Everglades. It was recently reported that sulfate-reducing prokaryote assemblage composition, numbers, and activities are dependent on position along the gradient (H. Castro, K. R. Reddy, and A. Ogram, Appl. Environ. Microbiol. 68:6129-6137, 2002). The present study utilized a combination of culture- and non-culture-based approaches to study differences in composition of assemblages of syntrophic and methanogenic microbial communities in eutrophic, transition, and oligotrophic areas along the phosphorus gradient. Methanogenesis rates were much higher in eutrophic and transition regions, and sequence analysis of 16S rRNA gene clone libraries constructed from samples taken from these regions revealed differences in composition and activities of syntroph-methanogen consortia. Methanogens from eutrophic and transition regions were almost exclusively composed of hydrogenotrophic methanogens, with approximately 10,000-fold-greater most probable numbers of hydrogenotrophs than of acetotrophs. Most cultivable strains from eutrophic and transition regions clustered within novel lineages. In non-culture-based studies to enrich syntrophs, most bacterial and archaeal clones were either members of novel lineages or closely related to uncultivated environmental clones. Novel cultivable Methanosaeta sp. and fatty acid-oxidizing bacteria related to the genera Syntrophomonas and Syntrophobacter were observed in microcosms containing soil from eutrophic regions, and different lines of evidence indicated the existence of novel syntrophic association in eutrophic regions.  相似文献   

8.
Agricultural activities have produced well-documented changes in the Florida Everglades, including establishment of a gradient in phosphorus concentrations in Water Conservation Area 2A (WCA-2A) of the northern Everglades. An effect of increased phosphorus concentrations is increased methanogenesis in the eutrophic regions compared to the oligotrophic regions of WCA-2A. The goal of this study was to identify relationships between eutrophication and composition and activity of methanogenic assemblages in WCA-2A soils. Distributions of two genes associated with methanogens were characterized in soils taken from WCA-2A: the archaeal 16S rRNA gene and the methyl coenzyme M reductase gene. The richness of methanogen phylotypes was greater in eutrophic than in oligotrophic sites, and sequences related to previously cultivated and uncultivated methanogens were found. A preferential selection for the order Methanomicrobiales was observed in mcrA clone libraries, suggesting primer bias for this group. A greater diversity within the Methanomicrobiales was observed in mcrA clone libraries than in 16S rRNA gene libraries. 16S rRNA phylogenetic analyses revealed a dominance of clones related to Methanosaeta spp., an acetoclastic methanogen dominant in environments with low acetate concentrations. A significant number of clones were related to Methanomicrobiales, an order characterized by species utilizing hydrogen and formate as methanogenic substrates. No representatives of the orders Methanobacteriales and Methanococcales were found in any 16S rRNA clone library, although some Methanobacteriales were found in mcrA libraries. Hydrogenotrophs are the dominant methanogens in WCA-2A, and acetoclastic methanogen genotypes that proliferate in low acetate concentrations outnumber those that typically dominate in higher acetate concentrations.  相似文献   

9.
As a result of agricultural activities in regions adjacent to the northern boundary of the Florida Everglades, a nutrient gradient developed that resulted in physicochemical and ecological changes from the original system. Sulfate input from agricultural runoff and groundwater is present in soils of the Northern Everglades, and sulfate-reducing prokaryotes (SRP) may play an important role in biogeochemical processes such as carbon cycling. The goal of this project was to utilize culture-based and non-culture-based approaches to study differences between the composition of assemblages of SRP in eutrophic and pristine areas of the Everglades. Sulfate reduction rates and most-probable-number enumerations revealed SRP populations and activities to be greater in eutrophic zones than in more pristine soils. In eutrophic regions, methanogenesis rates were higher, the addition of acetate stimulated methanogenesis, and SRP able to utilize acetate competed to a limited degree with acetoclastic methanogens. A surprising amount of diversity within clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) genes was observed, and the majority of DSR sequences were associated with gram-positive spore-forming Desulfotomaculum and uncultured microorganisms. Sequences associated with Desulfotomaculum fall into two categories: in the eutrophic regions, 94.7% of the sequences related to Desulfotomaculum were associated with those able to completely oxidize substrates, and in samples from pristine regions, all Desulfotomaculum-like sequences were related to incomplete oxidizers. This metabolic selection may be linked to the types of substrates that Desulfotomaculum spp. utilize; it may be that complete oxidizers are more versatile and likelier to proliferate in nutrient-rich zones of the Everglades. Desulfotomaculum incomplete oxidizers may outcompete complete oxidizers for substrates such as hydrogen in pristine zones where diverse carbon sources are less available.  相似文献   

10.
The anoxic layers of marine sediments are dominated by sulfate reduction and methanogenesis as the main terminal oxidation processes. The aim of this study was to analyze the vertical succession of microbial populations involved in these processes along the first 4.5 m of a tidal-flat sediment. Therefore, a quantitative PCR approach was applied using primers targeting the domains of Bacteria and Archaea, and key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). The sampling site was characterized by an unusual sulfate peak at 250 cm depth resulting in separate sulfate-methane transition zones. Methane and sulfate profiles were diametrically opposed, with a methane maximum in the sulfate-depleted zone showing high numbers of archaea and methanogens. The methane-sulfate interfaces harbored elevated numbers of sulfate reducers, and revealed a slight increase in mcrA and archaeal 16S rRNA genes, suggesting sulfate-dependent anaerobic oxidation of methane. A diversity analysis of both functional genes by PCR-denaturing gradient gel electrophoresis revealed a vertical succession of subpopulations that were governed by geochemical and sedimentologic conditions. Along the upper 200 cm, sulfate-reducing populations appeared quite uniform and were dominated by the Deltaproteobacteria. In the layers beneath, an apparent increase in diversity and a shift to the Firmicutes as the predominant group was observed.  相似文献   

11.
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a widely used method for profiling microbial community structure in different habitats by targeting small-subunit (SSU) rRNA and also functional marker genes. It is not known, however, whether relative gene frequencies of individual community members are adequately represented in post-PCR amplicon frequencies as shown by T-RFLP. In this study, precisely defined artificial template mixtures containing genomic DNA of four different methanogens in various ratios were prepared for subsequent T-RFLP analysis. PCR amplicons were generated from defined mixtures targeting not only the SSU rRNA but also the methyl-coenzyme M reductase (mcrA/mrtA) genes of methanogens. Relative amplicon frequencies of microorganisms were quantified by comparing fluorescence intensities of characteristic terminal restriction fragments. SSU ribosomal DNA (rDNA) template ratios in defined template mixtures of the four-membered community were recovered absolutely by PCR-T-RFLP analysis, which demonstrates that the T-RFLP analysis evaluated can give a quantitative view of the template pool. SSU rDNA-targeted T-RFLP analysis of a natural community was found to be highly reproducible, independent of PCR annealing temperature, and unaffected by increasing PCR cycle numbers. Ratios of mcrA-targeted T-RFLP analysis were biased, most likely by PCR selection due to the degeneracy of the primers used. Consequently, for microbial community analyses, each primer system used should be evaluated carefully for possible PCR bias. In fact, such bias can be detected by using T-RFLP analysis as a tool for the precise quantification of the PCR product pool.  相似文献   

12.
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a widely used method for profiling microbial community structure in different habitats by targeting small-subunit (SSU) rRNA and also functional marker genes. It is not known, however, whether relative gene frequencies of individual community members are adequately represented in post-PCR amplicon frequencies as shown by T-RFLP. In this study, precisely defined artificial template mixtures containing genomic DNA of four different methanogens in various ratios were prepared for subsequent T-RFLP analysis. PCR amplicons were generated from defined mixtures targeting not only the SSU rRNA but also the methyl-coenzyme M reductase (mcrA/mrtA) genes of methanogens. Relative amplicon frequencies of microorganisms were quantified by comparing fluorescence intensities of characteristic terminal restriction fragments. SSU ribosomal DNA (rDNA) template ratios in defined template mixtures of the four-membered community were recovered absolutely by PCR-T-RFLP analysis, which demonstrates that the T-RFLP analysis evaluated can give a quantitative view of the template pool. SSU rDNA-targeted T-RFLP analysis of a natural community was found to be highly reproducible, independent of PCR annealing temperature, and unaffected by increasing PCR cycle numbers. Ratios of mcrA-targeted T-RFLP analysis were biased, most likely by PCR selection due to the degeneracy of the primers used. Consequently, for microbial community analyses, each primer system used should be evaluated carefully for possible PCR bias. In fact, such bias can be detected by using T-RFLP analysis as a tool for the precise quantification of the PCR product pool.  相似文献   

13.
Phylogenetic and stable-isotope analyses implicated two methanogen-like archaeal groups, ANME-1 and ANME-2, as key participants in the process of anaerobic methane oxidation. Although nothing is known about anaerobic methane oxidation at the molecular level, the evolutionary relationship between methane-oxidizing archaea (MOA) and methanogenic archaea raises the possibility that MOA have co-opted key elements of the methanogenic pathway, reversing many of its steps to oxidize methane anaerobically. In order to explore this hypothesis, the existence and genomic conservation of methyl coenzyme M reductase (MCR), the enzyme catalyzing the terminal step in methanogenesis, was studied in ANME-1 and ANME-2 archaea isolated from various marine environments. Clone libraries targeting a conserved region of the alpha subunit of MCR (mcrA) were generated and compared from environmental samples, laboratory-incubated microcosms, and fosmid libraries. Four out of five novel mcrA types identified from these sources were associated with ANME-1 or ANME-2 group members. Assignment of mcrA types to specific phylogenetic groups was based on environmental clone recoveries, selective enrichment of specific MOA and mcrA types in a microcosm, phylogenetic congruence between mcrA and small-subunit rRNA tree topologies, and genomic context derived from fosmid sequences. Analysis of the ANME-1 and ANME-2 mcrA sequences suggested the potential for catalytic activity based on conservation of active-site amino acids. These results provide a basis for identifying methanotrophic archaea with mcrA sequences and define a functional genomic link between methanogenic and methanotrophic archaea.  相似文献   

14.
A quantitative fluorogenic PCR method for detecting methanogenic and methanotrophic orders was established using a refined primer set for the methyl coenzyme M reductase subunit A gene (mcrA). The method developed was applied to several microbial communities in which diversity and abundance of methanogens or anaerobic methanotrophs (ANMEs) was identified by 16S rRNA gene clone analysis, and strong correlations between the copy numbers of mcrA with those of archaeal 16S rRNA genes in the communities were observed. The assay can be applied to detecting and assessing the abundance of methanogens and/or ANMEs in anoxic environments that could not be detected by 16S rRNA gene sequence analyses.  相似文献   

15.
Understanding the ecology of methanogens in natural and engineered environments is a prerequisite to predicting or managing methane emissions. In this study, a novel high-throughput fingerprint method was developed for determining methanogen diversity and relative abundance within environmental samples. The method described here, designated amplicon length heterogeneity PCR of the mcrA gene (LH-mcrA), is based on the natural length variation in the mcrA gene. The mcrA gene encodes the alpha-subunit of the methyl-coenzyme M reductase, which is involved in the terminal step of methane production by methanogens. The methanogenic communities from stored swine and dairy manures were distinct from each other. To validate the method, methanogenic communities in a plug flow-type bioreactor (PFBR) treating swine manure were characterized using LH-mcrA method and correlated to mcrA gene clone libraries. The diversity and relative abundance of the methanogenic groups were assessed. Methanobrevibacter, Methanosarcinaceae, Methanoculleus, Methanogenium, Methanocorpusculum and one unidentified group were assigned to particular LH-mcrA amplicons. Particular phylotypes related to Methanoculleus were predominant in the last compartment of the PFBR where the bulk of methane was produced. LH-mcrA method was found to be a reliable, fast and cost-effective alternative for diversity assessment of methanogenic communities in microbial systems.  相似文献   

16.
The methanogen community in sediment from the edge of a small brackish lake connected to the Beaulieu Estuary (Hampshire, UK) was investigated by analysis of 16S rRNA gene diversity using new methanogen-specific primers plus Archaea-specific primers. 16S rRNA gene primers previously used for polymerase chain reaction (PCR) detection of methanogenic Archaea from a variety of environments were evaluated by in silico testing. The primers displayed variable coverage of the four main orders of methanogens, highlighting the importance of this type of primer evaluation. Three PCR primer sets were designed using novel reverse primers to facilitate specific amplification of the orders Methanomicrobiales/Methanosarcinales, Methanobacteriales and Methanococcales. Diversity of the methanogen functional gene, methyl coenzyme M reductase (mcrA), was also studied. All gene libraries constructed from this sediment indicated that Methanomicrobiales and Methanosarcinales were the only methanogens detected. There was good agreement between the relative sequence abundances in the methanogen-specific 16S rRNA gene library and terminal restriction fragment length polymorphism (T-RFLP) profiling, suggesting that the population was dominated by putative H2 CO2 utilizing Methanomicrobiales, although acetate-utilizing methanogens were also present. The methanogen population analyses were in agreement with methanogenic activity measurements, which indicated that bicarbonate methanogenesis was higher than acetate methanogenesis at all depths measured and overall there was a significant difference (P = 0.001) between the rates of the two pathways. This study demonstrates the utility of new 16S rRNA gene PCR primers targeting specific methanogenic orders, and the combined results suggest that the CO2 reduction pathway dominates methanogenesis in the brackish sediment investigated.  相似文献   

17.
Anoxic soils in river floodplains (or riparian soils) are a source of methane emission. However, little is known about the ecology and community structure of archaeal methanogenic microbes, which are a crucial component of methane flux in those habitats. We studied the archaeal community in the vertical profile of four different sites along the River Waal in the Netherlands. These sites differ in their annual flooding regime ranging from never or seldom to permanently flooded. The archaeal community structure has been characterized by terminal restriction fragment length polymorphism (T-RFLP) and comparative sequence analysis of the archaeal SSU rRNA gene and the mcrA gene. The latter gene codes for the alpha-subunit of methyl-coenzyme M reductase. Additionally, the potential methanogenic activity was determined by incubation of soil slurries under anoxic conditions. The community composition differed only slightly with the depth of the soil (0-20 cm). However, the diversity of archaeal SSU rRNA genes increased with the frequency of flooding. Terminal restriction fragment length polymorphism analysis of mcrA gene amplicons confirmed the results concerning methanogenic archaea. In the never and rarely flooded soils, crenarchaeotal sequences were the dominant group. In the frequently and permanently flooded soils, Methanomicrobiaceae, Methanobacteriaceae, Methanosarcinaceae and the uncultured Rice Clusters IV and VI (Crenarchaeota) were detectable independently from duration of anoxic conditions. Methanosaetaceae, on the other hand, were only found in the permanently and frequently flooded soils under conditions where concentrations of acetate were < 30 microM. The results indicate that methanogens as well as other archaea occupy characteristic niches according to the flooding conditions in the field. Methanosaetaceae, in particular, seem to be adapted (or proliferate at) to low acetate concentrations.  相似文献   

18.
Mires forming an ecohydrological gradient from nutrient-rich, groundwater-fed mesotrophic and oligotrophic fens to a nutrient-poor ombrotrophic bog were studied by comparing potential methane (CH(4)) production and methanogenic microbial communities. Methane production was measured from different depths of anoxic peat and methanogen communities were detected by detailed restriction fragment length polymorphism (RFLP) analysis of clone libraries, sequencing and phylogenetic analysis. Potential CH(4) production changed along the ecohydrological gradient with the fens displaying much higher production than the ombrotrophic bog. Methanogen diversity also decreased along the gradient. The two fens had very similar diversity of methanogenic methyl-coenzyme M reductase gene (mcrA), but in the upper layer of the bog the methanogen diversity was strikingly lower, and only one type of mcrA sequence was retrieved. It was related to the Fen cluster, a group of novel methanogenic sequences found earlier in Finnish mires. Bacterial 16S rDNA sequences from the fens fell into at least nine phyla, but only four phyla were retrieved from the bog. The most common bacterial groups were Deltaproteobacteria, Verrucomicrobia and Acidobacteria.  相似文献   

19.
A regime shift between a macrophyte-dominated clear state and a phytoplankton-dominated turbid state can have considerable impact on ecosystem structure and function of shallow lakes. However, very little is known about the response of the methanogenic archaeal community in the sediment during this regime shift. We investigated the methanogenic archaeal community at two sites in the large, shallow, eutrophic Taihu Lake over the course of one year. One site is located in Meiliang Bay and is dominated by Microcystis blooms, and the other site is located in East Taihu Bay and is dominated by aquatic macrophytes. Terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analyses of archaeal 16S rRNA genes were used to analyze the methanogenic community. Higher ratio of methanogens in Archaea was observed in East Taihu Bay than in Meiliang Bay. The methanogenic archaeal community was dominated by the Methanobacteriales and the LDS cluster in macrophytes-dominated East Taihu Bay, while it was dominated by the Methanosarcinaceae, Methanobacteriales, and the LDS cluster in Microcystis-dominated Meiliang Bay. Clustering analysis of all of the samples revealed differences in the composition of the methanogenic archaeal communities between the two sites that were independent of seasonal variations. Further statistical analysis indicated that the chlorophyll a (Chla) concentration had a profound impact on the composition of the methanogenic archaeal community in Meiliang Bay, whereas it was primarily influenced by total organic carbon (TOC) levels in East Taihu Bay. Overall, this investigation demonstrates that intra-habitat differences in the composition of methanogenic archaeal communities are likely driven by changes in the available organic materials.  相似文献   

20.
Over the years, the wetlands covered by Sphagnum in Bibai, Japan have been turning into areas of aridity, resulting in an invasion of Sasa into the bogs. Yet little is known about the methane-cycling microorganisms in such environments. In this study, the methanotrophic, methanogenic, and archaeal community structures within these two types of wetland vegetation were studied by phylogenetic analysis targeting particulate methane monooxygenase (pmoA), methyl coenzyme M reductase (mcrA), and the archaeal 16S rRNA gene. The pmoA library indicated that Methylomonas and Methylocystis predominated in the Sphagnum-covered and Sasa-invaded areas, respectively. The mcrA and 16S rRNA libraries indicated that Methanoregula were abundant methanogens in the Sphagnum-covered area. In the Sasa-invaded area, by contrast, mcrA genes were not detected, and no 16S rRNA clones were affiliated with previously known methanogens. Because the Sasa-invaded area still produced methane, of the various uncultured populations detected, novel euryarchaeotal lineages are candidate methane producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号